Improved CO2/CH4 Separation Properties of Cellulose Triacetate Mixed-Matrix Membranes with CeO2@GO Hybrid Fillers

. 2021 Oct 11 ; 11 (10) : . [epub] 20211011

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34677542

The study of the effects associated with the compatibility of the components of the hybrid filler with polymer matrix, which ultimately decide on achieving mixed matrix membranes (MMMs) with better gas separation properties, is essential. Herein, a facile solution casting process of simple incorporating CeO2@GO hybrid inorganic filler material is implemented. Significant improvements in material and physico-chemical properties of the synthesized membranes were observed by SEM, XRD, TGA, and stress-strain measurements. Usage of graphene oxide (GO) with polar groups on the surface enabled forming bonds with ceria (CeO2) nanoparticles and CTA polymer and provided the homogeneous dispersion of the nanofillers in the hybrid MMMs. Moreover, increasing GO loading concentration enhanced both gas permeation in MMMs and CO2 gas uptakes. The best performance was achieved by the membrane containing 7 wt.% of GO with CO2 permeability of 10.14 Barrer and CO2/CH4 selectivity 50.7. This increase in selectivity is almost fifteen folds higher than the CTA-CeO2 membrane sample, suggesting the detrimental effect of GO for enhancing the selectivity property of the MMMs. Hence, a favorable synergistic effect of CeO2@GO hybrid fillers on gas separation performance is observed, propounding the efficient and feasible strategy of using hybrid fillers in the membrane for the potential biogas upgrading process.

Zobrazit více v PubMed

Ugo Moretti I. Membrane Engineering for the Treatment of Gases: Volume 1: Gas-Separation Issues with Membranes. 2nd ed. Vol. 1. The Royal Society of Chemistry; London, UK: 2018. Chapter 9—Polymeric membrane-based plants for biogas upgrading; pp. 242–255.

Vinoba M., Bhagiyalakshmi M., Alqaheem Y., Alomair A.A., Pérez A., Rana M.S. Recent progress of fillers in mixed matrix membranes for CO2 separation: A review. Sep. Purif. Technol. 2017;188:431–450. doi: 10.1016/j.seppur.2017.07.051. DOI

Park H.B., Kamcev J., Robeson L.M., Elimelech M., Freeman B.D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science. 2017;356:eaab0530. doi: 10.1126/science.aab0530. PubMed DOI

Robeson L.M. The upper bound revisited. J. Membr. Sci. 2008;320:390–400. doi: 10.1016/j.memsci.2008.04.030. DOI

Wang D., Zheng Y., Yao D., Yang Z., Xin Y., Wang F., Wang Y., Ning H., Wu H., Wang H. Liquid-like CNT/SiO2 nanoparticle organic hybrid materials as fillers in mixed matrix composite membranes for enhanced CO2-selective separation. New J. Chem. 2019;43:11949–11958. doi: 10.1039/C9NJ02789K. DOI

Gangu K.K., Maddila S., Mukkamala S.B., Jonnalagadda S.B. A review on contemporary metal–organic framework materials. Inorg. Chim. Acta. 2016;446:61–74. doi: 10.1016/j.ica.2016.02.062. DOI

Cheng Y., Ying Y., Zhai L., Liu G., Dong J., Wang Y., Christopher M.P., Long S., Wang Y., Zhao D. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation. J. Membr. Sci. 2019;573:97–106. doi: 10.1016/j.memsci.2018.11.060. DOI

Pfeifer S., Bandaru P.R. A methodology for quantitatively characterizing the dispersion of nanostructures in polymers and composites. Mater. Res. Lett. 2014;2:166–175. doi: 10.1080/21663831.2014.886629. DOI

Li S., Liu Y., Wong D.A., Yang J. Recent advances in polymer-inorganic mixed matrix membranes for CO2 Separation. Polymers. 2021;13:2539. doi: 10.3390/polym13152539. PubMed DOI PMC

Goh P.S., Ismail A.F., Sanip S.M., Ng B.C., Aziz M. Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep. Purif. Technol. 2011;81:243–264. doi: 10.1016/j.seppur.2011.07.042. DOI

Zornoza B., Seoane B., Zamaro J.M., Téllez C., Coronas J. Combination of MOFs and zeolites for mixed-matrix membranes. ChemPhysChem. 2011;12:2781–2785. doi: 10.1002/cphc.201100583. PubMed DOI

Galve A., Sieffert D., Staudt C., Ferrando M., Güell C., Téllez C., Coronas J. Combination of ordered mesoporous silica MCM-41 and layered titanosilicate JDF-L1 fillers for 6FDA-based copolyimide mixed matrix membranes. J. Membr. Sci. 2013;431:163–170. doi: 10.1016/j.memsci.2012.12.046. DOI

Valero M., Zornoza B., Téllez C., Coronas J. Mixed matrix membranes for gas separation by combination of silica MCM-41 and MOF NH2-MIL-53(Al) in glassy polymers. Microporous Mesoporous Mater. 2014;192:23–28. doi: 10.1016/j.micromeso.2013.09.018. DOI

Jamil N., Othman N.H., Alias N.H., Shahruddin M.Z., Roslan R.A., Lau W.J., Ismail A.F. Mixed matrix membranes incorporated with reduced graphene oxide (rGO) and zeolitic imidazole framework-8 (ZIF-8) nanofillers for gas separation. J. Solid State Chem. 2019;270:419–427. doi: 10.1016/j.jssc.2018.11.028. DOI

Wong K.C., Goh P.S., Taniguchi T., Ismail A.F., Zahri K. The role of geometrically different carbon-based fillers on the formation and gas separation performance of nanocomposite membranes. Carbon. 2019;149:33–44. doi: 10.1016/j.carbon.2019.04.031. DOI

Ahmad N.A., Mohd Noh A.N., Leo C.P., Ahmad A.L. CO2 removal using membrane gas absorption with PVDF membrane incorporated with POSS and SAPO-34 zeolite. Chem. Eng. Res. Des. 2017;118:238–247. doi: 10.1016/j.cherd.2016.12.019. DOI

Tian L., Meziani M.J., Lu F., Kong C.Y., Cao L., Thorne T.J., Sun Y.-P. Graphene oxides for homogeneous dispersion of carbon nanotubes. ACS Appl. Mater. Interfaces. 2010;2:3217–3222. doi: 10.1021/am100687n. PubMed DOI

Pant B., Park M., Park S.-J., Kim H.-Y. One-pot synthesis of CdS sensitized TiO2 decorated reduced graphene oxide nanosheets for the hydrolysis of ammonia-borane and the effective removal of organic pollutant from water. Ceram. Int. 2016;42:15247–15252. doi: 10.1016/j.ceramint.2016.06.163. DOI

Xu L., Huang W.-Q., Wang L.-L., Huang G.-F. Interfacial Interactions of Semiconductor with Graphene and Reduced Graphene Oxide: CeO2 as a Case Study. ACS Appl. Mater. Interfaces. 2014;6:20350–20357. doi: 10.1021/am5058772. PubMed DOI

Ahmed D.F., Isawi H., Badway N.A., Elbayaa A.A., Shawky H. Graphene oxide incorporated cellulose triacetate/cellulose acetate nanocomposite membranes for forward osmosis desalination. Arab. J. Chem. 2021;14:102995. doi: 10.1016/j.arabjc.2021.102995. DOI

Bhattacharya M. Polymer nanocomposites-A comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials. 2016;9:262. doi: 10.3390/ma9040262. PubMed DOI PMC

Cui Y., Kundalwal S.I., Kumar S. Gas barrier performance of graphene/polymer nanocomposites. Carbon. 2016;98:313–333. doi: 10.1016/j.carbon.2015.11.018. DOI

Ojha G.P., Pant B., Park S.-J., Park M., Kim H.-Y. Synthesis and characterization of reduced graphene oxide decorated with CeO2-doped MnO2 nanorods for supercapacitor applications. J. Colloid Interface Sci. 2017;494:338–344. doi: 10.1016/j.jcis.2017.01.100. PubMed DOI

Trovarelli A. Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. 1996;38:439–520. doi: 10.1080/01614949608006464. DOI

Regmi C., Ashtiani S., Sofer Z., Hrdlička Z., Průša F., Vopička O., Friess K. CeO2-blended cellulose triacetate mixed-matrix membranes for selective CO2 separation. Membranes. 2021;11:632. doi: 10.3390/membranes11080632. PubMed DOI PMC

Shojaie S.S., Krantz W.B., Greenberg A.R. Dense polymer film and membrane formation via the dry-cast process part I. Model development. J. Membr. Sci. 1994;94:255–280. doi: 10.1016/0376-7388(93)E0228-C. DOI

Macchione M., Jansen J.C., Drioli E. The dry phase inversion technique as a tool to produce highly efficient asymmetric gas separation membranes of modified PEEK. Influence of temperature and air circulation. Desalination. 2006;192:132–141. doi: 10.1016/j.desal.2005.09.020. DOI

Friess K., Hynek V., Šípek M., Kujawski W.M., Vopička O., Zgažar M., Kujawski M.W. Permeation and sorption properties of poly(ether-block-amide) membranes filled by two types of zeolites. Sep. Purif. Technol. 2011;80:418–427. doi: 10.1016/j.seppur.2011.04.012. DOI

Vopička O., Friess K., Hynek V., Sysel P., Zgažar M., Šípek M., Pilnáček K., Lanč M., Jansen J.C., Mason C.R., et al. Equilibrium and transient sorption of vapours and gases in the polymer of intrinsic microporosity PIM-1. J. Membr. Sci. 2013;434:148–160. doi: 10.1016/j.memsci.2013.01.040. DOI

Jansen J.C., Friess K., Drioli E. Organic vapour transport in glassy perfluoropolymer membranes: A simple semi-quantitative approach to analyze clustering phenomena by time lag measurements. J. Membr. Sci. 2011;367:141–151. doi: 10.1016/j.memsci.2010.10.063. DOI

Friess K., Jansen J.C., Bazzarelli F., Izák P., Jarmarová V., Kačírková M., Schauer J., Clarizia G., Bernardo P. High ionic liquid content polymeric gel membranes: Correlation of membrane structure with gas and vapour transport properties. J. Membr. Sci. 2012;415–416:801–809. doi: 10.1016/j.memsci.2012.05.072. DOI

Joung D., Singh V., Park S., Schulte A., Seal S., Khondaker S.I. Anchoring ceria nanoparticles on reduced graphene oxide and their electronic transport properties. J. Phys. Chem. C. 2011;115:24494–24500. doi: 10.1021/jp206485v. DOI

Wang Z., Zhao P., He D., Cheng Y., Liao L., Li S., Luo Y., Peng Z., Li P. Cerium oxide immobilized reduced graphene oxide hybrids with excellent microwave absorbing performance. Phys. Chem. Chem. Phys. 2018;20:14155–14165. doi: 10.1039/C8CP00160J. PubMed DOI

Rajendran R., Shrestha L.K., Minami K., Subramanian M., Jayavel R., Ariga K. Dimensionally integrated nanoarchitectonics for a novel composite from 0D, 1D, and 2D nanomaterials: RGO/CNT/CeO2 ternary nanocomposites with electrochemical performance. J. Mater. Chem. A. 2014;2:18480–18487. doi: 10.1039/C4TA03996C. DOI

Lee J.M., Nguyen D.Q., Lee S.B., Kim H., Ahn B.S., Lee H., Kim H.S. Cellulose triacetate-based polymer gel electrolytes. J. Appl. Polym. Sci. 2010;115:32–36. doi: 10.1002/app.29398. DOI

El Nemr A., Ragab S., El Sikaily A., Khaled A. Synthesis of cellulose triacetate from cotton cellulose by using NIS as a catalyst under mild reaction conditions. Carbohydr. Polym. 2015;130:41–48. doi: 10.1016/j.carbpol.2015.04.065. PubMed DOI

Sasikumar B., Arthanareeswaran G., Sankaranarayanan K., Jeyadheepan K. Synthesis and formation of phase-tuned TiO2-/ioniclLiquid-incorporated polymeric membranes for ammonia sensing at room temperature. ACS Sustain. Chem. Eng. 2019;7:15884–15895. doi: 10.1021/acssuschemeng.9b01850. DOI

Fan Y., Li C., Zhang X., Yang X., Su X., Ye H., Li N. Tröger ’s base mixed matrix membranes for gas separation incorporating NH2-MIL-53(Al) nanocrystals. J. Membr. Sci. 2019;573:359–369. doi: 10.1016/j.memsci.2018.12.004. DOI

Langmuir I. The adsorption of gases on plain surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918;40:1361–1403. doi: 10.1021/ja02242a004. DOI

Cheng Y., Wang Z., Zhao D. Mixed matrix membranes for natural gas upgrading: Current status and opportunities. Ind. Eng. Chem. Res. 2018;57:4139–4169. doi: 10.1021/acs.iecr.7b04796. DOI

Ehsani M., Rahimi P., Joseph Y. Structure-function relationships of nanocarbon/polymer composites for chemiresistive sensing: A review. Sensors. 2021;21:3291. doi: 10.3390/s21093291. PubMed DOI PMC

Wu X., Tian Z., Wang S., Peng D., Yang L., Wu Y., Xin Q., Wu H., Jiang Z. Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation. J. Membr. Sci. 2017;528:273–283. doi: 10.1016/j.memsci.2017.01.042. DOI

Nikolaeva D., Azcune I., Tanczyk M., Warmuzinski K., Jaschik M., Sandru M., Dahl P.I., Genua A., Loïs S., Sheridan E., et al. The performance of affordable and stable cellulose-based poly-ionic membranes in CO2/N2 and CO2/CH4 gas separation. J. Membr. Sci. 2018;564:552–561. doi: 10.1016/j.memsci.2018.07.057. DOI

Číhal P., Vopička O., Lanč M., Kludský M., Velas J., Hrdlička Z., Michalcová A., Dendisová M., Friess K. Poly(butylene succinate)-cellulose triacetate blends: Permeation, pervaporation, sorption and physical structure. Polym. Test. 2018;65:468–479. doi: 10.1016/j.polymertesting.2017.12.026. DOI

Ashtiani S., Khoshnamvand M., Regmi C., Friess K. Interfacial Design of Mixed Matrix Membranes via Grafting PVA on UiO-66-NH2 to Enhance the Gas Separation Performance. Membranes. 2021;11:419. doi: 10.3390/membranes11060419. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...