Improved CO2/CH4 Separation Properties of Cellulose Triacetate Mixed-Matrix Membranes with CeO2@GO Hybrid Fillers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34677542
PubMed Central
PMC8539915
DOI
10.3390/membranes11100777
PII: membranes11100777
Knihovny.cz E-zdroje
- Klíčová slova
- CeO2@GO hybrid fillers, cellulose triacetate, gas separation, mixed-matrix membrane,
- Publikační typ
- časopisecké články MeSH
The study of the effects associated with the compatibility of the components of the hybrid filler with polymer matrix, which ultimately decide on achieving mixed matrix membranes (MMMs) with better gas separation properties, is essential. Herein, a facile solution casting process of simple incorporating CeO2@GO hybrid inorganic filler material is implemented. Significant improvements in material and physico-chemical properties of the synthesized membranes were observed by SEM, XRD, TGA, and stress-strain measurements. Usage of graphene oxide (GO) with polar groups on the surface enabled forming bonds with ceria (CeO2) nanoparticles and CTA polymer and provided the homogeneous dispersion of the nanofillers in the hybrid MMMs. Moreover, increasing GO loading concentration enhanced both gas permeation in MMMs and CO2 gas uptakes. The best performance was achieved by the membrane containing 7 wt.% of GO with CO2 permeability of 10.14 Barrer and CO2/CH4 selectivity 50.7. This increase in selectivity is almost fifteen folds higher than the CTA-CeO2 membrane sample, suggesting the detrimental effect of GO for enhancing the selectivity property of the MMMs. Hence, a favorable synergistic effect of CeO2@GO hybrid fillers on gas separation performance is observed, propounding the efficient and feasible strategy of using hybrid fillers in the membrane for the potential biogas upgrading process.
Zobrazit více v PubMed
Ugo Moretti I. Membrane Engineering for the Treatment of Gases: Volume 1: Gas-Separation Issues with Membranes. 2nd ed. Vol. 1. The Royal Society of Chemistry; London, UK: 2018. Chapter 9—Polymeric membrane-based plants for biogas upgrading; pp. 242–255.
Vinoba M., Bhagiyalakshmi M., Alqaheem Y., Alomair A.A., Pérez A., Rana M.S. Recent progress of fillers in mixed matrix membranes for CO2 separation: A review. Sep. Purif. Technol. 2017;188:431–450. doi: 10.1016/j.seppur.2017.07.051. DOI
Park H.B., Kamcev J., Robeson L.M., Elimelech M., Freeman B.D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science. 2017;356:eaab0530. doi: 10.1126/science.aab0530. PubMed DOI
Robeson L.M. The upper bound revisited. J. Membr. Sci. 2008;320:390–400. doi: 10.1016/j.memsci.2008.04.030. DOI
Wang D., Zheng Y., Yao D., Yang Z., Xin Y., Wang F., Wang Y., Ning H., Wu H., Wang H. Liquid-like CNT/SiO2 nanoparticle organic hybrid materials as fillers in mixed matrix composite membranes for enhanced CO2-selective separation. New J. Chem. 2019;43:11949–11958. doi: 10.1039/C9NJ02789K. DOI
Gangu K.K., Maddila S., Mukkamala S.B., Jonnalagadda S.B. A review on contemporary metal–organic framework materials. Inorg. Chim. Acta. 2016;446:61–74. doi: 10.1016/j.ica.2016.02.062. DOI
Cheng Y., Ying Y., Zhai L., Liu G., Dong J., Wang Y., Christopher M.P., Long S., Wang Y., Zhao D. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation. J. Membr. Sci. 2019;573:97–106. doi: 10.1016/j.memsci.2018.11.060. DOI
Pfeifer S., Bandaru P.R. A methodology for quantitatively characterizing the dispersion of nanostructures in polymers and composites. Mater. Res. Lett. 2014;2:166–175. doi: 10.1080/21663831.2014.886629. DOI
Li S., Liu Y., Wong D.A., Yang J. Recent advances in polymer-inorganic mixed matrix membranes for CO2 Separation. Polymers. 2021;13:2539. doi: 10.3390/polym13152539. PubMed DOI PMC
Goh P.S., Ismail A.F., Sanip S.M., Ng B.C., Aziz M. Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep. Purif. Technol. 2011;81:243–264. doi: 10.1016/j.seppur.2011.07.042. DOI
Zornoza B., Seoane B., Zamaro J.M., Téllez C., Coronas J. Combination of MOFs and zeolites for mixed-matrix membranes. ChemPhysChem. 2011;12:2781–2785. doi: 10.1002/cphc.201100583. PubMed DOI
Galve A., Sieffert D., Staudt C., Ferrando M., Güell C., Téllez C., Coronas J. Combination of ordered mesoporous silica MCM-41 and layered titanosilicate JDF-L1 fillers for 6FDA-based copolyimide mixed matrix membranes. J. Membr. Sci. 2013;431:163–170. doi: 10.1016/j.memsci.2012.12.046. DOI
Valero M., Zornoza B., Téllez C., Coronas J. Mixed matrix membranes for gas separation by combination of silica MCM-41 and MOF NH2-MIL-53(Al) in glassy polymers. Microporous Mesoporous Mater. 2014;192:23–28. doi: 10.1016/j.micromeso.2013.09.018. DOI
Jamil N., Othman N.H., Alias N.H., Shahruddin M.Z., Roslan R.A., Lau W.J., Ismail A.F. Mixed matrix membranes incorporated with reduced graphene oxide (rGO) and zeolitic imidazole framework-8 (ZIF-8) nanofillers for gas separation. J. Solid State Chem. 2019;270:419–427. doi: 10.1016/j.jssc.2018.11.028. DOI
Wong K.C., Goh P.S., Taniguchi T., Ismail A.F., Zahri K. The role of geometrically different carbon-based fillers on the formation and gas separation performance of nanocomposite membranes. Carbon. 2019;149:33–44. doi: 10.1016/j.carbon.2019.04.031. DOI
Ahmad N.A., Mohd Noh A.N., Leo C.P., Ahmad A.L. CO2 removal using membrane gas absorption with PVDF membrane incorporated with POSS and SAPO-34 zeolite. Chem. Eng. Res. Des. 2017;118:238–247. doi: 10.1016/j.cherd.2016.12.019. DOI
Tian L., Meziani M.J., Lu F., Kong C.Y., Cao L., Thorne T.J., Sun Y.-P. Graphene oxides for homogeneous dispersion of carbon nanotubes. ACS Appl. Mater. Interfaces. 2010;2:3217–3222. doi: 10.1021/am100687n. PubMed DOI
Pant B., Park M., Park S.-J., Kim H.-Y. One-pot synthesis of CdS sensitized TiO2 decorated reduced graphene oxide nanosheets for the hydrolysis of ammonia-borane and the effective removal of organic pollutant from water. Ceram. Int. 2016;42:15247–15252. doi: 10.1016/j.ceramint.2016.06.163. DOI
Xu L., Huang W.-Q., Wang L.-L., Huang G.-F. Interfacial Interactions of Semiconductor with Graphene and Reduced Graphene Oxide: CeO2 as a Case Study. ACS Appl. Mater. Interfaces. 2014;6:20350–20357. doi: 10.1021/am5058772. PubMed DOI
Ahmed D.F., Isawi H., Badway N.A., Elbayaa A.A., Shawky H. Graphene oxide incorporated cellulose triacetate/cellulose acetate nanocomposite membranes for forward osmosis desalination. Arab. J. Chem. 2021;14:102995. doi: 10.1016/j.arabjc.2021.102995. DOI
Bhattacharya M. Polymer nanocomposites-A comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials. 2016;9:262. doi: 10.3390/ma9040262. PubMed DOI PMC
Cui Y., Kundalwal S.I., Kumar S. Gas barrier performance of graphene/polymer nanocomposites. Carbon. 2016;98:313–333. doi: 10.1016/j.carbon.2015.11.018. DOI
Ojha G.P., Pant B., Park S.-J., Park M., Kim H.-Y. Synthesis and characterization of reduced graphene oxide decorated with CeO2-doped MnO2 nanorods for supercapacitor applications. J. Colloid Interface Sci. 2017;494:338–344. doi: 10.1016/j.jcis.2017.01.100. PubMed DOI
Trovarelli A. Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. 1996;38:439–520. doi: 10.1080/01614949608006464. DOI
Regmi C., Ashtiani S., Sofer Z., Hrdlička Z., Průša F., Vopička O., Friess K. CeO2-blended cellulose triacetate mixed-matrix membranes for selective CO2 separation. Membranes. 2021;11:632. doi: 10.3390/membranes11080632. PubMed DOI PMC
Shojaie S.S., Krantz W.B., Greenberg A.R. Dense polymer film and membrane formation via the dry-cast process part I. Model development. J. Membr. Sci. 1994;94:255–280. doi: 10.1016/0376-7388(93)E0228-C. DOI
Macchione M., Jansen J.C., Drioli E. The dry phase inversion technique as a tool to produce highly efficient asymmetric gas separation membranes of modified PEEK. Influence of temperature and air circulation. Desalination. 2006;192:132–141. doi: 10.1016/j.desal.2005.09.020. DOI
Friess K., Hynek V., Šípek M., Kujawski W.M., Vopička O., Zgažar M., Kujawski M.W. Permeation and sorption properties of poly(ether-block-amide) membranes filled by two types of zeolites. Sep. Purif. Technol. 2011;80:418–427. doi: 10.1016/j.seppur.2011.04.012. DOI
Vopička O., Friess K., Hynek V., Sysel P., Zgažar M., Šípek M., Pilnáček K., Lanč M., Jansen J.C., Mason C.R., et al. Equilibrium and transient sorption of vapours and gases in the polymer of intrinsic microporosity PIM-1. J. Membr. Sci. 2013;434:148–160. doi: 10.1016/j.memsci.2013.01.040. DOI
Jansen J.C., Friess K., Drioli E. Organic vapour transport in glassy perfluoropolymer membranes: A simple semi-quantitative approach to analyze clustering phenomena by time lag measurements. J. Membr. Sci. 2011;367:141–151. doi: 10.1016/j.memsci.2010.10.063. DOI
Friess K., Jansen J.C., Bazzarelli F., Izák P., Jarmarová V., Kačírková M., Schauer J., Clarizia G., Bernardo P. High ionic liquid content polymeric gel membranes: Correlation of membrane structure with gas and vapour transport properties. J. Membr. Sci. 2012;415–416:801–809. doi: 10.1016/j.memsci.2012.05.072. DOI
Joung D., Singh V., Park S., Schulte A., Seal S., Khondaker S.I. Anchoring ceria nanoparticles on reduced graphene oxide and their electronic transport properties. J. Phys. Chem. C. 2011;115:24494–24500. doi: 10.1021/jp206485v. DOI
Wang Z., Zhao P., He D., Cheng Y., Liao L., Li S., Luo Y., Peng Z., Li P. Cerium oxide immobilized reduced graphene oxide hybrids with excellent microwave absorbing performance. Phys. Chem. Chem. Phys. 2018;20:14155–14165. doi: 10.1039/C8CP00160J. PubMed DOI
Rajendran R., Shrestha L.K., Minami K., Subramanian M., Jayavel R., Ariga K. Dimensionally integrated nanoarchitectonics for a novel composite from 0D, 1D, and 2D nanomaterials: RGO/CNT/CeO2 ternary nanocomposites with electrochemical performance. J. Mater. Chem. A. 2014;2:18480–18487. doi: 10.1039/C4TA03996C. DOI
Lee J.M., Nguyen D.Q., Lee S.B., Kim H., Ahn B.S., Lee H., Kim H.S. Cellulose triacetate-based polymer gel electrolytes. J. Appl. Polym. Sci. 2010;115:32–36. doi: 10.1002/app.29398. DOI
El Nemr A., Ragab S., El Sikaily A., Khaled A. Synthesis of cellulose triacetate from cotton cellulose by using NIS as a catalyst under mild reaction conditions. Carbohydr. Polym. 2015;130:41–48. doi: 10.1016/j.carbpol.2015.04.065. PubMed DOI
Sasikumar B., Arthanareeswaran G., Sankaranarayanan K., Jeyadheepan K. Synthesis and formation of phase-tuned TiO2-/ioniclLiquid-incorporated polymeric membranes for ammonia sensing at room temperature. ACS Sustain. Chem. Eng. 2019;7:15884–15895. doi: 10.1021/acssuschemeng.9b01850. DOI
Fan Y., Li C., Zhang X., Yang X., Su X., Ye H., Li N. Tröger ’s base mixed matrix membranes for gas separation incorporating NH2-MIL-53(Al) nanocrystals. J. Membr. Sci. 2019;573:359–369. doi: 10.1016/j.memsci.2018.12.004. DOI
Langmuir I. The adsorption of gases on plain surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918;40:1361–1403. doi: 10.1021/ja02242a004. DOI
Cheng Y., Wang Z., Zhao D. Mixed matrix membranes for natural gas upgrading: Current status and opportunities. Ind. Eng. Chem. Res. 2018;57:4139–4169. doi: 10.1021/acs.iecr.7b04796. DOI
Ehsani M., Rahimi P., Joseph Y. Structure-function relationships of nanocarbon/polymer composites for chemiresistive sensing: A review. Sensors. 2021;21:3291. doi: 10.3390/s21093291. PubMed DOI PMC
Wu X., Tian Z., Wang S., Peng D., Yang L., Wu Y., Xin Q., Wu H., Jiang Z. Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation. J. Membr. Sci. 2017;528:273–283. doi: 10.1016/j.memsci.2017.01.042. DOI
Nikolaeva D., Azcune I., Tanczyk M., Warmuzinski K., Jaschik M., Sandru M., Dahl P.I., Genua A., Loïs S., Sheridan E., et al. The performance of affordable and stable cellulose-based poly-ionic membranes in CO2/N2 and CO2/CH4 gas separation. J. Membr. Sci. 2018;564:552–561. doi: 10.1016/j.memsci.2018.07.057. DOI
Číhal P., Vopička O., Lanč M., Kludský M., Velas J., Hrdlička Z., Michalcová A., Dendisová M., Friess K. Poly(butylene succinate)-cellulose triacetate blends: Permeation, pervaporation, sorption and physical structure. Polym. Test. 2018;65:468–479. doi: 10.1016/j.polymertesting.2017.12.026. DOI
Ashtiani S., Khoshnamvand M., Regmi C., Friess K. Interfacial Design of Mixed Matrix Membranes via Grafting PVA on UiO-66-NH2 to Enhance the Gas Separation Performance. Membranes. 2021;11:419. doi: 10.3390/membranes11060419. PubMed DOI PMC