Cellulose Triacetate-Based Mixed-Matrix Membranes with MXene 2D Filler-CO2/CH4 Separation Performance and Comparison with TiO2-Based 1D and 0D Fillers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36295678
PubMed Central
PMC9610833
DOI
10.3390/membranes12100917
PII: membranes12100917
Knihovny.cz E-zdroje
- Klíčová slova
- MXene, TiO2 nanoparticles, TiO2 nanotube, cellulose triacetate, gas separation, mixed-matrix membrane,
- Publikační typ
- časopisecké články MeSH
Mixed-matrix membranes (MMMs) possess the unique properties and inherent characteristics of their component polymer and inorganic fillers, or other possible types of additives. However, the successful fabrication of compact and defect-free MMMs with a homogeneous filler distribution poses a major challenge, due to poor filler/polymer compatibility. In this study, we use two-dimensional multi-layered Ti3C2Tx MXene nanofillers to improve the compatibility and CO2/CH4 separation performance of cellulose triacetate (CTA)-based MMMs. CTA-based MMMs with TiO2-based 1D (nanotubes) and 0D (nanofillers) additives were also fabricated and tested for comparison. The high thermal stability, compact homogeneous structure, and stable long-term CO2/CH4 separation performance of the CTA-2D samples suggest the potential application of the membrane in bio/natural gas separation. The best results were obtained for the CTA-2D sample with a loading of 3 wt.%, which exhibited a 5-fold increase in CO2 permeability and 2-fold increase in CO2/CH4 selectivity, compared with the pristine CTA membrane, approaching the state-of-the-art Robeson 2008 upper bound. The dimensional (shape) effect on separation performance was determined as 2D > 1D > 0D. The use of lamellar stacked MXene with abundant surface-terminating groups not only prevents the aggregation of particles but also enhances the CO2 adsorption properties and provides additional transport channels, resulting in improved CO2 permeability and CO2/CH4 selectivity.
Zobrazit více v PubMed
Li J., Li X., van der Bruggen B. An MXene-based membrane for molecular separation. Environ. Sci. Nano. 2020;7:1289–1304. doi: 10.1039/C9EN01478K. DOI
Cheng Y., Pu Y., Zhao D. Two-dimensional membranes: New paradigms for high-performance separation membranes. Chem. —Asian J. 2020;15:2241–2270. doi: 10.1002/asia.202000013. PubMed DOI
Robeson L.M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 1991;62:165–185. doi: 10.1016/0376-7388(91)80060-J. DOI
Shi F., Sun J., Wang J., Liu M., Yan Z., Zhu B., Li Y., Cao X. MXene versus graphene oxide: Investigation on the effects of 2D nanosheets in mixed matrix membranes for CO2 separation. J. Membr. Sci. 2021;620:118850. doi: 10.1016/j.memsci.2020.118850. DOI
Carreon M.A. Membranes for Gas Separations. World Scientific Publishing Company; Singapore: 2017.
Goh P.S., Ismail A.F., Sanip S.M., Ng B.C., Aziz M. Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep. Purif. Technol. 2011;81:243–264. doi: 10.1016/j.seppur.2011.07.042. DOI
Ebert K., Fritsch D., Koll J., Tjahjawiguna C. Influence of inorganic fillers on the compaction behaviour of porous polymer-based membranes. J. Membr. Sci. 2004;233:71–78. doi: 10.1016/j.memsci.2003.12.012. DOI
Khraisheh M., Elhenawy S., AlMomani F., Al-Ghouti M., Hassan M.K., Hameed B.H. Recent progress on nanomaterial-based membranes for water treatment. Membranes. 2021;11:995. doi: 10.3390/membranes11120995. PubMed DOI PMC
Ng L.Y., Mohammad A.W., Leo C.P., Hilal N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination. 2013;308:15–33. doi: 10.1016/j.desal.2010.11.033. DOI
Rezakazemi M., Amooghin A.E., Montazer-Rahmati M.M., Ismail A.F., Matsuura T. State-of-the-art membrane-based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Prog. Polym. Sci. 2014;39:817–861. doi: 10.1016/j.progpolymsci.2014.01.003. DOI
Bernardo P., Drioli E., Golemme G. Membrane gas separation: A review/state of the art. Ind. Eng. Chem. Res. 2009;48:4638–4663. doi: 10.1021/ie8019032. DOI
Kamble A.R., Patel C.M., Murthy Z.V.P. A review on the recent advances in mixed matrix membranes for gas separation processes. Renew. Sustain. Energy Rev. 2021;145:111062. doi: 10.1016/j.rser.2021.111062. DOI
Basu S., Cano-Odena A., Vankelecom I.F.J. MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations. Sep. Purif. Technol. 2011;81:31–40. doi: 10.1016/j.seppur.2011.06.037. DOI
Liu X., Ma T., Pinna N., Zhang J. Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 2017;27:1702168. doi: 10.1002/adfm.201702168. DOI
Zhang H. Ultrathin two-dimensional nanomaterials. ACS Nano. 2015;9:9451–9469. doi: 10.1021/acsnano.5b05040. PubMed DOI
Chen D., Zhu H., Liu T. In situ thermal preparation of polyimide nanocomposite films containing functionalized graphene sheets. ACS Appl. Mater. Interfaces. 2010;2:3702–3708. doi: 10.1021/am1008437. PubMed DOI
Compton O.C., Kim S., Pierre C., Torkelson J.M., Nguyen S.T. Crumpled graphene nanosheets as highly effective barrier property enhancers. Adv. Mater. 2010;22:4759–4763. doi: 10.1002/adma.201000960. PubMed DOI
Guan W., Yang X., Dong C., Yan X., Zheng W., Xi Y., Ruan X., Dai Y., He G. Prestructured MXene fillers with uniform channels to enhance CO2 selective permeation in mixed matrix membranes. J. Appl. Polym. Sci. 2021;138:49895. doi: 10.1002/app.49895. DOI
Feijani E.A., Tavassoli A., Mahdavi H., Molavi H. Effective gas separation through graphene oxide containing mixed matrix membranes. J. Appl. Polym. Sci. 2018;135:46271. doi: 10.1002/app.46271. DOI
Liu Y.-C., Chen C.-Y., Lin G.-S., Chen C.-H., Wu K.C.W., Lin C.-H., Tung K.-L. Characterization and molecular simulation of Pebax-1657-based mixed matrix membranes incorporating MoS2 nanosheets for carbon dioxide capture enhancement. J. Membr. Sci. 2019;582:358–366. doi: 10.1016/j.memsci.2019.04.025. DOI
Ren C.E., Hatzell K.B., Alhabeb M., Ling Z., Mahmoud K.A., Gogotsi Y. Charge- and size-selective Ion sieving through Ti3C2Tx MXene membranes. J. Phys. Chem. Lett. 2015;6:4026–4031. doi: 10.1021/acs.jpclett.5b01895. PubMed DOI
Yang G., Xie Z., Thornton A.W., Doherty C.M., Ding M., Xu H., Cran M., Ng D., Gray S. Ultrathin poly (vinyl alcohol)/MXene nanofilm composite membrane with facile intrusion-free construction for pervaporative separations. J. Membr. Sci. 2020;614:118490.
Luo W., Niu Z., Mu P., Li J. MXene/poly(ethylene glycol) mixed matrix membranes with excellent permeance for highly efficient separation of CO2/N2 and CO2/CH4. Colloids Surf. A Physicochem. Eng. Asp. 2022;640:128481. doi: 10.1016/j.colsurfa.2022.128481. PubMed DOI
Liu G., Cheng L., Chen G., Liang F., Liu G., Jin W. Pebax-based membrane filled with two-dimensional Mxene nanosheets for efficient CO2 capture. Chem. Asian J. 2020;15:2364–2370. PubMed
Aroon M.A., Ismail A.F., Matsuura T., Montazer-Rahmati M.M. Performance studies of mixed matrix membranes for gas separation: A review. Sep. Purif. Technol. 2010;75:229–242.
Tantekin-Ersolmaz Ş.B., Atalay-Oral Ç., Tatlıer M., Erdem-Şenatalar A., Schoeman B., Sterte J. Effect of zeolite particle size on the performance of polymer–zeolite mixed matrix membranes. J. Membr. Sci. 2000;175:285–288.
Zornoza B., Irusta S., Téllez C., Coronas J. Mesoporous silica sphere-polysulfone mixed matrix membranes for gas separation. Langmuir. 2009;25:5903–5909. doi: 10.1021/la900656z. PubMed DOI
Moore T.T., Koros W.J. Non-ideal effects in organic–inorganic materials for gas separation membranes. J. Mol. Struct. 2005;739:87–98.
Hashemifard S.A., Ismail A.F., Matsuura T. Mixed matrix membrane incorporated with large pore size halloysite nanotubes (HNTs) as filler for gas separation: Morphological diagram. Chem. Eng. J. 2011;172:581–590. doi: 10.1016/j.cej.2011.06.031. PubMed DOI
Vinh-Thang H., Kaliaguine S. Predictive models for mixed-matrix membrane performance: A review. Chem. Rev. 2013;113:4980–5028. doi: 10.1021/cr3003888. PubMed DOI
Liang C.-Y., Uchytil P., Petrychkovych R., Lai Y.-C., Friess K., Sipek M., Reddy M.M., Suen S.-Y. A comparison on gas separation between PES (polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 mixed matrix membranes. Sep. Purif. Technol. 2012;92:57–63. doi: 10.1016/j.seppur.2012.03.016. DOI
Chia H.L., Mayorga-Martinez C.C., Antonatos N., Sofer Z., Gonzalez-Julian J.J., Webster R.D., Pumera M. MXene Titanium carbide-based biosensor: Strong dependence of exfoliation method on performance. Anal. Chem. 2020;92:2452–2459. doi: 10.1021/acs.analchem.9b03634. PubMed DOI
Regmi C., Ashtiani S., Průša F., Friess K. Synergistic effect of hybridized TNT@GO fillers in CTA-based mixed matrix membranes for selective CO2/CH4 separation. Sep. Purif. Technol. 2022;282:120128. doi: 10.1016/j.seppur.2021.120128. DOI
Vopička O., Friess K., Hynek V., Sysel P., Zgažar M., Šípek M., Pilnáček K., Lanč M., Jansen J.C., Mason C.R., et al. Equilibrium and transient sorption of vapours and gases in the polymer of intrinsic microporosity PIM-1. J. Membr. Sci. 2013;434:148–160. doi: 10.1016/j.memsci.2013.01.040. DOI
Friess K., Lanč M., Pilnáček K., Fíla V., Vopička O., Sedláková Z., Cowan M.G., McDanel W.M., Noble R.D., Gin D.L., et al. CO2/CH4 separation performance of ionic-liquid-based epoxy-amine ion gel membranes under mixed feed conditions relevant to biogas processing. J. Membr. Sci. 2017;528:64–71. doi: 10.1016/j.memsci.2017.01.016. DOI
Regmi C., Ashtiani S., Sofer Z., Friess K. Improved CO2/CH4 separation properties of cellulose triacetate mixed–matrix membranes with CeO2@GO hybrid fillers. Membranes. 2021;11:777. doi: 10.3390/membranes11100777. PubMed DOI PMC
Gong Y., Tu R., Goto T. High-speed deposition of titanium carbide coatings by laser-assisted metal–organic CVD. Mater. Res. Bull. 2013;48:2766–2770. doi: 10.1016/j.materresbull.2013.03.039. DOI
Nawaz R., Kait C.F., Chia H.Y., Isa M.H., Huei L.W. Glycerol-mediated facile synthesis of colored titania nanoparticles for visible light photodegradation of phenolic compounds. Nanomaterials. 2019;9:1586. doi: 10.3390/nano9111586. PubMed DOI PMC
Zhao J., Zhang L., Xie X.-Y., Li X., Ma Y., Liu Q., Fang W.-H., Shi X., Cui G., Sun X. Ti3C2Tx(T = F, OH) MXene nanosheets: Conductive 2D catalysts for ambient electrohydrogenation of N2 to NH3. J. Mater. Chem. A. 2018;6:24031–24035.
Fu Q., Wen J., Zhang N., Wu L., Zhang M., Lin S., Gao H., Zhang X. Free-standing Ti3C2Tx electrode with ultrahigh volumetric capacitance. RSC Adv. 2017;7:11998–12005.
Amara M., Arous O., Smail F., Kerdjoudj H., Trari M., Bouguelia A. An assembled poly-4-vinyl pyridine and cellulose triacetate membrane and Bi2S3 electrode for photoelectrochemical diffusion of metallic ions. J. Hazard. Mater. 2009;169:195–202. doi: 10.1016/j.jhazmat.2009.03.085. PubMed DOI
Regmi C., Ashtiani S., Hrdlička Z., Friess K. CO2/CH4 and H2/CH4 gas separation performance of CTA-TNT@CNT hybrid mixed matrix membranes. Membranes. 2021;11:862. doi: 10.3390/membranes11110862. PubMed DOI PMC
Qian A., Seo J.Y., Shi H., Lee J.Y., Chung C.-H. Surface functional groups and electrochemical behavior in dimethyl sulfoxide-delaminated Ti3C2Tx MXene. ChemSusChem. 2018;11:3719–3723. doi: 10.1002/cssc.201801759. PubMed DOI
Satheeshkumar E., Makaryan T., Melikyan A., Minassian H., Gogotsi Y., Yoshimura M. One-step Solution Processing of Ag, Au and Pd@MXene Hybrids for SERS. Sci. Rep. 2016;6:32049. doi: 10.1038/srep32049. PubMed DOI PMC
Zhuang G.-L., Tseng H.-H., Wey M.-Y. Preparation of PPO-silica mixed matrix membranes by in-situ sol–gel method for H2/CO2 separation. Int. J. Hydrog. Energy. 2014;39:17178–17190. doi: 10.1016/j.ijhydene.2014.08.050. DOI
Nabili A., Fattoum A., Brochier-Salon M.-C., Bras J., Elaloui E. Synthesis of cellulose triacetate-I from microfibrillated date seeds cellulose (Phoenix dactylifera L.) Iran. Polym. J. 2017;26:137–147. doi: 10.1007/s13726-017-0505-5. DOI
Regmi C., Ashtiani S., Sofer Z., Hrdlička Z., Průša F., Vopička O., Friess K. CeO2-blended cellulose triacetate mixed-matrix membranes for selective CO2 separation. Membranes. 2021;11:632. doi: 10.3390/membranes11080632. PubMed DOI PMC
Chen S., Xie S., Guang S., Bao J., Zhang X., Chen W. Crystallization and thermal behaviors of poly(ethylene terephthalate)/bisphenols complexes through melt post-polycondensation. Polymers. 2020;12:3053. doi: 10.3390/polym12123053. PubMed DOI PMC
Robeson L.M. The upper bound revisited. J. Membr. Sci. 2008;320:390–400. doi: 10.1016/j.memsci.2008.04.030. DOI
Comesaña-Gándara B., Chen J., Bezzu C.G., Carta M., Rose I., Ferrari M.-C., Esposito E., Fuoco A., Jansen J.C., McKeown N.B. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy Environ. Sci. 2019;12:2733–2740. doi: 10.1039/C9EE01384A. DOI
Friess K., Jansen J.C., Bazzarelli F., Izák P., Jarmarová V., Kačírková M., Schauer J., Clarizia G., Bernardo P. High ionic liquid content polymeric gel membranes: Correlation of membrane structure with gas and vapour transport properties. J. Membr. Sci. 2012;415–416:801–809. doi: 10.1016/j.memsci.2012.05.072. DOI
Mousa M., Dong Y. The role of nanoparticle shapes and structures in material characterization of polyvinyl alcohol (PVA) bionanocomposite films. Polymers. 2020;12:264. doi: 10.3390/polym12020264. PubMed DOI PMC