Bunyaviruses Affect Growth, Sporulation, and Elicitin Production in Phytophthora cactorum

. 2022 Nov 22 ; 14 (12) : . [epub] 20221122

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36560602

Phytophthora cactorum is an important oomycetous plant pathogen with numerous host plant species, including garden strawberry (Fragaria × ananassa) and silver birch (Betula pendula). P. cactorum also hosts mycoviruses, but their phenotypic effects on the host oomycete have not been studied earlier. In the present study, we tested polyethylene glycol (PEG)-induced water stress for virus curing and created an isogenic virus-free isolate for testing viral effects in pair with the original isolate. Phytophthora cactorum bunya-like viruses 1 and 2 (PcBV1 & 2) significantly reduced hyphal growth of the P. cactorum host isolate, as well as sporangia production and size. Transcriptomic and proteomic analyses revealed an increase in the production of elicitins due to bunyavirus infection. However, the presence of bunyaviruses did not seem to alter the pathogenicity of P. cactorum. Virus transmission through anastomosis was unsuccessful in vitro.

Zobrazit více v PubMed

Erwin D.C., Ribeiro O.K. Phytophthora Diseases Worldwide. American Phytopathological Society (APS Press); Saint Paul, MN, USA: 1996.

Nellist C.F., Vickerstaff R.J., Sobczyk M.K., Marina-Montes C., Wilson F.M., Simpson D.W., Whitehouse A.B., Harrison R.J. Quantitative trait loci controlling Phytophthora cactorum resistance in the cultivated octoploid strawberry (Fragaria × ananassa) Hortic. Res. 2019;6:60. doi: 10.1038/s41438-019-0136-4. PubMed DOI PMC

Eikemo H., Stensvand A., Davik J., Tronsmo A.M. Resistance to crown rot (Phytophthora cactorum) in strawberry cultivars and in offspring from crosses between cultivars differing in susceptibility to the disease. Ann. Appl. Biol. 2003;142:83–89. doi: 10.1111/j.1744-7348.2003.tb00232.x. DOI

Eikemo H., Stensvand A., Tronsmo A.M. Induced resistance as a possible means to control diseases of strawberry caused by Phytophthora spp. Plant Dis. 2003;87:345–350. doi: 10.1094/PDIS.2003.87.4.345. PubMed DOI

Bourret T.B., Fajardo S.N., Engert C.P., Rizzo D.M. A barcode-based phylogenetic characterization of Phytophthora cactorum identifies two cosmopolitan lineages with distinct host affinities and the first report of Phytophthora pseudotsugae in California. J. Fungi. 2022;8:303. doi: 10.3390/jof8030303. PubMed DOI PMC

Bhat R.G., Colowit P.M., Tai T.H., Aradhya T.H., Browne G.T. Genetic and pathogenic variation in Phytophthora cactorum affecting fruit and nut crops in California. Plant Dis. 2006;90:161–169. doi: 10.1094/PD-90-0161. PubMed DOI

Eikemo H., Klemsdal S.S., Riisberg I., Bonants P., Stensvand A., Tronsmo A.M. Genetic variation between Phytophthora cactorum isolates differing in their ability to cause crown rot in strawberry. Mycol. Res. 2004;108:317–324. doi: 10.1017/S0953756204009244. PubMed DOI

Hantula J., Lilja A., Parikka P. Genetic variation and host specificity of Phytophthora cactorum isolated in Europe. Mycol. Res. 1997;101:565–572. doi: 10.1017/S0953756296002900. DOI

Chepsergon J., Motaung T.E., Bellieny-Rabelo D., Moleleki L.N. Organize, don’t agonize: Strategic success of Phytophthora species. Microorganisms. 2020;8:917. doi: 10.3390/microorganisms8060917. PubMed DOI PMC

Poimala A., Parikka P., Hantula J., Vainio E.J. Viral diversity in Phytophthora cactorum population infecting strawberry. Env. Microbiol. 2021;23:5200–5221. doi: 10.1111/1462-2920.15519. PubMed DOI

Uchida K., Sakuta K., Ito A., Takahashi Y., Katayama Y., Omatsu T., Mizutani T., Arie T., Komatsu K., Fukuhara T., et al. Two novel endornaviruses co-infecting a Phytophthora pathogen of Asparagus officinalis modulate the developmental stages and fungicide sensitivities of the host oomycete. Front. Microbiol. 2021;12:633502. doi: 10.3389/fmicb.2021.633502. PubMed DOI PMC

Hacker C.V., Brasier C.M., Buck K.W. A double-stranded RNA from a Phytophthora species is related to the plant endornaviruses and contains a putative UDP glycosyltransferase gene. J. Gen. Virol. 2005;86:1561–1570. doi: 10.1099/vir.0.80808-0. PubMed DOI

Botella L., Jung T. Multiple viral infections detected in Phytophthora condilina by total and small RNA Sequencing. Viruses. 2021;13:620. doi: 10.3390/v13040620. PubMed DOI PMC

Poimala A., Vainio E.J. Complete genome sequence of a novel toti-like virus from the plant-pathogenic oomycete Phytophthora cactorum. Arch. Virol. 2020;165:1679–1682. doi: 10.1007/s00705-020-04642-2. PubMed DOI PMC

Cai G., Myers K., Fry W.E., Hillman B.I. A member of the virus family Narnaviridae from the plant pathogenic oomycete Phytophthora infestans. Arch. Virol. 2012;157:165–169. doi: 10.1007/s00705-011-1126-5. PubMed DOI

Cai G., Krychiw J.F., Myers K., Fry W.E., Hillman B.I. A new virus from the plant pathogenic oomycete Phytophthora infestans with an 8 kb dsRNA genome: The sixth member of a proposed new virus genus. Virology. 2013;435:341–349. doi: 10.1016/j.virol.2012.10.012. PubMed DOI

Cai G., Myers K., Hillman B.I., Fry W.E. A novel virus of the late blight pathogen, Phytophthora infestans, with two RNA segments and a supergroup 1 RNA-dependent RNA polymerase. Virology. 2009;392:5261. doi: 10.1016/j.virol.2009.06.040. PubMed DOI

Cai G., Myers K., Fry W.E., Hillman B.I. Phytophthora infestans RNA virus 2, a novel RNA virus from Phytophthora infestans, does not belong to any known virus group. Arch. Virol. 2018;164:567–572. doi: 10.1007/s00705-018-4050-0. PubMed DOI

Xu Z., Khalifa M.E., Framptom R.A., Smith G.R., McDougal R.L., MacDiarmid R.M., Kalamorz F. Characterization of a novel double-stranded RNA virus from Phytophthora pluvialis in New Zealand. Viruses. 2022;14:247. doi: 10.3390/v14020247. PubMed DOI PMC

Raco M., Vainio E.J., Sutela S., Eichmeier A., Hakalová E., Jung T., Botella L. High diversity of novel viruses in the tree pathogen Phytophthora castaneae revealed by high-throughput sequencing of total and small RNA. Front. Micobiol. 2022;13:911474. doi: 10.3389/fmicb.2022.911474. PubMed DOI PMC

Hannat S., Pontarotti P., Colson P., Kuhn M.L., Galiana E., La Scola B., Aherfi S., Panabières F. Diverse trajectories drive the expression of a giant virus in the oomycete plant pathogen Phytophthora parasitica. Front. Microbiol. 2021;12:662762. doi: 10.3389/fmicb.2021.662762. PubMed DOI PMC

Arjona-López J.M., Telengech P., Suzuki N., López-Herrera C.J. A moderate level of hypovirulence conferred by a hypovirus in the avocado white root rot fungus, Rosellinia necatrix. Fungal Biol. 2021;125:69–76. doi: 10.1016/j.funbio.2020.10.007. PubMed DOI

Vainio E.J., Jurvansuu J., Hyder R., Kashif M., Piri T., Tuomivirta T., Poimala A., Xu P., Mäkelä S., Nitisa D., et al. Heterobasidion partitivirus 13 mediates severe growth debilitation and major alterations in the gene expression of a fungal forest pathogen. J. Virol. 2018;92:e01744-17. doi: 10.1128/JVI.01744-17. PubMed DOI PMC

Grasse W., Zipper R., Totska M., Spring O. Plasmopara halstedii virus causes hypovirulence in Plasmopara halstedii, the downy mildew pathogen of the sunflower. Fungal Genet. Biol. 2013;57:42–47. doi: 10.1016/j.fgb.2013.05.009. PubMed DOI

Prospero S., Botella L., Santini A., Robin C. Biological control of emerging forest diseases: How can we move from dreams to reality? For. Ecol. Manag. 2021;496:119377. doi: 10.1016/j.foreco.2021.119377. DOI

Rigling D., Prospero S. Cryphonectria parasitica, the causal agent of chestnut blight: Invasion history, population biology and disease control. Mol. Plant Pathol. 2018;19:7–20. doi: 10.1111/mpp.12542. PubMed DOI PMC

Shimizu T., Kanematsu S., Yaegashi H. Draft genome sequence and transcriptional analysis of Rosellinia necatrix infected with a virulent mycovirus. Phytopathol. 2018;108:1206–1211. doi: 10.1094/PHYTO-11-17-0365-R. PubMed DOI

Lee K.M., Cho W.K., Yu J., Son M., Choi H., Min K., Lee Y.W., Kim K.H. A comparison of transcriptional patterns and mycological phenotypes following infection of Fusarium graminearum by four mycoviruses. PLoS ONE. 2014;9:e100989. doi: 10.1371/journal.pone.0100989. PubMed DOI PMC

Allen T.D., Dawe A.L., Nuss D.L. Use of cDNA microarrays to monitor transcriptional responses of the chestnut blight fungus Cryphonectria parasitica to infection by virulence-attenuating hypoviruses. Eukaryot. Cell. 2003;2:1253–1265. doi: 10.1128/EC.2.6.1253-1265.2003. PubMed DOI PMC

Li H., Fu Y., Jiang D., Li G., Ghabrial S.A., Yi X. Down-regulation of Sclerotinia sclerotiorum gene expression in response to infection with Sclerotinia sclerotiorum debilitation-associated RNA virus. Virus Res. 2008;135:95–106. doi: 10.1016/j.virusres.2008.02.011. PubMed DOI

Cho W.K., Yu J., Lee K.-M., Son M., Min K., Lee Y.-W., Kim K.-H. Genome-wide expression profiling shows transcriptional reprogramming in Fusarium graminearum by Fusarium graminearum virus 1-DK21 infection. BMC Genom. 2012;13:173. doi: 10.1186/1471-2164-13-173. PubMed DOI PMC

Wang L., Luo H., Hu W., Yang W., Hong N., Wang G., Wang A., Wang L. De novo transcriptomic assembly and mRNA expression patterns of Botryosphaeria dothidea infection with mycoviruses chrysovirus 1 (BdCV1) and partitivirus 1 (BdPV1) Virol. J. 2018;15:126. doi: 10.1186/s12985-018-1033-4. PubMed DOI PMC

Cai G., Fry W.E., Hillman B.I. PiRV-2 stimulates sporulation in Phytophthora infestans. Virus Res. 2019;271:197674. doi: 10.1016/j.virusres.2019.197674. PubMed DOI

Walker P.J., Siddell S.G., Lefkowitz E.J., Mushegian A.R., Adriaenssens E.M., Alfenas-Zerbini P., Dempsey D.M., Dutilh B.E., García M.L., Hendrickson R.C., et al. Recent changes to virus taxonomy ratified by the International Committee on Taxonomy of Viruses. Arch. Virol. 2022;167:2429–2440. doi: 10.1007/s00705-022-05516-5. PubMed DOI PMC

Margaria P., Bosco L., Vallino M., Ciuffo M., Mautino G.C., Tavella L., Turina M. The NSs Protein of tomato spotted wilt virus is required for persistent infection and transmission by Frankliniella occidentalis. J. Virol. 2014;88:5788–5802. doi: 10.1128/JVI.00079-14. PubMed DOI PMC

Shi M., Lin X.D., Tian J.H., Chen L.J., Chen X., Li C.X., Qin X.-C., Li J., Cao J.-P., Eden J.-S., et al. Redefining the invertebrate RNA virosphere. Nature. 2016;540:539–543. doi: 10.1038/nature20167. PubMed DOI

Abudurexiti A., Adkins S., Alioto D., Alkhovsky S.V., Avšič-Županc T., Ballinger M.J. Taxonomy of the order Bunyavirales: Update 2019. Arch. Virol. 2019;164:1949–1965. doi: 10.1007/s00705-019-04253-6. PubMed DOI PMC

Donaire L., Pagán I., Ayllón M.A. Characterization of Botrytis cinerea negative-stranded RNA virus 1, a new mycovirus related to plant viruses, and a reconstruction of host pattern evolution in negative-sense ssRNA viruses. Virology. 2016;499:212–218. doi: 10.1016/j.virol.2016.09.017. PubMed DOI

Marzano S.-Y.L., Nelson B.D., Ajayi-Oyetunde O., Bradley C.A., Hughes T.J., Hartman G.L., Eastburn D.M., Domier L.L. Identification of diverse mycoviruses through metatranscriptomics characterization of the viromes of five major fungal plant pathogens. J. Virol. 2016;90:6846–6863. doi: 10.1128/JVI.00357-16. PubMed DOI PMC

Velasco L., Arjona-Girona I., Cretazzo E., López-Herrera C. Viromes in Xylariaceae fungi infecting avocado in Spain. Virology. 2019;532:11–21. doi: 10.1016/j.virol.2019.03.021. PubMed DOI

Li Y., Zhou M., Yang Y., Liu Q., Zhang Z., Han C., Wang Y. Characterization of the mycovirome from the plant-pathogenic fungus Cercospora beticola. Viruses. 2021;13:1915. doi: 10.3390/v13101915. PubMed DOI PMC

Shamsi W., Kondo H., Ulrich S., Rigling D., Prospero S. Novel RNA viruses from the native range of Hymenoscyphus fraxineus, the causal fungal agent of ash dieback. Virus Res. 2022;320:198901. doi: 10.1016/j.virusres.2022.198901. PubMed DOI

Nerva L., Turina M., Zanzotto A., Gardiman M., Gaiotti F., Gambino G., Chitarra W. Isolation, molecular characterization and virome analysis of culturable wood fungal endophytes in esca symptomatic and asymptomatic grapevine plants. Environ. Microbiol. 2019;21:2886–2904. doi: 10.1111/1462-2920.14651. PubMed DOI

Lin Y.-H., Fujita M., Chiba S., Hyodo K., Andika I.B., Suzuki N., Kondo H. Two novel fungal negative-strand RNA viruses related to mymonaviruses and phenuiviruses in the shiitake mushroom (Lentinula edodes) Virology. 2019;533:125–136. doi: 10.1016/j.virol.2019.05.008. PubMed DOI

Nerva L., Forgia M., Ciuffo M., Chitarra W., Chiapello M., Vallino M., Varese G.C., Turina M. The mycovirome of a fungal collection from the sea cucumber Holothuria polii. Virus Res. 2019;273:197737. doi: 10.1016/j.virusres.2019.197737. PubMed DOI

Sasai S., Tamura K., Tojo M., Herrero M.L., Hoshino T., Ohki S.T., Mochizuki T. A novel non-segmented double-stranded RNA virus from an Arctic isolate of Pythium polare. Virology. 2018;522:234–243. doi: 10.1016/j.virol.2018.07.012. PubMed DOI

Botella L., Janousek J., Maia C., Horta Jung M., Raco M., Jung T. 2020. Marine Oomycetes of the genus Halophytophthora harbor viruses related to Bunyaviruses. Front. Microbiol. 2020;11:1467. doi: 10.3389/fmicb.2020.01467. PubMed DOI PMC

Chiapello M., Rodríguez-Romero J., Ayllón M.A., Turina M. Analysis of the virome associated to grapevine downy mildew lesions reveals new mycovirus lineages. Virus Evol. 2020;6:veaa058. doi: 10.1093/ve/veaa058. PubMed DOI PMC

Wang J., Ni Y., Liu X., Zhao H., Xiao Y., Xiao X., Li S., Liu H. Divergent RNA viruses in Macrophomina phaseolina exhibit potential as virocontrol agents. Virus Evol. 2021;7:veaa095. doi: 10.1093/ve/veaa095. PubMed DOI PMC

Anagnostakis S.L., Day P.R. Hypovirulence conversion in Endothia parasitica. Phytopathology. 1979;69:1226–1229. doi: 10.1094/Phyto-69-1226. DOI

Thapa V., Turner G.G., Hafenstein S., Overton B.E., Vanderwolf K.J., Roossinck M.J. Using a novel partitivirus in Pseudogymnoascus destructans to understand the epidemiology of white-nose syndrome. PLoS Pathog. 2016;12:e1006076. doi: 10.1371/journal.ppat.1006076. PubMed DOI PMC

Michel B.E. Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant Physiol. 1983;72:66–70. doi: 10.1104/pp.72.1.66. PubMed DOI PMC

Harris A.R., Webber J.F. Sporulation potential, symptom expression and detection of Phytophthora ramorum on larch needles and other foliar hosts. Plant Pathol. 2016;65:1441–1451. doi: 10.1111/ppa.12538. DOI

Jung T., Stukely M.J.C., Hardy G.S.J., White D., Paap T., Dunstan W.A., Burgess T.I. Multiple new Phytophthora species from ITS Clade 6 associated with natural ecosystems in Australia: Evolutionary and ecological implications. Persoonia. 2011;26:13–39. doi: 10.3767/003158511X557577. PubMed DOI PMC

Jung T., Horta Jung M., Scanu B., Seress D., Kovács G., Maia C., Pérez-Sierra A., Chang T.-T., Chandelier A., Heungens K., et al. Six new Phytophthora species from ITS Clade 7a including two sexually functional heterothallic hybrid species detected in natural ecosystems in Taiwan. Persoonia. 2017;38:100–135. doi: 10.3767/003158517X693615. PubMed DOI PMC

Kallio M.A., Tuimala J.T., Hupponen T., Klemelä P., Gentile M., Scheinin I., Koski M., Käki J., Korpelainen E.I. Chipster: User-friendly analysis software for microarray and other high-throughput data. BMC Genom. 2011;12:507. doi: 10.1186/1471-2164-12-507. PubMed DOI PMC

Dufková H., Berka M., Greplová M., Shejbalová Š., Hampejsová R., Luklová M., Domkářová J., Novák J., Kopačka V., Brzobohatý B., et al. The Omics Hunt for Novel Molecular Markers of Resistance to Phytophthora infestans. Plants. 2022;11:61. doi: 10.3390/plants11010061. PubMed DOI PMC

Yang M., Duan S., Mei X., Huang X., Chen W., Liu Y., Guo C., Yang T., Wei W., Liu X., et al. The Phytophthora cactorum genome provides insights into the adaptation to host defense compounds and fungicides. Sci. Rep. 2018;8:6534. doi: 10.1038/s41598-018-24939-2. PubMed DOI PMC

Dorfer V., Pichler P., Stranz T., Stadlmann J., Taus T., Winkler S., Mechtler K. MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. J. Proteome Res. 2014;13:3679–3684. doi: 10.1021/pr500202e. PubMed DOI PMC

Thelen M.P., Wirth B., Kye M.J. Mitochondrial defects in the respiratory complex I contribute to impaired translational initiation via ROS and energy homeostasis in SMA motor neurons. Acta Neuropathol. Commun. 2020;8:223. doi: 10.1186/s40478-020-01101-6. PubMed DOI PMC

Rytkönen A., Lilja A., Petäistö R.-L., Hantula J. Irrigation water and stem lesions on Betula pendula in a forest nursery. Scan. J. For. Res. 2008;23:404–411. doi: 10.1080/02827580802419034. DOI

Rytkönen A., Lilja A., Vercauteren A., Sirkiä S., Parikka P., Soukainen M., Hantula J. Identity and potential pathogenity of Phytophthora species found on symptomatic rhododendron plants in a Finnish nursery. Can. J. Plant Pathol. 2012;34:255–267. doi: 10.1080/07060661.2012.686455. DOI

Muszewska A., Steczkiewicz K., Stepniewska-Dziubinska M., Ginalski K. Cut-and-paste transposons in fungi with diverse lifestyles. Genome Biol. Evol. 2017;9:3463–3477. doi: 10.1093/gbe/evx261. PubMed DOI PMC

McGowan J., Fitzpatrick D.A. Genomic, network and phylogenetic analysis of the Oomycete effector arsenal. mSphere. 2017;2:e00408-17. doi: 10.1128/mSphere.00408-17. PubMed DOI PMC

Gamir J., Darwiche R., van’t Hof P., Choudhary V., Stumpe M., Schneiter R., Mauch F. The sterol-binding activity of PATHOGENESIS-RELATED PROTEIN 1 reveals the mode of action of an antimicrobial protein. Plant J. 2016;89:502–509. doi: 10.1111/tpj.13398. PubMed DOI

Zhu H., Situ J., Guan T., Dou Z., Kong G., Jiang Z., Xi P. A C2H2 zinc finger protein PlCZF1 is necessary for oospore development and virulence in Peronophythora litchii. Int. J. Mol. Sci. 2022;23:2733. doi: 10.3390/ijms23052733. PubMed DOI PMC

Feng B.Z., Zhu X.P., Fu L., Lv R.F., Storey D., Tooley P., Zhang X.G. Characterization of necrosis-inducing NLP proteins in Phytophthora capsici. BMC Plant Biol. 2014;8:126. doi: 10.1186/1471-2229-14-126. PubMed DOI PMC

Xu C., Min J. Structure and function of WD40 domain proteins. Protein Cell. 2011;2:202–214. doi: 10.1007/s13238-011-1018-1. PubMed DOI PMC

Li J., Mahajan A., Tsai M.-D. Ankyrin repeat: A unique motif mediating protein−protein interactions. Biochemistry. 2006;45:15168–15178. doi: 10.1021/bi062188q. PubMed DOI

Zhang B., Zhang Z., Yong S., Yu S., Feng H., Yin M., Ye W., Wang Y., Qiu M. An oomycete-specific leucine-rich repeat-containing protein is involved in zoospore flagellum development in Phytophthora sojae. Phytopathology. :2022. doi: 10.1094/PHYTO-12-21-0523-R. PubMed DOI

Kamoun S. A catalogue of the effector secretome of plant pathogenic oomycetes. Annu. Rev. Phytopathol. 2006;44:41–60. doi: 10.1146/annurev.phyto.44.070505.143436. PubMed DOI

Qiao Y., Liu L., Xiong Q., Flores C., Wong J., Shi J., Wang X., Liu X., Xiang Q., Jiang S., et al. Oomycete pathogens encode RNA silencing suppressors. Nat. Gen. 2013;45:330–333. doi: 10.1038/ng.2525. PubMed DOI PMC

Huang J., Gu L., Zhang Y., Yan T., Kong G., Kong L., Guo B., Qiu M., Wang Y., Jing M., et al. An oomycete plant pathogen reprograms host pre-mRNA splicing to subvert immunity. Nat. Commun. 2017;8:2051. doi: 10.1038/s41467-017-02233-5. PubMed DOI PMC

Kharel A., Islam M.T., Rookes J., Cahill D. How to unravel the key functions of cryptic Oomycete elicitin proteins and their role in plant disease. Plants. 2021;10:1201. doi: 10.3390/plants10061201. PubMed DOI PMC

Derevnina L., Dagdas Y.F., De la Concepcion J.C., Bialas A., Kellner R., Petre B., Domazakis E., Du J., Wu C.-H., Lin X., et al. Nine things to know about elicitins. New Phytol. 2016;212:888–895. doi: 10.1111/nph.14137. PubMed DOI

Li W., Zhao D., Dong J., Kong X., Zhang Q., Li T., Meng Y., Shan W. AtRTP5 negatively regulates plant resistance to Phytophthora pathogens by modulating the biosynthesis of endogenous jasmonic acid and salicylic acid. Mol. Plant Pathol. 2020;21:95–108. doi: 10.1111/mpp.12883. PubMed DOI PMC

Darino M., Chia K.-S., Marques J., Aleksza D., Soto-Jiménez L.M., Saado I., Uhse S., Borg M., Betz R., Bindics J., et al. Ustilago maydis effector Jsi1 interacts with Topless corepressor, hijacking plant jasmonate/ethylene signaling. New Phytol. 2021;229:3393–3407. doi: 10.1111/nph.17116. PubMed DOI PMC

Gan P.H.P., Shan W., Blackman L.M., Hardham A. Characterization of cyclophilin-encoding genes in Phytophthora. Mol. Genet. Genom. 2009;281:565–578. doi: 10.1007/s00438-009-0431-0. PubMed DOI

Qutob D., Tedman-Jones J., Gijzen M. Effector-triggered immunity by the plant pathogen Phytophthora. Trends Microbiol. 2006;14:470–473. doi: 10.1016/j.tim.2006.09.004. PubMed DOI

Jiang R.H., Weide R., van de Vondervoort P.J., Govers F. Amplification generates modular diversity at an avirulence locus in the pathogen Phytophthora. Genome Res. 2016;16:827–840. doi: 10.1101/gr.5193806. PubMed DOI PMC

Dou D., Kale S.D., Liu T., Tang Q., Wang X., Arredondo F.D., Basnayake S., Whisson S., Drenth A., Maclean D., et al. Different domains of Phytophthora sojae effector Avr4/6 are recognized by soybean resistance genes Rps 4 and Rps 6. Mol. Plant-Microbe. Interact. 2010;23:425–435. doi: 10.1094/MPMI-23-4-0425. PubMed DOI

Kumar D., Bansal G., Narang A., Basak T., Abbas T., Dash D. Integrating transcriptome and proteome profiling: Strategies and applications. Proteomics. 2016;16:2533–2544. doi: 10.1002/pmic.201600140. PubMed DOI

Mergner J., Frejno M., List M., Papacek M., Chen X., Chaudhary A., Samaras P., Richter S., Shikata H., Lang D., et al. Mass-spectrometry-based draft of the Arabidopsis proteome. Nature. 2020;579:409–414. doi: 10.1038/s41586-020-2094-2. PubMed DOI

Pánek M., Fér T., Mráček J., Tomšovský M. Evolutionary relationships within the Phytophthora cactorum species complex in Europe. Fungal Biol. 2016;120:836–851. doi: 10.1016/j.funbio.2016.03.006. PubMed DOI

Cai G., Hillman B.I. Phytophthora viruses. Adv. Virus Res. 2013;86:327–350. doi: 10.1017/S0953756200002999. PubMed DOI

Van Poucke K., Haegeman A., Goedefroit T., Focquet F., Leus L., Horta Jung M., Nave C., Redondo M.A., Husson C., Kostov K., et al. Unravelling hybridization in Phytophthora using phylogenomics and genome size estimation. IMA Fungus. 2021;12:16. doi: 10.1186/s43008-021-00068-w. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...