Cellulose Triacetate-Based Mixed-Matrix Membranes with MXene 2D Filler-CO2/CH4 Separation Performance and Comparison with TiO2-Based 1D and 0D Fillers

. 2022 Sep 22 ; 12 (10) : . [epub] 20220922

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36295678

Mixed-matrix membranes (MMMs) possess the unique properties and inherent characteristics of their component polymer and inorganic fillers, or other possible types of additives. However, the successful fabrication of compact and defect-free MMMs with a homogeneous filler distribution poses a major challenge, due to poor filler/polymer compatibility. In this study, we use two-dimensional multi-layered Ti3C2Tx MXene nanofillers to improve the compatibility and CO2/CH4 separation performance of cellulose triacetate (CTA)-based MMMs. CTA-based MMMs with TiO2-based 1D (nanotubes) and 0D (nanofillers) additives were also fabricated and tested for comparison. The high thermal stability, compact homogeneous structure, and stable long-term CO2/CH4 separation performance of the CTA-2D samples suggest the potential application of the membrane in bio/natural gas separation. The best results were obtained for the CTA-2D sample with a loading of 3 wt.%, which exhibited a 5-fold increase in CO2 permeability and 2-fold increase in CO2/CH4 selectivity, compared with the pristine CTA membrane, approaching the state-of-the-art Robeson 2008 upper bound. The dimensional (shape) effect on separation performance was determined as 2D > 1D > 0D. The use of lamellar stacked MXene with abundant surface-terminating groups not only prevents the aggregation of particles but also enhances the CO2 adsorption properties and provides additional transport channels, resulting in improved CO2 permeability and CO2/CH4 selectivity.

Zobrazit více v PubMed

Li J., Li X., van der Bruggen B. An MXene-based membrane for molecular separation. Environ. Sci. Nano. 2020;7:1289–1304. doi: 10.1039/C9EN01478K. DOI

Cheng Y., Pu Y., Zhao D. Two-dimensional membranes: New paradigms for high-performance separation membranes. Chem. —Asian J. 2020;15:2241–2270. doi: 10.1002/asia.202000013. PubMed DOI

Robeson L.M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 1991;62:165–185. doi: 10.1016/0376-7388(91)80060-J. DOI

Shi F., Sun J., Wang J., Liu M., Yan Z., Zhu B., Li Y., Cao X. MXene versus graphene oxide: Investigation on the effects of 2D nanosheets in mixed matrix membranes for CO2 separation. J. Membr. Sci. 2021;620:118850. doi: 10.1016/j.memsci.2020.118850. DOI

Carreon M.A. Membranes for Gas Separations. World Scientific Publishing Company; Singapore: 2017.

Goh P.S., Ismail A.F., Sanip S.M., Ng B.C., Aziz M. Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep. Purif. Technol. 2011;81:243–264. doi: 10.1016/j.seppur.2011.07.042. DOI

Ebert K., Fritsch D., Koll J., Tjahjawiguna C. Influence of inorganic fillers on the compaction behaviour of porous polymer-based membranes. J. Membr. Sci. 2004;233:71–78. doi: 10.1016/j.memsci.2003.12.012. DOI

Khraisheh M., Elhenawy S., AlMomani F., Al-Ghouti M., Hassan M.K., Hameed B.H. Recent progress on nanomaterial-based membranes for water treatment. Membranes. 2021;11:995. doi: 10.3390/membranes11120995. PubMed DOI PMC

Ng L.Y., Mohammad A.W., Leo C.P., Hilal N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination. 2013;308:15–33. doi: 10.1016/j.desal.2010.11.033. DOI

Rezakazemi M., Amooghin A.E., Montazer-Rahmati M.M., Ismail A.F., Matsuura T. State-of-the-art membrane-based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Prog. Polym. Sci. 2014;39:817–861. doi: 10.1016/j.progpolymsci.2014.01.003. DOI

Bernardo P., Drioli E., Golemme G. Membrane gas separation: A review/state of the art. Ind. Eng. Chem. Res. 2009;48:4638–4663. doi: 10.1021/ie8019032. DOI

Kamble A.R., Patel C.M., Murthy Z.V.P. A review on the recent advances in mixed matrix membranes for gas separation processes. Renew. Sustain. Energy Rev. 2021;145:111062. doi: 10.1016/j.rser.2021.111062. DOI

Basu S., Cano-Odena A., Vankelecom I.F.J. MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations. Sep. Purif. Technol. 2011;81:31–40. doi: 10.1016/j.seppur.2011.06.037. DOI

Liu X., Ma T., Pinna N., Zhang J. Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 2017;27:1702168. doi: 10.1002/adfm.201702168. DOI

Zhang H. Ultrathin two-dimensional nanomaterials. ACS Nano. 2015;9:9451–9469. doi: 10.1021/acsnano.5b05040. PubMed DOI

Chen D., Zhu H., Liu T. In situ thermal preparation of polyimide nanocomposite films containing functionalized graphene sheets. ACS Appl. Mater. Interfaces. 2010;2:3702–3708. doi: 10.1021/am1008437. PubMed DOI

Compton O.C., Kim S., Pierre C., Torkelson J.M., Nguyen S.T. Crumpled graphene nanosheets as highly effective barrier property enhancers. Adv. Mater. 2010;22:4759–4763. doi: 10.1002/adma.201000960. PubMed DOI

Guan W., Yang X., Dong C., Yan X., Zheng W., Xi Y., Ruan X., Dai Y., He G. Prestructured MXene fillers with uniform channels to enhance CO2 selective permeation in mixed matrix membranes. J. Appl. Polym. Sci. 2021;138:49895. doi: 10.1002/app.49895. DOI

Feijani E.A., Tavassoli A., Mahdavi H., Molavi H. Effective gas separation through graphene oxide containing mixed matrix membranes. J. Appl. Polym. Sci. 2018;135:46271. doi: 10.1002/app.46271. DOI

Liu Y.-C., Chen C.-Y., Lin G.-S., Chen C.-H., Wu K.C.W., Lin C.-H., Tung K.-L. Characterization and molecular simulation of Pebax-1657-based mixed matrix membranes incorporating MoS2 nanosheets for carbon dioxide capture enhancement. J. Membr. Sci. 2019;582:358–366. doi: 10.1016/j.memsci.2019.04.025. DOI

Ren C.E., Hatzell K.B., Alhabeb M., Ling Z., Mahmoud K.A., Gogotsi Y. Charge- and size-selective Ion sieving through Ti3C2Tx MXene membranes. J. Phys. Chem. Lett. 2015;6:4026–4031. doi: 10.1021/acs.jpclett.5b01895. PubMed DOI

Yang G., Xie Z., Thornton A.W., Doherty C.M., Ding M., Xu H., Cran M., Ng D., Gray S. Ultrathin poly (vinyl alcohol)/MXene nanofilm composite membrane with facile intrusion-free construction for pervaporative separations. J. Membr. Sci. 2020;614:118490.

Luo W., Niu Z., Mu P., Li J. MXene/poly(ethylene glycol) mixed matrix membranes with excellent permeance for highly efficient separation of CO2/N2 and CO2/CH4. Colloids Surf. A Physicochem. Eng. Asp. 2022;640:128481. doi: 10.1016/j.colsurfa.2022.128481. PubMed DOI

Liu G., Cheng L., Chen G., Liang F., Liu G., Jin W. Pebax-based membrane filled with two-dimensional Mxene nanosheets for efficient CO2 capture. Chem. Asian J. 2020;15:2364–2370. PubMed

Aroon M.A., Ismail A.F., Matsuura T., Montazer-Rahmati M.M. Performance studies of mixed matrix membranes for gas separation: A review. Sep. Purif. Technol. 2010;75:229–242.

Tantekin-Ersolmaz Ş.B., Atalay-Oral Ç., Tatlıer M., Erdem-Şenatalar A., Schoeman B., Sterte J. Effect of zeolite particle size on the performance of polymer–zeolite mixed matrix membranes. J. Membr. Sci. 2000;175:285–288.

Zornoza B., Irusta S., Téllez C., Coronas J. Mesoporous silica sphere-polysulfone mixed matrix membranes for gas separation. Langmuir. 2009;25:5903–5909. doi: 10.1021/la900656z. PubMed DOI

Moore T.T., Koros W.J. Non-ideal effects in organic–inorganic materials for gas separation membranes. J. Mol. Struct. 2005;739:87–98.

Hashemifard S.A., Ismail A.F., Matsuura T. Mixed matrix membrane incorporated with large pore size halloysite nanotubes (HNTs) as filler for gas separation: Morphological diagram. Chem. Eng. J. 2011;172:581–590. doi: 10.1016/j.cej.2011.06.031. PubMed DOI

Vinh-Thang H., Kaliaguine S. Predictive models for mixed-matrix membrane performance: A review. Chem. Rev. 2013;113:4980–5028. doi: 10.1021/cr3003888. PubMed DOI

Liang C.-Y., Uchytil P., Petrychkovych R., Lai Y.-C., Friess K., Sipek M., Reddy M.M., Suen S.-Y. A comparison on gas separation between PES (polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 mixed matrix membranes. Sep. Purif. Technol. 2012;92:57–63. doi: 10.1016/j.seppur.2012.03.016. DOI

Chia H.L., Mayorga-Martinez C.C., Antonatos N., Sofer Z., Gonzalez-Julian J.J., Webster R.D., Pumera M. MXene Titanium carbide-based biosensor: Strong dependence of exfoliation method on performance. Anal. Chem. 2020;92:2452–2459. doi: 10.1021/acs.analchem.9b03634. PubMed DOI

Regmi C., Ashtiani S., Průša F., Friess K. Synergistic effect of hybridized TNT@GO fillers in CTA-based mixed matrix membranes for selective CO2/CH4 separation. Sep. Purif. Technol. 2022;282:120128. doi: 10.1016/j.seppur.2021.120128. DOI

Vopička O., Friess K., Hynek V., Sysel P., Zgažar M., Šípek M., Pilnáček K., Lanč M., Jansen J.C., Mason C.R., et al. Equilibrium and transient sorption of vapours and gases in the polymer of intrinsic microporosity PIM-1. J. Membr. Sci. 2013;434:148–160. doi: 10.1016/j.memsci.2013.01.040. DOI

Friess K., Lanč M., Pilnáček K., Fíla V., Vopička O., Sedláková Z., Cowan M.G., McDanel W.M., Noble R.D., Gin D.L., et al. CO2/CH4 separation performance of ionic-liquid-based epoxy-amine ion gel membranes under mixed feed conditions relevant to biogas processing. J. Membr. Sci. 2017;528:64–71. doi: 10.1016/j.memsci.2017.01.016. DOI

Regmi C., Ashtiani S., Sofer Z., Friess K. Improved CO2/CH4 separation properties of cellulose triacetate mixed–matrix membranes with CeO2@GO hybrid fillers. Membranes. 2021;11:777. doi: 10.3390/membranes11100777. PubMed DOI PMC

Gong Y., Tu R., Goto T. High-speed deposition of titanium carbide coatings by laser-assisted metal–organic CVD. Mater. Res. Bull. 2013;48:2766–2770. doi: 10.1016/j.materresbull.2013.03.039. DOI

Nawaz R., Kait C.F., Chia H.Y., Isa M.H., Huei L.W. Glycerol-mediated facile synthesis of colored titania nanoparticles for visible light photodegradation of phenolic compounds. Nanomaterials. 2019;9:1586. doi: 10.3390/nano9111586. PubMed DOI PMC

Zhao J., Zhang L., Xie X.-Y., Li X., Ma Y., Liu Q., Fang W.-H., Shi X., Cui G., Sun X. Ti3C2Tx(T = F, OH) MXene nanosheets: Conductive 2D catalysts for ambient electrohydrogenation of N2 to NH3. J. Mater. Chem. A. 2018;6:24031–24035.

Fu Q., Wen J., Zhang N., Wu L., Zhang M., Lin S., Gao H., Zhang X. Free-standing Ti3C2Tx electrode with ultrahigh volumetric capacitance. RSC Adv. 2017;7:11998–12005.

Amara M., Arous O., Smail F., Kerdjoudj H., Trari M., Bouguelia A. An assembled poly-4-vinyl pyridine and cellulose triacetate membrane and Bi2S3 electrode for photoelectrochemical diffusion of metallic ions. J. Hazard. Mater. 2009;169:195–202. doi: 10.1016/j.jhazmat.2009.03.085. PubMed DOI

Regmi C., Ashtiani S., Hrdlička Z., Friess K. CO2/CH4 and H2/CH4 gas separation performance of CTA-TNT@CNT hybrid mixed matrix membranes. Membranes. 2021;11:862. doi: 10.3390/membranes11110862. PubMed DOI PMC

Qian A., Seo J.Y., Shi H., Lee J.Y., Chung C.-H. Surface functional groups and electrochemical behavior in dimethyl sulfoxide-delaminated Ti3C2Tx MXene. ChemSusChem. 2018;11:3719–3723. doi: 10.1002/cssc.201801759. PubMed DOI

Satheeshkumar E., Makaryan T., Melikyan A., Minassian H., Gogotsi Y., Yoshimura M. One-step Solution Processing of Ag, Au and Pd@MXene Hybrids for SERS. Sci. Rep. 2016;6:32049. doi: 10.1038/srep32049. PubMed DOI PMC

Zhuang G.-L., Tseng H.-H., Wey M.-Y. Preparation of PPO-silica mixed matrix membranes by in-situ sol–gel method for H2/CO2 separation. Int. J. Hydrog. Energy. 2014;39:17178–17190. doi: 10.1016/j.ijhydene.2014.08.050. DOI

Nabili A., Fattoum A., Brochier-Salon M.-C., Bras J., Elaloui E. Synthesis of cellulose triacetate-I from microfibrillated date seeds cellulose (Phoenix dactylifera L.) Iran. Polym. J. 2017;26:137–147. doi: 10.1007/s13726-017-0505-5. DOI

Regmi C., Ashtiani S., Sofer Z., Hrdlička Z., Průša F., Vopička O., Friess K. CeO2-blended cellulose triacetate mixed-matrix membranes for selective CO2 separation. Membranes. 2021;11:632. doi: 10.3390/membranes11080632. PubMed DOI PMC

Chen S., Xie S., Guang S., Bao J., Zhang X., Chen W. Crystallization and thermal behaviors of poly(ethylene terephthalate)/bisphenols complexes through melt post-polycondensation. Polymers. 2020;12:3053. doi: 10.3390/polym12123053. PubMed DOI PMC

Robeson L.M. The upper bound revisited. J. Membr. Sci. 2008;320:390–400. doi: 10.1016/j.memsci.2008.04.030. DOI

Comesaña-Gándara B., Chen J., Bezzu C.G., Carta M., Rose I., Ferrari M.-C., Esposito E., Fuoco A., Jansen J.C., McKeown N.B. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy Environ. Sci. 2019;12:2733–2740. doi: 10.1039/C9EE01384A. DOI

Friess K., Jansen J.C., Bazzarelli F., Izák P., Jarmarová V., Kačírková M., Schauer J., Clarizia G., Bernardo P. High ionic liquid content polymeric gel membranes: Correlation of membrane structure with gas and vapour transport properties. J. Membr. Sci. 2012;415–416:801–809. doi: 10.1016/j.memsci.2012.05.072. DOI

Mousa M., Dong Y. The role of nanoparticle shapes and structures in material characterization of polyvinyl alcohol (PVA) bionanocomposite films. Polymers. 2020;12:264. doi: 10.3390/polym12020264. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...