The combined impact of low temperatures and shifting phosphorus availability on the competitive ability of cyanobacteria
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36180771
PubMed Central
PMC9525609
DOI
10.1038/s41598-022-20580-2
PII: 10.1038/s41598-022-20580-2
Knihovny.cz E-zdroje
- MeSH
- eutrofizace MeSH
- fosfor MeSH
- fytoplankton MeSH
- jezera chemie MeSH
- lidé MeSH
- Microcystis * MeSH
- sinice * MeSH
- teplota MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfor MeSH
In freshwater systems, cyanobacteria are strong competitors under enhanced temperature and eutrophic conditions. Understanding their adaptive and evolutionary potential to multiple environmental states allows us to accurately predict their response to future conditions. To better understand if the combined impacts of temperature and nutrient limitation could suppress the cyanobacterial blooms, a single strain of Microcystis aeruginosa was inoculated into natural phytoplankton communities with different nutrient conditions: oligotrophic, eutrophic and eutrophic with the addition of bentophos. We found that the use of the bentophos treatment causes significant differences in prokaryotic and eukaryotic communities. This resulted in reduced biodiversity among the eukaryotes and a decline in cyanobacterial abundance suggesting phosphorus limitation had a strong impact on the community structure. The low temperature during the experiment lead to the disappearance of M. aeruginosa in all treatments and gave other phytoplankton groups a competitive advantage leading to the dominance of the eukaryotic families that have diverse morphologies and nutritional modes. These results show cyanobacteria have a reduced competitive advantage under certain temperature and nutrient limiting conditions and therefore, controlling phosphorus concentrations could be a possible mitigation strategy for managing harmful cyanobacterial blooms in a future warmer climate.
Zobrazit více v PubMed
Dudgeon D, et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 2006;81:163–182. doi: 10.1017/S1464793105006950. PubMed DOI
Grzybowski M, Glińska-Lewczuk K. Principal threats to the conservation of freshwater habitats in the continental biogeographical region of Central Europe. Biodivers. Conserv. 2019;28:4065–4097. doi: 10.1007/s10531-019-01865-x. DOI
Søndergaard M, Jeppesen E. Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. J. Appl. Ecol. 2007;44:1089–1094. doi: 10.1111/j.1365-2664.2007.01426.x. DOI
Paerl HW, Fulton RS, Moisander PH, Dyble J. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World J. 2001;1:76–113. doi: 10.1100/tsw.2001.16. PubMed DOI PMC
Krztoń W, Kosiba J, Pociecha A, Wilk-Woźniak E. The effect of cyanobacterial blooms on bio- and functional diversity of zooplankton communities. Biodivers. Conserv. 2019;28:1815–1835. doi: 10.1007/s10531-019-01758-z. DOI
Adrian R, et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009;54:2283–2297. doi: 10.4319/lo.2009.54.6_part_2.2283. PubMed DOI PMC
Dokulil MT, et al. Increasing maximum lake surface temperature under climate change. Clim. Change. 2021;165:1–17. doi: 10.1007/s10584-021-03085-1. DOI
Yan X, et al. Climate warming and cyanobacteria blooms: Looks at their relationships from a new perspective. Water Res. 2017;125:449–457. doi: 10.1016/j.watres.2017.09.008. PubMed DOI
Paerl HW, Hall NS, Calandrino ES. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Total Environ. 2011;409:1739–1745. doi: 10.1016/j.scitotenv.2011.02.001. PubMed DOI
Anderson D, Glibert P, Burkholder J. Harmful algal blooms and eutrophication: Nutrient sources, compositions, and consequences. Estuaries. 2002;25:704–726. doi: 10.1007/BF02804901. DOI
Li D, et al. Factors associated with blooms of cyanobacteria in a large shallow lake, China. Environ. Sci. Eur. 2018 doi: 10.1186/s12302-018-0152-2. PubMed DOI PMC
Rigosi A, Carey CC, Ibelings BW, Brookes JD. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol. Ocean. 2014;59:99–144. doi: 10.4319/lo.2014.59.1.0099. DOI
Paerl HW, Huisman J. Blooms like it hot. Science. 2008;320:57–58. doi: 10.1126/science.1155398. PubMed DOI
Paerl HW. Nuisance phytoplankton blooms in coastal, estuarine, and inland waters 1. Limnol. Oceanogr. 1988;33:823–843.
Schindler DW, et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proc. Natl. Acad. Sci. 2008;105:11254–11258. doi: 10.1073/pnas.0805108105. PubMed DOI PMC
Förster W, et al. Phosphorous supply to a eutrophic artificial lake: Sedimentary versus groundwater sources. Water. 2021;13:1–20. doi: 10.3390/w13040563. DOI
Lang P, et al. Phytoplankton community responses in a shallow lake following lanthanum-bentonite application. Water Res. 2016;97:55–68. doi: 10.1016/j.watres.2016.03.018. PubMed DOI
Lürling M, van Oosterhout F. Case study on the efficacy of a lanthanum-enriched clay (Phoslock®) in controlling eutrophication in Lake Het Groene Eiland (The Netherlands) Hydrobiologia. 2013;710:253–263. doi: 10.1007/s10750-012-1141-x. DOI
Bishop WM, Richardson RJ. Influence of Phoslock® on legacy phosphorus, nutrient ratios, and algal assemblage composition in hypereutrophic water resources. Environ. Sci. Pollut. Res. 2018;25:4544–4557. doi: 10.1007/s11356-017-0832-2. PubMed DOI
Drugă B, et al. The impact of cation concentration on Microcystis (cyanobacteria) scum formation. Sci. Rep. 2019;9:1–11. doi: 10.1038/s41598-019-39619-y. PubMed DOI PMC
Stockenreiter M, Isanta Navarro J, Buchberger F, Stibor H. Community shifts from eukaryote to cyanobacteria dominated phytoplankton: The role of mixing depth and light quality. Freshw. Biol. 2021;66:2145–2157. doi: 10.1111/fwb.13822. DOI
Drugă B, et al. term acclimation might enhance the growth and competitive ability of Microcystis aeruginosa in warm environments. Freshw. Biol. 2022 doi: 10.1111/fwb.13865. DOI
Fordham DA. Mesocosms reveal ecological surprises from climate change. PLOS Biol. 2015;13:1–7. doi: 10.1371/journal.pbio.1002323. PubMed DOI PMC
Reinl KL, et al. Cyanobacterial blooms in oligotrophic lakes: Shifting the high-nutrient paradigm. Freshw. Biol. 2021;66:1846–1859. doi: 10.1111/fwb.13791. DOI
Tillich UM, Wolter N, Franke P, Dühring U, Frohme M. Screening and genetic characterization of thermo-tolerant Synechocystis sp. PCC6803 strains created by adaptive evolution. BMC Biotechnol. 2014;14:1–15. doi: 10.1186/1472-6750-14-66. PubMed DOI PMC
Burki F, Roger AJ, Brown MW, Simpson AGB. The new tree of eukaryotes. Trends Ecol. Evol. 2020;35:43–55. doi: 10.1016/j.tree.2019.08.008. PubMed DOI
LaPanse AJ, Krishnan A, Posewitz MC. Adaptive Laboratory Evolution for algal strain improvement: Methodologies and applications. Algal Res. 2021;53:102122. doi: 10.1016/j.algal.2020.102122. DOI
Deeg CM, et al. Chromulinavorax destructans, a pathogen of microzooplankton that provides a window into the enigmatic candidate phylum Dependentiae. PLOS Pathog. 2019;15:e1007801. doi: 10.1371/journal.ppat.1007801. PubMed DOI PMC
Glöckner FO, et al. Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc. Natl. Acad. Sci. U. S. A. 2003;100:8298–8303. doi: 10.1073/pnas.1431443100. PubMed DOI PMC
Sowell SM, et al. Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea. ISME J. 2009;3:93–105. doi: 10.1038/ismej.2008.83. PubMed DOI
Chiriac M-C, et al. Ecogenomics sheds light on diverse lifestyle strategies in freshwater CPR. Microbiome. 2022 doi: 10.21203/rs.3.rs-776685/v2. PubMed DOI PMC
Von Der Heyden S, Chao EE, Cavalier-Smith T. Genetic diversity of goniomonads: An ancient divergence between marine and freshwater species. Eur. J. Phycol. 2004;39:343–350. doi: 10.1080/09670260400005567. DOI
Kim BR, Nakano SI, Kim BH, Han MS. Grazing and growth of the heterotrophic flagellate Diphylleia rotans on the cyanobacterium Microcystis aeruginosa. Aquat. Microb. Ecol. 2006;45:163–170. doi: 10.3354/ame045163. DOI
Varol M, Bekleyen A, Şen B, Gökot B. First record of the order Choanoflagellida in Turkey. Turkish J. Fish. Aquat. Sci. 2011;11:1–2.
Cabrerizo MJ, et al. Warming and CO2 effects under oligotrophication on temperate phytoplankton communities. Water Res. 2020 doi: 10.1016/j.watres.2020.115579. PubMed DOI
Maberly SC, Pitt J-A, Davies PS, Carvalho L. Nitrogen and phosphorus limitation and the management of small productive lakes. Inl. Waters. 2020;10:159–172. doi: 10.1080/20442041.2020.1714384. DOI
Li J, Sellner K, Place A, Cornwell J, Gao Y. Mitigation of cyanohabs using phoslock® to reduce water column phosphorus and nutrient release from sediment. Int. J. Environ. Res. Public Health. 2021 doi: 10.3390/ijerph182413360. PubMed DOI PMC
Nwosu EC, et al. Species-level spatio-temporal dynamics of cyanobacteria in a hard-water temperate lake in the southern Baltics. Front. Microbiol. 2021;12:1–17. doi: 10.3389/fmicb.2021.761259. PubMed DOI PMC
Vörös L, Callieri C, V-Balogh K, Bertoni R. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia. 1998;369–370:117–125. doi: 10.1023/A:1017026700003. DOI
Camacho A. On the occurrence and ecological features of deep chlorophyll maxima (DCM) in Spanish stratified lakes. Limnetica. 2006;25:453–478. doi: 10.23818/limn.25.32. DOI
Cabello-Yeves PJ, et al. Novel synechococcus genomes reconstructed from freshwater reservoirs. Front. Microbiol. 2017;8:1151. doi: 10.3389/fmicb.2017.01151. PubMed DOI PMC
Prihantini, N. B., Addana, F., Sjamsuridzal, W. & Yokota, A. The effect of temperature on the growth of genus Synechococcus isolated from four Indonesian hot springs and Agathis small lake of Universitas Indonesia. AIP Conf. Proc.1729 (2016).
Callieri C. Synechococcus plasticity under environmental changes. FEMS Microbiol. Lett. 2017;364:1–8. doi: 10.1093/femsle/fnx229. PubMed DOI
Acinas SG, Haverkamp THA, Huisman J, Stal LJ. Phenotypic and genetic diversification of Pseudanabaena spp. (cyanobacteria) ISME J. 2009;3:31–46. doi: 10.1038/ismej.2008.78. PubMed DOI
Kehoe DM, Gutu A. Responding to color: The regulation of complementary chromatic adaptation. Annu. Rev. Plant Biol. 2006;57:127–150. doi: 10.1146/annurev.arplant.57.032905.105215. PubMed DOI
Bell T, Kalff J. The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depth. Limnol. Oceanogr. 2001;46:1243–1248. doi: 10.4319/lo.2001.46.5.1243. DOI
Jezberová J, Komárková J. Morphological transformation in a freshwater Cyanobium sp. induced by grazers. Environ. Microbiol. 2007;9:1858–1862. doi: 10.1111/j.1462-2920.2007.01311.x. PubMed DOI
Chu Z, Jin X, Iwami N, Inamori Y. The effect of temperature on growth characteristics and competitions of Microcystis aeruginosa and Oscillatoria mougeotii in a shallow, eutrophic lake simulator system. In: Qin B, Liu Z, Havens K, editors. Eutrophication of Shallow Lakes with Special Reference to Lake Taihu, China. Springer; 2007. pp. 217–223.
Ma J, et al. The persistence of cyanobacterial (Microcystis spp,) blooms throughout winter in Lake Taihu, China. Limnol. Oceanogr. 2016;61:711–722. doi: 10.1002/lno.10246. DOI
Davis TW, Berry DL, Boyer GL, Gobler CJ. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae. 2009;8:715–725. doi: 10.1016/j.hal.2009.02.004. DOI
Jankowiak J, Hattenrath-Lehmann T, Kramer BJ, Ladds M, Gobler CJ. Deciphering the effects of nitrogen, phosphorus, and temperature on cyanobacterial bloom intensification, diversity, and toxicity in western Lake Erie. Limnol. Oceanogr. 2019;64:1347–1370. doi: 10.1002/lno.11120. DOI
Martin RM, et al. Episodic decrease in temperature increases mcy gene transcription and cellular microcystin in continuous cultures of Microcystis aeruginosa PCC 7806. Front. Microbiol. 2020;11:3081. doi: 10.3389/fmicb.2020.601864. PubMed DOI PMC
You J, Mallery K, Hong J, Hondzo M. Temperature effects on growth and buoyancy of Microcystis aeruginosa. J. Plankton Res. 2018;40:16–28. doi: 10.1093/plankt/fbx059. DOI
Aguilar P, Acosta E, Dorador C, Sommaruga R. Large differences in bacterial community composition among three nearby extreme waterbodies of the high Andean plateau. Front. Microbiol. 2016;7:1–8. doi: 10.3389/fmicb.2016.00976. PubMed DOI PMC
Echeverría-Vega A, et al. Watershed-induced limnological and microbial status in two oligotrophic andean lakes exposed to the same climatic scenario. Front. Microbiol. 2018;9:1–17. doi: 10.3389/fmicb.2018.00357. PubMed DOI PMC
Schmidt ML, White JD, Denef VJ. Phylogenetic conservation of freshwater lake habitat preference varies between abundant bacterioplankton phyla. Environ. Microbiol. 2016;18:1212–1226. doi: 10.1111/1462-2920.13143. PubMed DOI
Kaboré OD, Godreuil S, Drancourt M. Planctomycetes as host-associated bacteria: A perspective that holds promise for their future isolations, by mimicking their native environmental niches in clinical microbiology laboratories. Front. Cell Infect. Microbiol. 2020;10:1–19. doi: 10.3389/fcimb.2020.519301. PubMed DOI PMC
Song H, Li Z, Du B, Wang G, Ding Y. Bacterial communities in sediments of the shallow Lake Dongping in China. J. Appl. Microbiol. 2012;112:79–89. doi: 10.1111/j.1365-2672.2011.05187.x. PubMed DOI
Sutcliffe IC. A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol. 2010;18:464–470. doi: 10.1016/j.tim.2010.06.005. PubMed DOI
Zhang W, et al. Phenotype changes of cyanobacterial and microbial distribution characteristics of surface sediments in different periods of cyanobacterial blooms in Taihu Lake. Aquat. Ecol. 2020;54:591–607. doi: 10.1007/s10452-020-09761-1. DOI
Waidner LA, Kirchman DL. Diversity and distribution of ecotypes of the aerobic anoxygenic phototrophy gene pufM in the Delaware estuary. Appl. Environ. Microbiol. 2008;74:4012–4021. doi: 10.1128/AEM.02324-07. PubMed DOI PMC
Sisson C, Gulla-Devaney B, Katz LA, Grattepanche JD. Seed bank and seasonal patterns of the eukaryotic SAR (Stramenopila, Alveolata and Rhizaria) clade in a New England vernal pool. J. Plankton Res. 2018;40:376–390. doi: 10.1093/plankt/fby020. DOI
Moser M, Weisse T. The outcome of competition between the two chrysomonads Ochromonas sp. and Poterioochromonas malhamensis depends on pH. Eur. J. Protistol. 2011;47:79–85. doi: 10.1016/j.ejop.2011.01.001. PubMed DOI PMC
Pröschold T, et al. An integrative approach sheds new light onto the systematics and ecology of the widespread ciliate genus Coleps (Ciliophora, Prostomatea) Sci. Rep. 2021;11:1–19. doi: 10.1038/s41598-021-84265-y. PubMed DOI PMC
Jones H. A classification of mixotrophic protists based on their behaviour. Freshw. Biol. 1997;37:35–43. doi: 10.1046/j.1365-2427.1997.00138.x. DOI
Fischer R, Giebel HA, Ptacnik R. Identity of the limiting nutrient (N vs. P) affects the competitive success of mixotrophs. Mar. Ecol. Prog. Ser. 2017;563:51–63. doi: 10.3354/meps11968. DOI
Gillette JP, Stewart DJ, Teece MA, Schulz KL. Abundance of mixoplanktonic algae in relation to prey, light and nutrient limitation in a dystrophic lake: A mesocosm study. Mar. Freshw. Res. 2021;72:1760–1772. doi: 10.1071/MF20374. DOI
Harder CB, et al. Local diversity of heathland Cercozoa explored by in-depth sequencing. ISME J. 2016;10:2488–2497. doi: 10.1038/ismej.2016.31. PubMed DOI PMC
Ortiz-Álvarez R, Triadó-Margarit X, Camarero L, Casamayor EO, Catalan J. High planktonic diversity in mountain lakes contains similar contributions of autotrophic, heterotrophic and parasitic eukaryotic life forms. Sci. Rep. 2018;8:1–12. doi: 10.1038/s41598-018-22835-3. PubMed DOI PMC
Sakharova EG, Korneva LG. Phytoplankton in the Littoral and Pelagial zones of the Rybinsk reservoir in years with different temperature and water-level regimes. Inl. Water Biol. 2018;11:6–12. doi: 10.1134/S1995082918010157. DOI
Cruaud P, et al. Annual Protist community dynamics in a freshwater ecosystem undergoing contrasted climatic conditions: The saint-Charles River (Canada) Front. Microbiol. 2019 doi: 10.3389/fmicb.2019.02359. PubMed DOI PMC
Lürling M, Eshetu F, Faassen EJ, Kosten S, Huszar VLM. Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshw. Biol. 2013;58:552–559. doi: 10.1111/j.1365-2427.2012.02866.x. DOI
Jensen JP, Jeppesen E, Olrik K, Kristensen P. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Can. J. Fish. Aquat. Sci. 1994;51:1692–1699. doi: 10.1139/f94-170. DOI
Dragoș N. An Introduction to the Algae and the Culture Collection of Algae at the Institute of Biological Research, Cluj-Napoca. Cluj University Press; 1997.
Frank JA, et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 2008;74:2461–2470. doi: 10.1128/AEM.02272-07. PubMed DOI PMC
Allen MM, Stanier RY. Growth and division of some unicellular blue-green algae. J. Gen. Microbiol. 1968;51:199–202. doi: 10.1099/00221287-51-2-199. PubMed DOI
IPCC. IPCC report Global warming of 1.5°C. Ipcc Sr152, 17–20 (2018).
Kalendar R, Khassenov B, Ramankulov Y, Samuilova O, Ivanov KI. FastPCR: An in silico tool for fast primer and probe design and advanced sequence analysis. Genomics. 2017;109:312–319. doi: 10.1016/j.ygeno.2017.05.005. PubMed DOI
Ye J, et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012;13:1–11. doi: 10.1186/1471-2105-13-S6-S1. PubMed DOI PMC
Kimura S, et al. Diurnal infection patterns and impact of Microcystis cyanophages in a Japanese pond. Appl. Environ. Microbiol. 2012;78:5805–5811. doi: 10.1128/AEM.00571-12. PubMed DOI PMC
Pinto F, Pacheco CC, Ferreira D, Moradas-Ferreira P, Tamagnini P. Selection of suitable reference genes for RT-qPCR analyses in cyanobacteria. PLoS ONE. 2012;7:e34983. doi: 10.1371/journal.pone.0034983. PubMed DOI PMC
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Hadziavdic K, et al. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PLoS ONE. 2014;9:e87624. doi: 10.1371/journal.pone.0087624. PubMed DOI PMC
Herlemann DPR, et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–1579. doi: 10.1038/ismej.2011.41. PubMed DOI PMC
DeSantis TZ, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 2006;72:5069–5072. doi: 10.1128/AEM.03006-05. PubMed DOI PMC
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–1075. doi: 10.1093/bioinformatics/btt086. PubMed DOI PMC
Lozupone C, Knight R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 2005;71:8228–8235. doi: 10.1128/AEM.71.12.8228-8235.2005. PubMed DOI PMC
Caporaso JG, et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 2010;7:335–336. doi: 10.1038/nmeth.f.303. PubMed DOI PMC