CeO2-Blended Cellulose Triacetate Mixed-Matrix Membranes for Selective CO2 Separation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34436395
PubMed Central
PMC8400081
DOI
10.3390/membranes11080632
PII: membranes11080632
Knihovny.cz E-zdroje
- Klíčová slova
- composite membrane, gas separation, greenhouse gas, inorganic fillers,
- Publikační typ
- časopisecké články MeSH
Due to the high affinity of ceria (CeO2) towards carbon dioxide (CO2) and the high thermal and mechanical properties of cellulose triacetate (CTA) polymer, mixed-matrix CTA-CeO2 membranes were fabricated. A facile solution-casting method was used for the fabrication process. CeO2 nanoparticles at concentrations of 0.32, 0.64 and 0.9 wt.% were incorporated into the CTA matrix. The physico-chemical properties of the membranes were evaluated by SEM-EDS, XRD, FTIR, TGA, DSC and strain-stress analysis. Gas sorption and permeation affinity were evaluated using different single gases. The CTA-CeO2 (0.64) membrane matrix showed a high affinity towards CO2 sorption. Almost complete saturation of CeO2 nanoparticles with CO2 was observed, even at low pressure. Embedding CeO2 nanoparticles led to increased gas permeability compared to pristine CTA. The highest gas permeabilities were achieved with 0.64 wt.%, with a threefold increase in CO2 permeability as compared to pristine CTA membranes. Unwanted aggregation of the filler nanoparticles was observed at a 0.9 wt.% concentration of CeO2 and was reflected in decreased gas permeability compared to lower filler loadings with homogenous filler distributions. The determined gas selectivity was in the order CO2/CH4 > CO2/N2 > O2/N2 > H2/CO2 and suggests the potential of CTA-CeO2 membranes for CO2 separation in flue/biogas applications.
Zobrazit více v PubMed
Althor G., Watson J.E.M., Fuller R.A. Global mismatch between greenhouse gas emissions and the burden of climate change. Sci. Rep. 2016;6:20281. doi: 10.1038/srep20281. PubMed DOI PMC
Qiao Z., Zhao S., Sheng M., Wang J., Wang S., Wang Z., Zhong C., Guiver M.D. Metal-induced ordered microporous polymers for fabricating large-area gas separation membranes. Nat. Mater. 2019;18:163–168. doi: 10.1038/s41563-018-0221-3. PubMed DOI
Cheng Y., Zhai L., Tong M., Kundu T., Liu G., Ying Y., Dong J., Wang Y., Zhao D. Selective gas permeation in mixed matrix membranes accelerated by hollow ionic covalent organic polymers. ACS Sustain. Chem. Eng. 2019;7:1564–1573. doi: 10.1021/acssuschemeng.8b05333. DOI
Robeson L.M. The upper bound revisited. J. Membr. Sci. 2008;320:390–400. doi: 10.1016/j.memsci.2008.04.030. DOI
Sanders D.F., Smith Z.P., Guo R., Robeson L.M., McGrath J.E., Paul D.R., Freeman B.D. Energy-efficient polymeric gas separation membranes for a sustainable future: A review. Polymer. 2013;54:4729–4761. doi: 10.1016/j.polymer.2013.05.075. DOI
Park H.B., Kamcev J., Robeson L.M., Elimelech M., Freeman B.D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science. 2017;356:eaab0530. doi: 10.1126/science.aab0530. PubMed DOI
Shi F., Sun J., Wang J., Liu M., Yan Z., Zhu B., Li Y., Cao X. MXene versus graphene oxide: Investigation on the effects of 2D nanosheets in mixed matrix membranes for CO2 separation. J. Membr. Sci. 2021;620:118850. doi: 10.1016/j.memsci.2020.118850. DOI
Yin H., Alkaş A., Zhang Y., Zhang Y., Telfer S.G. Mixed matrix membranes (MMMs) using an emerging metal-organic framework (MUF-15) for CO2 separation. J. Membr. Sci. 2020;609:118245. doi: 10.1016/j.memsci.2020.118245. DOI
Dong G., Li H., Chen V. Challenges and opportunities for mixed-matrix membranes for gas separation. J. Mater. Chem. A. 2013;1:4610–4630. doi: 10.1039/c3ta00927k. DOI
Zornoza B., Tellez C., Coronas J., Gascon J., Kapteijn F. Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential. Microporous Mesoporous Mater. 2013;166:67–78. doi: 10.1016/j.micromeso.2012.03.012. DOI
Furukawa H., Cordova K.E., O’Keeffe M., Yaghi O.M. The chemistry and applications of metal-organic frameworks. Science. 2013;341:1230444. doi: 10.1126/science.1230444. PubMed DOI
Zhao S., Wang Z., Qiao Z., Wei X., Zhang C., Wang J., Wang S. Gas separation membrane with CO2-facilitated transport highway constructed from amino carrier containing nanorods and macromolecules. J. Mater. Chem. A. 2013;1:246–249. doi: 10.1039/C2TA00247G. DOI
Chung T.-S., Jiang L.Y., Li Y., Kulprathipanja S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 2007;32:483–507. doi: 10.1016/j.progpolymsci.2007.01.008. DOI
Zhu J., Hou J., Uliana A., Zhang Y., Tian M., Van der Bruggen B. The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes. J. Mater. Chem. A. 2018;6:3773–3792. doi: 10.1039/C7TA10814A. DOI
Denny M.S., Moreton J.C., Benz L., Cohen S.M. Metal—Organic frameworks for membrane-based separations. Nat. Rev. Mater. 2016;1:16078. doi: 10.1038/natrevmats.2016.78. DOI
Wong K.C., Goh P.S., Taniguchi T., Ismail A.F., Zahri K. The role of geometrically different carbon-based fillers on the formation and gas separation performance of nanocomposite membranes. Carbon. 2019;149:33–44. doi: 10.1016/j.carbon.2019.04.031. DOI
Zagho M.M., Hassan M.K., Khraisheh M., Al-Maadeed M.A.A., Nazarenko S. A review on recent advances in CO2 separation using zeolite and zeolite-like materials as adsorbents and fillers in mixed matrix membranes (MMMs) Chem. Eng. J. Adv. 2021;6:100091. doi: 10.1016/j.ceja.2021.100091. DOI
Zulhairun A.K., Ismail A.F. The role of layered silicate loadings and their dispersion states on the gas separation performance of mixed matrix membrane. J. Membr. Sci. 2014;468:20–30. doi: 10.1016/j.memsci.2014.05.038. DOI
Zulhairun A.K., Ismail A.F., Matsuura T., Abdullah M.S., Mustafa A. Asymmetric mixed matrix membrane incorporating organically modified clay particle for gas separation. Chem. Eng. J. 2014;241:495–503. doi: 10.1016/j.cej.2013.10.042. DOI
Liang C.-Y., Uchytil P., Petrychkovych R., Lai Y.-C., Friess K., Sipek M., Mohan Reddy M., Suen S.-Y. A comparison on gas separation between PES (polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 mixed matrix membranes. Sep. Purif. Technol. 2012;92:57–63. doi: 10.1016/j.seppur.2012.03.016. DOI
Wang Z., Tang H., Zhang H., Lei M., Chen R., Xiao P., Pan M. Synthesis of nafion/CeO2 hybrid for chemically durable proton exchange membrane of fuel cell. J. Membr. Sci. 2012;421–422:201–210. doi: 10.1016/j.memsci.2012.07.014. DOI
Weissbach T., Peckham T.J., Holdcroft S. CeO2, ZrO2 and YSZ as mitigating additives against degradation of proton exchange membranes by free radicals. J. Membr. Sci. 2016;498:94–104. doi: 10.1016/j.memsci.2015.10.004. DOI
Lakhotia S.R., Mukhopadhyay M., Kumari P. Cerium oxide nanoparticles embedded thin-film nanocomposite nanofiltration membrane for water treatment. Sci. Rep. 2018;8:4976. doi: 10.1038/s41598-018-23188-7. PubMed DOI PMC
Costantino F., Cavaliere E., Gavioli L., Carzino R., Leoncino L., Brescia R., Athanassiou A., Fragouli D. Photocatalytic activity of cellulose acetate nanoceria/Pt hybrid mats driven by visible light irradiation. Polymers. 2021;13:912. doi: 10.3390/polym13060912. PubMed DOI PMC
Gu H., Soucek M.D. Preparation and characterization of monodisperse cerium oxide nanoparticles in hydrocarbon solvents. Chem. Mater. 2007;19:1103–1110. doi: 10.1021/cm061332r. DOI
Puleo A.C., Paul D.R., Kelley S.S. The effect of degree of acetylation on gas sorption and transport behavior in cellulose acetate. J. Membr. Sci. 1989;47:301–332. doi: 10.1016/S0376-7388(00)83083-5. DOI
Ahmed D.F., Isawi H., Badway N.A., Elbayaa A.A., Shawky H. Graphene oxide incorporated cellulose triacetate/cellulose acetate nanocomposite membranes for forward osmosis desalination. Arab. J. Chem. 2021;14:102995. doi: 10.1016/j.arabjc.2021.102995. DOI
Lu X., Feng X., Yang Y., Jiang J., Cheng W., Liu C., Gopinadhan M., Osuji C.O., Ma J., Elimelech M. Tuning the permselectivity of polymeric desalination membranes via control of polymer crystallite size. Nat. Commun. 2019;10:2347. doi: 10.1038/s41467-019-10132-0. PubMed DOI PMC
Jabbarzadeh A., Halfina B. Unravelling the effects of size, volume fraction and shape of nanoparticle additives on crystallization of nanocomposite polymers. Nanoscale Adv. 2019;1:4704–4721. doi: 10.1039/C9NA00525K. PubMed DOI PMC
Rui N., Zhang X., Zhang F., Liu Z., Cao X., Xie Z., Zou R., Senanayake S.D., Yang Y., Rodriguez J.A., et al. Highly active Ni/CeO2 catalyst for CO2 methanation: Preparation and characterization. Appl. Catal. B Environ. 2021;282:119581. doi: 10.1016/j.apcatb.2020.119581. DOI
Friess K., Hynek V., Šípek M., Kujawski W.M., Vopička O., Zgažar M., Kujawski M.W. Permeation and sorption properties of poly(ether-block-amide) membranes filled by two types of zeolites. Sep. Purif. Technol. 2011;80:418–427. doi: 10.1016/j.seppur.2011.04.012. DOI
Vopička O., Friess K., Hynek V., Sysel P., Zgažar M., Šípek M., Pilnáček K., Lanč M., Jansen J.C., Mason C.R., et al. Equilibrium and transient sorption of vapours and gases in the polymer of intrinsic microporosity PIM-1. J. Membr. Sci. 2013;434:148–160. doi: 10.1016/j.memsci.2013.01.040. DOI
Jansen J.C., Friess K., Drioli E. Organic vapour transport in glassy perfluoropolymer membranes: A simple semi-quantitative approach to analyze clustering phenomena by time lag measurements. J. Membr. Sci. 2011;367:141–151. doi: 10.1016/j.memsci.2010.10.063. DOI
Friess K., Jansen J.C., Bazzarelli F., Izák P., Jarmarová V., Kačírková M., Schauer J., Clarizia G., Bernardo P. High ionic liquid content polymeric gel membranes: Correlation of membrane structure with gas and vapour transport properties. J. Membr. Sci. 2012;415–416:801–809. doi: 10.1016/j.memsci.2012.05.072. DOI
Mei Z., Li Y., Fan M., Zhao L., Zhao J. Effect of the interactions between Pt species and ceria on Pt/ceria catalysts for water gas shift: The XPS studies. Chem. Eng. J. 2015;259:293–302. doi: 10.1016/j.cej.2014.07.125. DOI
Xunwen S., Liqun Z., Weiping L., Huicong L., Hui Y. The synthesis of monodispersed M-CeO2/SiO2 nanoparticles and formation of UV absorption coatings with them. RSC Adv. 2020;10:4554–4560. doi: 10.1039/C9RA08975F. PubMed DOI PMC
Culica M.E., Chibac-Scutaru A.L., Melinte V., Coseri S. Cellulose acetate incorporating organically functionalized CeO2 NPs: Efficient materials for UV filtering applications. Materials. 2020;13:2955. doi: 10.3390/ma13132955. PubMed DOI PMC
Jung J.T., Kim J.F., Wang H.H., di Nicolo E., Drioli E., Lee Y.M. Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS) J. Membr. Sci. 2016;514:250–263. doi: 10.1016/j.memsci.2016.04.069. DOI
Amara M., Arous O., Smail F., Kerdjoudj H., Trari M., Bouguelia A. An assembled poly-4-vinyl pyridine and cellulose triacetate membrane and Bi2S3 electrode for photoelectrochemical diffusion of metallic ions. J. Hazard. Mater. 2009;169:195–202. doi: 10.1016/j.jhazmat.2009.03.085. PubMed DOI
Shen Y., Lua A.C. Preparation and characterization of mixed matrix membranes based on poly(vinylidene fluoride) and zeolite 4A for gas separation. Polym. Eng. Sci. 2012;52:2106–2113. doi: 10.1002/pen.23165. DOI
Nabili A., Fattoum A., Brochier-Salon M.-C., Bras J., Elaloui E. Synthesis of cellulose triacetate-I from microfibrillated date seeds cellulose (Phoenix dactylifera L.) Iran. Polym. J. 2017;26:137–147. doi: 10.1007/s13726-017-0505-5. DOI
Číhal P., Vopička O., Lanč M., Kludský M., Velas J., Hrdlička Z., Michalcová A., Dendisová M., Friess K. Poly(butylene succinate)-cellulose triacetate blends: Permeation, pervaporation, sorption and physical structure. Polym. Test. 2018;65:468–479. doi: 10.1016/j.polymertesting.2017.12.026. DOI
Sedkaoui Y., Abdellaoui N., Arous O., Lounici H., Nasrallah N., Szymczyk A. Elaboration and characterization of multilayer polymeric membranes: Effect of the chemical nature of polymers. J. Polym. Eng. 2021;41:127–136. doi: 10.1515/polyeng-2020-0165. DOI
Shakeel I., Hussain A., Farrukh S. Effect analysis of nickel ferrite (NiFe2O4) and titanium dioxide (TiO2) nanoparticles on CH4/CO2 gas permeation properties of cellulose acetate based mixed matrix membranes. J. Polym. Environ. 2019;27:1449–1464. doi: 10.1007/s10924-019-01442-x. DOI
Ye C., Wu X., Wu H., Yang L., Ren Y., Wu Y., Liu Y., Guo Z., Zhao R., Jiang Z. Incorporating nano-sized ZIF-67 to enhance selectivity of polymers of intrinsic microporosity membranes for biogas upgrading. Chem. Eng. Sci. 2020;216:115497. doi: 10.1016/j.ces.2020.115497. DOI
Codou A., Moncel M., van Berkel J.G., Guigo N., Sbirrazzuoli N. Glass transition dynamics and cooperativity length of poly(ethylene 2,5-furandicarboxylate) compared to poly(ethylene terephthalate) Phys. Chem. Chem. Phys. 2016;18:16647–16658. doi: 10.1039/C6CP01227B. PubMed DOI
Mallarino S., Chailan J.F., Vernet J.L. Glass fibre sizing effect on dynamic mechanical properties of cyanate ester composites I. Single frequency investigations. Eur. Polym. J. 2005;41:1804–1811. doi: 10.1016/j.eurpolymj.2005.02.022. DOI
Turi E. Thermal Characterization of Polymeric Materials. Elsevier Science; London, UK: 2012.
Tiwari S.K., Hatui G., Oraon R., De Adhikari A., Nayak G.C. Mixing sequence driven controlled dispersion of graphene oxide in PC/PMMA blend nanocomposite and its effect on thermo-mechanical properties. Curr. Appl. Phys. 2017;17:1158–1168. doi: 10.1016/j.cap.2017.05.007. DOI
Chae D.W., Nam Y.W., Wang S.S., Hong S.M. Structures and Physical Properties of Multi-Walled Carbon Nanotube-Filled PVDF Thermoplastic Composites. Solid State Phenom. 2007;124–126:1117–1120. doi: 10.4028/www.scientific.net/SSP.124-126.1117. DOI
Kanehashi S., Nagai K. Analysis of dual-mode model parameters for gas sorption in glassy polymers. J. Membr. Sci. 2005;253:117–138. doi: 10.1016/j.memsci.2005.01.003. DOI
Guggenheim E.A. Application of Statistical Mechanics. Clarendon Press; Oxford, UK: 1966.
He Z., Pinnau I., Morisato A. Nanostructured poly(4-methyl-2-pentyne)/silica hybrid membranes for gas separation. Desalination. 2002;146:11–15. doi: 10.1016/S0011-9164(02)00463-0. DOI
Sternstein S.S., Zhu A.-J. Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules. 2002;35:7262–7273. doi: 10.1021/ma020482u. DOI
Bhole Y.S., Wanjale S.D., Kharul U.K., Jog J.P. Assessing feasibility of polyarylate–clay nanocomposites towards improvement of gas selectivity. J. Membr. Sci. 2007;306:277–286. doi: 10.1016/j.memsci.2007.09.001. DOI
Janakiram S., Ahmadi M., Dai Z., Ansaloni L., Deng L. Performance of nanocomposite membranes containing 0D to 2D nanofillers for CO₂ separation: A review. Membranes. 2018;8:24. doi: 10.3390/membranes8020024. PubMed DOI PMC
Hahn K.R., Iannuzzi M., Seitsonen A.P., Hutter J. Coverage effect of the CO2 adsorption mechanisms on CeO2(111) by first principles analysis. J. Phys. Chem. C. 2013;117:1701–1711. doi: 10.1021/jp309565u. DOI
Bos A., Pünt I.G.M., Wessling M., Strathmann H. CO2-induced plasticization phenomena in glassy polymers. J. Membr. Sci. 1999;155:67–78. doi: 10.1016/S0376-7388(98)00299-3. DOI
Schweke D., Zalkind S., Attia S., Bloch J. The Interaction of CO2 with CeO2powder explored by correlating adsorption and thermal desorption analyses. J. Phys. Chem. C. 2018;122:9947–9957. doi: 10.1021/acs.jpcc.8b01299. DOI
Senanayake S.D., Mullins D.R. Redox pathways for HCOOH decomposition over CeO2 surfaces. J. Phys. Chem. C. 2008;112:9744–9752. doi: 10.1021/jp8016425. DOI
Trovarelli A. Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. 1996;38:439–520. doi: 10.1080/01614949608006464. DOI