The combined impact of low temperatures and shifting phosphorus availability on the competitive ability of cyanobacteria

. 2022 Sep 30 ; 12 (1) : 16409. [epub] 20220930

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36180771
Odkazy

PubMed 36180771
PubMed Central PMC9525609
DOI 10.1038/s41598-022-20580-2
PII: 10.1038/s41598-022-20580-2
Knihovny.cz E-zdroje

In freshwater systems, cyanobacteria are strong competitors under enhanced temperature and eutrophic conditions. Understanding their adaptive and evolutionary potential to multiple environmental states allows us to accurately predict their response to future conditions. To better understand if the combined impacts of temperature and nutrient limitation could suppress the cyanobacterial blooms, a single strain of Microcystis aeruginosa was inoculated into natural phytoplankton communities with different nutrient conditions: oligotrophic, eutrophic and eutrophic with the addition of bentophos. We found that the use of the bentophos treatment causes significant differences in prokaryotic and eukaryotic communities. This resulted in reduced biodiversity among the eukaryotes and a decline in cyanobacterial abundance suggesting phosphorus limitation had a strong impact on the community structure. The low temperature during the experiment lead to the disappearance of M. aeruginosa in all treatments and gave other phytoplankton groups a competitive advantage leading to the dominance of the eukaryotic families that have diverse morphologies and nutritional modes. These results show cyanobacteria have a reduced competitive advantage under certain temperature and nutrient limiting conditions and therefore, controlling phosphorus concentrations could be a possible mitigation strategy for managing harmful cyanobacterial blooms in a future warmer climate.

Zobrazit více v PubMed

Dudgeon D, et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 2006;81:163–182. doi: 10.1017/S1464793105006950. PubMed DOI

Grzybowski M, Glińska-Lewczuk K. Principal threats to the conservation of freshwater habitats in the continental biogeographical region of Central Europe. Biodivers. Conserv. 2019;28:4065–4097. doi: 10.1007/s10531-019-01865-x. DOI

Søndergaard M, Jeppesen E. Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. J. Appl. Ecol. 2007;44:1089–1094. doi: 10.1111/j.1365-2664.2007.01426.x. DOI

Paerl HW, Fulton RS, Moisander PH, Dyble J. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World J. 2001;1:76–113. doi: 10.1100/tsw.2001.16. PubMed DOI PMC

Krztoń W, Kosiba J, Pociecha A, Wilk-Woźniak E. The effect of cyanobacterial blooms on bio- and functional diversity of zooplankton communities. Biodivers. Conserv. 2019;28:1815–1835. doi: 10.1007/s10531-019-01758-z. DOI

Adrian R, et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009;54:2283–2297. doi: 10.4319/lo.2009.54.6_part_2.2283. PubMed DOI PMC

Dokulil MT, et al. Increasing maximum lake surface temperature under climate change. Clim. Change. 2021;165:1–17. doi: 10.1007/s10584-021-03085-1. DOI

Yan X, et al. Climate warming and cyanobacteria blooms: Looks at their relationships from a new perspective. Water Res. 2017;125:449–457. doi: 10.1016/j.watres.2017.09.008. PubMed DOI

Paerl HW, Hall NS, Calandrino ES. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Total Environ. 2011;409:1739–1745. doi: 10.1016/j.scitotenv.2011.02.001. PubMed DOI

Anderson D, Glibert P, Burkholder J. Harmful algal blooms and eutrophication: Nutrient sources, compositions, and consequences. Estuaries. 2002;25:704–726. doi: 10.1007/BF02804901. DOI

Li D, et al. Factors associated with blooms of cyanobacteria in a large shallow lake, China. Environ. Sci. Eur. 2018 doi: 10.1186/s12302-018-0152-2. PubMed DOI PMC

Rigosi A, Carey CC, Ibelings BW, Brookes JD. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol. Ocean. 2014;59:99–144. doi: 10.4319/lo.2014.59.1.0099. DOI

Paerl HW, Huisman J. Blooms like it hot. Science. 2008;320:57–58. doi: 10.1126/science.1155398. PubMed DOI

Paerl HW. Nuisance phytoplankton blooms in coastal, estuarine, and inland waters 1. Limnol. Oceanogr. 1988;33:823–843.

Schindler DW, et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proc. Natl. Acad. Sci. 2008;105:11254–11258. doi: 10.1073/pnas.0805108105. PubMed DOI PMC

Förster W, et al. Phosphorous supply to a eutrophic artificial lake: Sedimentary versus groundwater sources. Water. 2021;13:1–20. doi: 10.3390/w13040563. DOI

Lang P, et al. Phytoplankton community responses in a shallow lake following lanthanum-bentonite application. Water Res. 2016;97:55–68. doi: 10.1016/j.watres.2016.03.018. PubMed DOI

Lürling M, van Oosterhout F. Case study on the efficacy of a lanthanum-enriched clay (Phoslock®) in controlling eutrophication in Lake Het Groene Eiland (The Netherlands) Hydrobiologia. 2013;710:253–263. doi: 10.1007/s10750-012-1141-x. DOI

Bishop WM, Richardson RJ. Influence of Phoslock® on legacy phosphorus, nutrient ratios, and algal assemblage composition in hypereutrophic water resources. Environ. Sci. Pollut. Res. 2018;25:4544–4557. doi: 10.1007/s11356-017-0832-2. PubMed DOI

Drugă B, et al. The impact of cation concentration on Microcystis (cyanobacteria) scum formation. Sci. Rep. 2019;9:1–11. doi: 10.1038/s41598-019-39619-y. PubMed DOI PMC

Stockenreiter M, Isanta Navarro J, Buchberger F, Stibor H. Community shifts from eukaryote to cyanobacteria dominated phytoplankton: The role of mixing depth and light quality. Freshw. Biol. 2021;66:2145–2157. doi: 10.1111/fwb.13822. DOI

Drugă B, et al. term acclimation might enhance the growth and competitive ability of Microcystis aeruginosa in warm environments. Freshw. Biol. 2022 doi: 10.1111/fwb.13865. DOI

Fordham DA. Mesocosms reveal ecological surprises from climate change. PLOS Biol. 2015;13:1–7. doi: 10.1371/journal.pbio.1002323. PubMed DOI PMC

Reinl KL, et al. Cyanobacterial blooms in oligotrophic lakes: Shifting the high-nutrient paradigm. Freshw. Biol. 2021;66:1846–1859. doi: 10.1111/fwb.13791. DOI

Tillich UM, Wolter N, Franke P, Dühring U, Frohme M. Screening and genetic characterization of thermo-tolerant Synechocystis sp. PCC6803 strains created by adaptive evolution. BMC Biotechnol. 2014;14:1–15. doi: 10.1186/1472-6750-14-66. PubMed DOI PMC

Burki F, Roger AJ, Brown MW, Simpson AGB. The new tree of eukaryotes. Trends Ecol. Evol. 2020;35:43–55. doi: 10.1016/j.tree.2019.08.008. PubMed DOI

LaPanse AJ, Krishnan A, Posewitz MC. Adaptive Laboratory Evolution for algal strain improvement: Methodologies and applications. Algal Res. 2021;53:102122. doi: 10.1016/j.algal.2020.102122. DOI

Deeg CM, et al. Chromulinavorax destructans, a pathogen of microzooplankton that provides a window into the enigmatic candidate phylum Dependentiae. PLOS Pathog. 2019;15:e1007801. doi: 10.1371/journal.ppat.1007801. PubMed DOI PMC

Glöckner FO, et al. Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc. Natl. Acad. Sci. U. S. A. 2003;100:8298–8303. doi: 10.1073/pnas.1431443100. PubMed DOI PMC

Sowell SM, et al. Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea. ISME J. 2009;3:93–105. doi: 10.1038/ismej.2008.83. PubMed DOI

Chiriac M-C, et al. Ecogenomics sheds light on diverse lifestyle strategies in freshwater CPR. Microbiome. 2022 doi: 10.21203/rs.3.rs-776685/v2. PubMed DOI PMC

Von Der Heyden S, Chao EE, Cavalier-Smith T. Genetic diversity of goniomonads: An ancient divergence between marine and freshwater species. Eur. J. Phycol. 2004;39:343–350. doi: 10.1080/09670260400005567. DOI

Kim BR, Nakano SI, Kim BH, Han MS. Grazing and growth of the heterotrophic flagellate Diphylleia rotans on the cyanobacterium Microcystis aeruginosa. Aquat. Microb. Ecol. 2006;45:163–170. doi: 10.3354/ame045163. DOI

Varol M, Bekleyen A, Şen B, Gökot B. First record of the order Choanoflagellida in Turkey. Turkish J. Fish. Aquat. Sci. 2011;11:1–2.

Cabrerizo MJ, et al. Warming and CO2 effects under oligotrophication on temperate phytoplankton communities. Water Res. 2020 doi: 10.1016/j.watres.2020.115579. PubMed DOI

Maberly SC, Pitt J-A, Davies PS, Carvalho L. Nitrogen and phosphorus limitation and the management of small productive lakes. Inl. Waters. 2020;10:159–172. doi: 10.1080/20442041.2020.1714384. DOI

Li J, Sellner K, Place A, Cornwell J, Gao Y. Mitigation of cyanohabs using phoslock® to reduce water column phosphorus and nutrient release from sediment. Int. J. Environ. Res. Public Health. 2021 doi: 10.3390/ijerph182413360. PubMed DOI PMC

Nwosu EC, et al. Species-level spatio-temporal dynamics of cyanobacteria in a hard-water temperate lake in the southern Baltics. Front. Microbiol. 2021;12:1–17. doi: 10.3389/fmicb.2021.761259. PubMed DOI PMC

Vörös L, Callieri C, V-Balogh K, Bertoni R. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia. 1998;369–370:117–125. doi: 10.1023/A:1017026700003. DOI

Camacho A. On the occurrence and ecological features of deep chlorophyll maxima (DCM) in Spanish stratified lakes. Limnetica. 2006;25:453–478. doi: 10.23818/limn.25.32. DOI

Cabello-Yeves PJ, et al. Novel synechococcus genomes reconstructed from freshwater reservoirs. Front. Microbiol. 2017;8:1151. doi: 10.3389/fmicb.2017.01151. PubMed DOI PMC

Prihantini, N. B., Addana, F., Sjamsuridzal, W. & Yokota, A. The effect of temperature on the growth of genus Synechococcus isolated from four Indonesian hot springs and Agathis small lake of Universitas Indonesia. AIP Conf. Proc.1729 (2016).

Callieri C. Synechococcus plasticity under environmental changes. FEMS Microbiol. Lett. 2017;364:1–8. doi: 10.1093/femsle/fnx229. PubMed DOI

Acinas SG, Haverkamp THA, Huisman J, Stal LJ. Phenotypic and genetic diversification of Pseudanabaena spp. (cyanobacteria) ISME J. 2009;3:31–46. doi: 10.1038/ismej.2008.78. PubMed DOI

Kehoe DM, Gutu A. Responding to color: The regulation of complementary chromatic adaptation. Annu. Rev. Plant Biol. 2006;57:127–150. doi: 10.1146/annurev.arplant.57.032905.105215. PubMed DOI

Bell T, Kalff J. The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depth. Limnol. Oceanogr. 2001;46:1243–1248. doi: 10.4319/lo.2001.46.5.1243. DOI

Jezberová J, Komárková J. Morphological transformation in a freshwater Cyanobium sp. induced by grazers. Environ. Microbiol. 2007;9:1858–1862. doi: 10.1111/j.1462-2920.2007.01311.x. PubMed DOI

Chu Z, Jin X, Iwami N, Inamori Y. The effect of temperature on growth characteristics and competitions of Microcystis aeruginosa and Oscillatoria mougeotii in a shallow, eutrophic lake simulator system. In: Qin B, Liu Z, Havens K, editors. Eutrophication of Shallow Lakes with Special Reference to Lake Taihu, China. Springer; 2007. pp. 217–223.

Ma J, et al. The persistence of cyanobacterial (Microcystis spp,) blooms throughout winter in Lake Taihu, China. Limnol. Oceanogr. 2016;61:711–722. doi: 10.1002/lno.10246. DOI

Davis TW, Berry DL, Boyer GL, Gobler CJ. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae. 2009;8:715–725. doi: 10.1016/j.hal.2009.02.004. DOI

Jankowiak J, Hattenrath-Lehmann T, Kramer BJ, Ladds M, Gobler CJ. Deciphering the effects of nitrogen, phosphorus, and temperature on cyanobacterial bloom intensification, diversity, and toxicity in western Lake Erie. Limnol. Oceanogr. 2019;64:1347–1370. doi: 10.1002/lno.11120. DOI

Martin RM, et al. Episodic decrease in temperature increases mcy gene transcription and cellular microcystin in continuous cultures of Microcystis aeruginosa PCC 7806. Front. Microbiol. 2020;11:3081. doi: 10.3389/fmicb.2020.601864. PubMed DOI PMC

You J, Mallery K, Hong J, Hondzo M. Temperature effects on growth and buoyancy of Microcystis aeruginosa. J. Plankton Res. 2018;40:16–28. doi: 10.1093/plankt/fbx059. DOI

Aguilar P, Acosta E, Dorador C, Sommaruga R. Large differences in bacterial community composition among three nearby extreme waterbodies of the high Andean plateau. Front. Microbiol. 2016;7:1–8. doi: 10.3389/fmicb.2016.00976. PubMed DOI PMC

Echeverría-Vega A, et al. Watershed-induced limnological and microbial status in two oligotrophic andean lakes exposed to the same climatic scenario. Front. Microbiol. 2018;9:1–17. doi: 10.3389/fmicb.2018.00357. PubMed DOI PMC

Schmidt ML, White JD, Denef VJ. Phylogenetic conservation of freshwater lake habitat preference varies between abundant bacterioplankton phyla. Environ. Microbiol. 2016;18:1212–1226. doi: 10.1111/1462-2920.13143. PubMed DOI

Kaboré OD, Godreuil S, Drancourt M. Planctomycetes as host-associated bacteria: A perspective that holds promise for their future isolations, by mimicking their native environmental niches in clinical microbiology laboratories. Front. Cell Infect. Microbiol. 2020;10:1–19. doi: 10.3389/fcimb.2020.519301. PubMed DOI PMC

Song H, Li Z, Du B, Wang G, Ding Y. Bacterial communities in sediments of the shallow Lake Dongping in China. J. Appl. Microbiol. 2012;112:79–89. doi: 10.1111/j.1365-2672.2011.05187.x. PubMed DOI

Sutcliffe IC. A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol. 2010;18:464–470. doi: 10.1016/j.tim.2010.06.005. PubMed DOI

Zhang W, et al. Phenotype changes of cyanobacterial and microbial distribution characteristics of surface sediments in different periods of cyanobacterial blooms in Taihu Lake. Aquat. Ecol. 2020;54:591–607. doi: 10.1007/s10452-020-09761-1. DOI

Waidner LA, Kirchman DL. Diversity and distribution of ecotypes of the aerobic anoxygenic phototrophy gene pufM in the Delaware estuary. Appl. Environ. Microbiol. 2008;74:4012–4021. doi: 10.1128/AEM.02324-07. PubMed DOI PMC

Sisson C, Gulla-Devaney B, Katz LA, Grattepanche JD. Seed bank and seasonal patterns of the eukaryotic SAR (Stramenopila, Alveolata and Rhizaria) clade in a New England vernal pool. J. Plankton Res. 2018;40:376–390. doi: 10.1093/plankt/fby020. DOI

Moser M, Weisse T. The outcome of competition between the two chrysomonads Ochromonas sp. and Poterioochromonas malhamensis depends on pH. Eur. J. Protistol. 2011;47:79–85. doi: 10.1016/j.ejop.2011.01.001. PubMed DOI PMC

Pröschold T, et al. An integrative approach sheds new light onto the systematics and ecology of the widespread ciliate genus Coleps (Ciliophora, Prostomatea) Sci. Rep. 2021;11:1–19. doi: 10.1038/s41598-021-84265-y. PubMed DOI PMC

Jones H. A classification of mixotrophic protists based on their behaviour. Freshw. Biol. 1997;37:35–43. doi: 10.1046/j.1365-2427.1997.00138.x. DOI

Fischer R, Giebel HA, Ptacnik R. Identity of the limiting nutrient (N vs. P) affects the competitive success of mixotrophs. Mar. Ecol. Prog. Ser. 2017;563:51–63. doi: 10.3354/meps11968. DOI

Gillette JP, Stewart DJ, Teece MA, Schulz KL. Abundance of mixoplanktonic algae in relation to prey, light and nutrient limitation in a dystrophic lake: A mesocosm study. Mar. Freshw. Res. 2021;72:1760–1772. doi: 10.1071/MF20374. DOI

Harder CB, et al. Local diversity of heathland Cercozoa explored by in-depth sequencing. ISME J. 2016;10:2488–2497. doi: 10.1038/ismej.2016.31. PubMed DOI PMC

Ortiz-Álvarez R, Triadó-Margarit X, Camarero L, Casamayor EO, Catalan J. High planktonic diversity in mountain lakes contains similar contributions of autotrophic, heterotrophic and parasitic eukaryotic life forms. Sci. Rep. 2018;8:1–12. doi: 10.1038/s41598-018-22835-3. PubMed DOI PMC

Sakharova EG, Korneva LG. Phytoplankton in the Littoral and Pelagial zones of the Rybinsk reservoir in years with different temperature and water-level regimes. Inl. Water Biol. 2018;11:6–12. doi: 10.1134/S1995082918010157. DOI

Cruaud P, et al. Annual Protist community dynamics in a freshwater ecosystem undergoing contrasted climatic conditions: The saint-Charles River (Canada) Front. Microbiol. 2019 doi: 10.3389/fmicb.2019.02359. PubMed DOI PMC

Lürling M, Eshetu F, Faassen EJ, Kosten S, Huszar VLM. Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshw. Biol. 2013;58:552–559. doi: 10.1111/j.1365-2427.2012.02866.x. DOI

Jensen JP, Jeppesen E, Olrik K, Kristensen P. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Can. J. Fish. Aquat. Sci. 1994;51:1692–1699. doi: 10.1139/f94-170. DOI

Dragoș N. An Introduction to the Algae and the Culture Collection of Algae at the Institute of Biological Research, Cluj-Napoca. Cluj University Press; 1997.

Frank JA, et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 2008;74:2461–2470. doi: 10.1128/AEM.02272-07. PubMed DOI PMC

Allen MM, Stanier RY. Growth and division of some unicellular blue-green algae. J. Gen. Microbiol. 1968;51:199–202. doi: 10.1099/00221287-51-2-199. PubMed DOI

IPCC. IPCC report Global warming of 1.5°C. Ipcc Sr152, 17–20 (2018).

Kalendar R, Khassenov B, Ramankulov Y, Samuilova O, Ivanov KI. FastPCR: An in silico tool for fast primer and probe design and advanced sequence analysis. Genomics. 2017;109:312–319. doi: 10.1016/j.ygeno.2017.05.005. PubMed DOI

Ye J, et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012;13:1–11. doi: 10.1186/1471-2105-13-S6-S1. PubMed DOI PMC

Kimura S, et al. Diurnal infection patterns and impact of Microcystis cyanophages in a Japanese pond. Appl. Environ. Microbiol. 2012;78:5805–5811. doi: 10.1128/AEM.00571-12. PubMed DOI PMC

Pinto F, Pacheco CC, Ferreira D, Moradas-Ferreira P, Tamagnini P. Selection of suitable reference genes for RT-qPCR analyses in cyanobacteria. PLoS ONE. 2012;7:e34983. doi: 10.1371/journal.pone.0034983. PubMed DOI PMC

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Hadziavdic K, et al. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PLoS ONE. 2014;9:e87624. doi: 10.1371/journal.pone.0087624. PubMed DOI PMC

Herlemann DPR, et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–1579. doi: 10.1038/ismej.2011.41. PubMed DOI PMC

DeSantis TZ, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 2006;72:5069–5072. doi: 10.1128/AEM.03006-05. PubMed DOI PMC

Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–1075. doi: 10.1093/bioinformatics/btt086. PubMed DOI PMC

Lozupone C, Knight R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 2005;71:8228–8235. doi: 10.1128/AEM.71.12.8228-8235.2005. PubMed DOI PMC

Caporaso JG, et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 2010;7:335–336. doi: 10.1038/nmeth.f.303. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...