High Diversity of Novel Viruses in the Tree Pathogen Phytophthora castaneae Revealed by High-Throughput Sequencing of Total and Small RNA
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35783401
PubMed Central
PMC9244493
DOI
10.3389/fmicb.2022.911474
Knihovny.cz E-zdroje
- Klíčová slova
- RNA interference, RdRp, dsRNA, forest pathogen, multiple viral infections, mycovirus, oomycetes, ssRNA,
- Publikační typ
- časopisecké články MeSH
Phytophthora castaneae, an oomycete pathogen causing root and trunk rot of different tree species in Asia, was shown to harbor a rich diversity of novel viruses from different families. Four P. castaneae isolates collected from Chamaecyparis hodginsii in a semi-natural montane forest site in Vietnam were investigated for viral presence by traditional and next-generation sequencing (NGS) techniques, i.e., double-stranded RNA (dsRNA) extraction and high-throughput sequencing (HTS) of small RNAs (sRNAs) and total RNA. Genome organization, sequence similarity, and phylogenetic analyses indicated that the viruses were related to members of the order Bunyavirales and families Endornaviridae, Megabirnaviridae, Narnaviridae, Totiviridae, and the proposed family "Fusagraviridae." The study describes six novel viruses: Phytophthora castaneae RNA virus 1-5 (PcaRV1-5) and Phytophthora castaneae negative-stranded RNA virus 1 (PcaNSRV1). All six viruses were detected by sRNA sequencing, which demonstrates an active RNA interference (RNAi) system targeting viruses in P. castaneae. To our knowledge, this is the first report of viruses in P. castaneae and the whole Phytophthora major Clade 5, as well as of the activity of an RNAi mechanism targeting viral genomes among Clade 5 species. PcaRV1 is the first megabirnavirus described in oomycetes and the genus Phytophthora.
Mendeleum Institute of Genetics Faculty of Horticulture Mendel University in Brno Brno Czechia
Zobrazit více v PubMed
Abudurexiti A., Adkins S., Alioto D., Alkhovsky S. V., Avšič-Županc T., Ballinger M. J., et al. . (2019). Taxonomy of the order Bunyavirales: update 2019. Arch. Virol. 164, 1949–1965. doi: 10.1007/s00705-019-04253-6, PMID: PubMed DOI PMC
Adalia E. J. M., Diez J. J., Fernández M. M., Vainio J. H. E. J. (2018). Characterization of small RNAs originating from mitoviruses infecting the conifer pathogen Fusarium circinatum. Arch. Virol. 163, 1009–1018. doi: 10.1007/s00705-018-3712-2, PMID: PubMed DOI
Akopyants N. S., Lye L. F., Dobson D. E., Lukeš J., Beverley S. M. (2016). A narnavirus in the trypanosomatid protist plant pathogen Phytomonas serpens. Genome Announc. 4:e00711-16. doi: 10.1128/GENOMEA.00711-16, PMID: PubMed DOI PMC
Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., et al. . (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Oxford University Press Available at: https://academic.oup.com/nar/article/25/17/3389/1061651 (Accessed January 6, 2021). PubMed PMC
Andrews S. (2010). Babraham bioinformatics - FastQC A quality control tool for high throughput sequence data. Soil Available at: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (Accessed January 5, 2021).
Arjona-Lopez J. M., Telengech P., Jamal A., Hisano S., Kondo H., Yelin M. D., et al. . (2018). Novel, diverse RNA viruses from Mediterranean isolates of the phytopathogenic fungus, Rosellinia necatrix: insights into evolutionary biology of fungal viruses. Environ. Microbiol. 20, 1464–1483. doi: 10.1111/1462-2920.14065 PubMed DOI
Bartholomäus A., Wibberg D., Winkler A., Pühler A., Schlüter A., Varrelmann M. (2016). Deep sequencing analysis reveals the mycoviral diversity of the virome of an avirulent isolate of Rhizoctonia solani AG-2-2 IV. PLoS One 11:e0165965. doi: 10.1371/journal.pone.0165965, PMID: PubMed DOI PMC
Beakes G. W., Honda D., Thines M. (2014). “Systematics of the Straminipila: Labyrinthulomycota, Hyphochytriomycota, and Oomycota,” in Systematics and Evolution Part A. The Mycota Book Series. Vol. 7A. eds. McLaughli D. J., Spatafora J. W. (Luxemburg: Springer Science+Business Media; ), 39–97.
Bekaert M., Richard H., Prum B., Rousset J. P. (2005). Identification of programmed translational −1 frameshifting sites in the genome of Saccharomyces cerevisiae. Genome Res. 15, 1411–1420. doi: 10.1101/gr.4258005, PMID: PubMed DOI PMC
Botella L., Hantula J. (2018). Description, distribution, and relevance of viruses of the forest pathogen Gremmeniella abietina. Viruses 10, 1–14. doi: 10.3390/v10110654, PMID: PubMed DOI PMC
Botella L., Janoušek J., Maia C., Jung M. H., Raco M., Jung T. (2020). Marine oomycetes of the genus Halophytophthora harbor viruses related to Bunyaviruses. Front. Microbiol. 11:1467. doi: 10.3389/fmicb.2020.01467, PMID: PubMed DOI PMC
Botella L., Jung T. (2021). Multiple viral infections detected in Phytophthora condilina by Total and small RNA sequencing. Viruses 13:620. doi: 10.3390/v13040620, PMID: PubMed DOI PMC
Botella L., Tuomivirta T. T., Hantula J., Diez J. J., Jankovsky L. (2015). The European race of Gremmeniella abietina hosts a single species of Gammapartitivirus showing a global distribution and possible recombinant events in its history. Fungal Biol. 119, 125–135. doi: 10.1016/J.FUNBIO.2014.12.001 PubMed DOI PMC
Botella L., Tuomivirta T. T., Vervuurt S., Diez J. J., Hantula J. (2012). Occurrence of two different species of mitoviruses in the European race of Gremmeniella abietina var. abietina, both hosted by the genetically unique Spanish population. Fungal Biol. 116, 872–882. doi: 10.1016/J.FUNBIO.2012.05.004 PubMed DOI
Bruce B. (1999). “Occurrence and impact of Phytophthora cinnamomi and other Phytophthora species in rainforests of the wet tropics world heritage area, and of the mackay region, qld” in Patch Deaths in Tropical Queensland Rainforests: Association and Impact of Phytophthora. ed. Gadek P. A. (Cairns, Australia: Cooperative Research Centre for Tropical Rainforest Ecology and Management; )
Cai G., Fry W. E., Hillman B. I. (2019a). PiRV-2 stimulates sporulation in Phytophthora infestans. Virus Res. 271:197674. doi: 10.1016/j.virusres.2019.197674, PMID: PubMed DOI
Cai G., Hillman B. I. (2013). Phytophthora viruses. Adv. Virus Res. 86, 327–350. doi: 10.1016/B978-0-12-394315-6.00012-X PubMed DOI
Cai G., Krychiw J. F., Myers K., Fry W. E., Hillman B. I. (2013). A new virus from the plant pathogenic oomycete Phytophthora infestans with an 8 kb dsRNA genome: The sixth member of a proposed new virus genus. Virology 435, 341–349. doi: 10.1016/J.VIROL.2012.10.012, PMID: PubMed DOI
Cai G., Myers K., Fry W. E., Hillman B. I. (2012). A member of the virus family Narnaviridae from the plant pathogenic oomycete Phytophthora infestans. Arch. Virol. 157, 165–169. doi: 10.1007/s00705-011-1126-5, PMID: PubMed DOI
Cai G., Myers K., Fry W. E., Hillman B. I. (2019b). Phytophthora infestans RNA virus 2, a novel RNA virus from Phytophthora infestans, does not belong to any known virus group. Arch. Virol. 164, 567–572. doi: 10.1007/s00705-018-4050-0, PMID: PubMed DOI
Cai G., Myers K., Hillman B. I., Fry W. E. (2009). A novel virus of the late blight pathogen, Phytophthora infestans, with two RNA segments and a supergroup 1 RNA-dependent RNA polymerase. Virology 392, 52–61. doi: 10.1016/j.virol.2009.06.040, PMID: PubMed DOI
Chandler J. A., Liu R. M., Bennett S. N. (2015). RNA shotgun metagenomic sequencing of northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi. Front. Microbiol. 6:185. doi: 10.3389/FMICB.2015.00185/BIBTEX PubMed DOI PMC
Chang S.-S., Zhang Z., Liu Y. (2012). RNA interference pathways in fungi: mechanisms and functions. Annu. Rev. Microbiol. 66, 305–323. doi: 10.1146/annurev-micro-092611-150138, PMID: PubMed DOI PMC
Charon J., Grigg M. J., Eden J. S., Piera K. A., Rana H., William T., et al. . (2019). Novel RNA viruses associated with plasmodium vivax in human malaria and Leucocytozoon parasites in avian disease. PLoS Pathog. 15:e1008216. doi: 10.1371/journal.ppat.1008216, PMID: PubMed DOI PMC
Charon J., Murray S., Holmes E. C. (2021). Revealing RNA virus diversity and evolution in unicellular algae transcriptomes. Virus Evol. 7, 1–18. doi: 10.1093/ve/veab070 PubMed DOI PMC
Chen S., Cao L., Huang Q., Qian Y., Zhou X. (2016). The complete genome sequence of a novel maize-associated totivirus. Arch. Virol. 161, 487–490. doi: 10.1007/s00705-015-2657-y, PMID: PubMed DOI
Chiapello M., Rodríguez-Romero J., Ayllón M. A., Turina M. (2020). Analysis of the virome associated to grapevine downy mildew lesions reveals new mycovirus lineages. Virus Evol. 6, 1–18. doi: 10.1093/ve/veaa058, PMID: PubMed DOI PMC
Chiba Y., Oiki S., Yaguchi T., Urayama S.-I., Hagiwara D. (2020). Discovery of divided RdRp sequences and a hitherto unknown genomic complexity in fungal viruses. Virus Evol. 7:1. doi: 10.1093/ve/veaa101, PMID: PubMed DOI PMC
Chiba S., Salaipeth L., Lin Y.-H., Sasaki A., Kanematsu S., Suzuki N. (2009). A novel bipartite double-stranded RNA Mycovirus from the white root rot fungus Rosellinia necatrix: molecular and biological characterization, taxonomic considerations, and potential for biological control. J. Virol. 83, 12801–12812. doi: 10.1128/JVI.01830-09, PMID: PubMed DOI PMC
Cook S., Chung B. Y. W., Bass D., Moureau G., Tang S., McAlister E., et al. . (2013). Novel virus discovery and genome reconstruction from field RNA samples reveals highly divergent viruses in dipteran hosts. PLoS One 8:e80720. doi: 10.1371/JOURNAL.PONE.0080720, PMID: PubMed DOI PMC
De Lima J. G. S., Teixeira D. G., Freitas T. T., Lima J. P. M. S., Lanza D. C. F. (2019). Evolutionary origin of 2A-like sequences in Totiviridae genomes. Virus Res. 259, 1–9. doi: 10.1016/j.virusres.2018.10.011, PMID: PubMed DOI
Deakin G., Dobbs E., Bennett J. M., Jones I. M., Grogan H. M., Burton K. S. (2017). Multiple viral infections in Agaricus bisporus – characterisation of 18 unique RNA viruses and 8 ORFans identified by deep sequencing. Sci. Rep. 7, 2469–2413. doi: 10.1038/s41598-017-01592-9, PMID: PubMed DOI PMC
DeRisi J. L., Huber G., Kistler A., Retallack H., Wilkinson M., Yllanes D. (2019). An exploration of ambigrammatic sequences in narnaviruses. Sci. Rep. 9:17982. doi: 10.1038/s41598-019-54181-3, PMID: PubMed DOI PMC
Dinan A. M., Lukhovitskaya N. I., Olendraite I., Firth A. E. (2020). A case for a negative-strand coding sequence in a group of positive-sense RNA viruses. Virus Evol. 6:veaa007. doi: 10.1093/ve/veaa007, PMID: PubMed DOI PMC
Doherty M., Sanganee K., Kozlakidis Z., Coutts R. H. A., Brasier C. M., Buck K. W. (2007). Molecular characterization of a totivirus and a partitivirus from the genus Ophiostoma. J. Phytopathol. 155, 188–192. doi: 10.1111/j.1439-0434.2007.01207.x DOI
Donaire L., Pagán I., Ayllón M. A. (2016). Characterization of Botrytis cinerea negative-stranded RNA virus 1, a new mycovirus related to plant viruses, and a reconstruction of host pattern evolution in negative-sense ssRNA viruses. Virology 499, 212–218. doi: 10.1016/J.VIROL.2016.09.017, PMID: PubMed DOI
Dunker F., Trutzenberg A., Rothenpieler J. S., Kuhn S., Schreiber T., Tissier A., et al. . (2020). Oomycete small RNAs bind to the plant RNA-induced silencing complex for virulence. eLife 9:e56096. doi: 10.7554/eLife.56096 PubMed DOI PMC
Edgar R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. doi: 10.1093/nar/gkh340, PMID: PubMed DOI PMC
Erwin C. D., Ribeiro K. O. (1996). Phytophthora Diseases Worldwide. Minesota: The American Phytopathological Society.
Fahlgren N., Bollmann S. R., Kasschau K. D., Cuperus J. T., Press C. M. (2013). Phytophthora have distinct endogenous small RNA populations that include short interfering and micrornas. PLoS One 8:77181. doi: 10.1371/journal.pone.0077181, PMID: PubMed DOI PMC
Fukuhara T., Gibbs M. J. (2012). “Family Endornaviridae,” in Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of The International Committee on Taxonomy of Viruses. eds. King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J. (Elsevier Academic Press; ), 1055–1057.
Fukunishi M., Sasai S., Tojo M., Mochizuki T. (2021). Novel fusari-and toti-like viruses, with probable different origins, in the plant pathogenic oomycete Globisporangium ultimum. Viruses 13:1931. doi: 10.3390/v13101931, PMID: PubMed DOI PMC
Garrison A. R., Alkhovsky S. V., Avšič-Županc T., Bente D. A., Bergeron É., Burt F., et al. . (2020). ICTV virus taxonomy profile: Nairoviridae ICTV virus taxonomy profile ICTV. J. Gen. Virol. 101, 798–799. doi: 10.1099/jgv.0.001485, PMID: PubMed DOI PMC
Ghabrial S. A., Castón J. R., Jiang D., Nibert M. L., Suzuki N. (2015). 50-plus years of fungal viruses. Virology 480, 356–368. doi: 10.1016/j.virol.2015.02.034, PMID: PubMed DOI
Gillings M. R., Ttesoriero L. A., Gunn L. V. (1993). Detection of double-stranded RNA and virus-like particles in Australian isolates of Pythium irregulare. Plant Pathol. 42, 6–15. doi: 10.1111/j.1365-3059.1993.tb01466.x DOI
Göertz G. P., Miesen P., Overheul G. J., Van Rij R. P., Van Oers M. M., Pijlman G. P. (2019). Mosquito small RNA responses to West Nile and insect-specific virus infections in Aedes and Culex mosquito cells. Viruses 11:271. doi: 10.3390/V11030271 PubMed DOI PMC
Grabherr M. G., Haas B. J., Yassour M., Levin J. Z., Thompson D. A., Amit I., et al. . (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652. doi: 10.1038/nbt.1883, PMID: PubMed DOI PMC
Grasse W., Spring O. (2017). ssRNA viruses from biotrophic Oomycetes form a new phylogenetic group between Nodaviridae and Tombusviridae. Arch. Virol. 162, 1319–1324. doi: 10.1007/s00705-017-3243-2, PMID: PubMed DOI
Grybchuk D., Akopyants N. S., Kostygov A. Y., Konovalovas A., Lye L. F., Dobson D. E., et al. . (2018). Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Leishmania. Proc. Natl. Acad. Sci. U. S. A. 115, E506–E515. doi: 10.1073/PNAS.1717806115/-/DCSUPPLEMENTAL, PMID: PubMed DOI PMC
Hantula J., Mäkelä S., Xu P., Brusila V., Nuorteva H., Kashif M., et al. . (2020). Multiple virus infections on Heterobasidion sp. Fungal Biol. 124, 102–109. doi: 10.1016/j.funbio.2019.12.004, PMID: PubMed DOI
Harvey E., Rose K., Eden J. S., Lawrence A., Doggett S. L., Holmes E. C. (2019). Identification of diverse arthropod associated viruses in native Australian fleas. Virology 535, 189–199. doi: 10.1016/j.virol.2019.07.010, PMID: PubMed DOI
Heller-Dohmen M., Göpfert J. C., Pfannstiel J., Spring O. (2011). The nucleotide sequence and genome organization of Plasmopara halstedii virus. Virol. J. 8:123. doi: 10.1186/1743-422X-8-123, PMID: PubMed DOI PMC
Hillman B. I., Annisa A., Suzuki N. (2018). Viruses of plant-interacting fungi. Adv. Virus Res. 100, 99–116. doi: 10.1016/bs.aivir.2017.10.003, PMID: PubMed DOI
Hughes H. R., Adkins S., Alkhovskiy S., Beer M., Blair C., Calisher C. H., et al. . (2020). ICTV virus taxonomy profile: Peribunyaviridae. J. Gen. Virol. 101, 1–2. doi: 10.1099/jgv.0.001365, PMID: PubMed DOI PMC
Jia J., Fu Y., Jiang D., Mu F., Cheng J., Lin Y., et al. . (2021). Interannual dynamics, diversity and evolution of the virome in Sclerotinia sclerotiorum from a single crop field. Virus Evol. 7:veab032. doi: 10.1093/ve/veab032 PubMed DOI PMC
Jia J., Lu W., Zhong C., Zhou R., Xu J., Liu W., et al. . (2017). The 25-26 nt small RNAs in Phytophthora parasitica are associated with efficient silencing of homologous endogenous genes. Front. Microbiol. 8, 1–15. doi: 10.3389/fmicb.2017.00773, PMID: PubMed DOI PMC
Jung T., Chang T. T., Bakonyi J., Seress D., Perez-Sierra A. P., Yang X., et al. . (2017). Diversity of Phytophthora species in natural ecosystems of Taiwan and association with disease symptoms. Plant Pathol. 66, 194–211. doi: 10.1111/ppa.12564 DOI
Jung T., Pérez-Sierra A., Durán A., Jung M. H., Balci Y., Scanu B. (2018). Canker and decline diseases caused by soil- and airborne Phytophthora species in forests and woodlands. Persoonia Mol. Phylogeny Evol. Fungi 40, 182–220. doi: 10.3767/persoonia.2018.40.08, PMID: PubMed DOI PMC
Jung T., Scanu B., Brasier C. M., Webber J., Milenković I., Corcobado T., et al. . (2020). A survey in natural forest ecosystems of Vietnam reveals high diversity of both new and described phytophthora taxa including P. ramorum. Forests 11:93. doi: 10.3390/f11010093 DOI
Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. doi: 10.1093/molbev/mst010, PMID: PubMed DOI PMC
Ketting R. F. (2011). The many faces of RNAi. Dev. Cell 20, 148–161. doi: 10.1016/j.devcel.2011.01.012, PMID: PubMed DOI
Kocanová M., Eichmeier A., Botella L. (2020). A novel mitovirus detected in Diaporthe rudis, a fungus associated with Phomopsis dieback on grapevines. Arch. Virol. 165, 2405–2408. doi: 10.1007/s00705-020-04755-8, PMID: PubMed DOI
Koyama S., Urayama S. I., Ohmatsu T., Sassa Y., Sakai C., Takata M., et al. . (2015). Identification, characterization and full-length sequence analysis of a novel dsRNA virus isolated from the arboreal ant Camponotus yamaokai. J. Gen. Virol. 96, 1930–1937. doi: 10.1099/vir.0.000126, PMID: PubMed DOI
Kozlakidis Z., Brown N. A., Jamal A., Phoon X., Coutts R. H. A. (2010). Incidence of endornaviruses in Phytophthora taxon douglasfir and Phytophthora ramorum. Virus Genes 40, 130–134. doi: 10.1007/s11262-009-0421-7, PMID: PubMed DOI
Kreuze J. F., Perez A., Untiveros M., Quispe D., Fuentes S., Barker I., et al. . (2009). Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: A generic method for diagnosis, discovery and sequencing of viruses. Virology 388, 1–7. doi: 10.1016/j.virol.2009.03.024, PMID: PubMed DOI
Langmead B., Salzberg S. L. (2012). Fast gapped-read alignment with bowtie 2. Nat. Methods 9, 357–359. doi: 10.1038/nmeth.1923, PMID: PubMed DOI PMC
Langmead B., Trapnell C., Pop M., Salzberg S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25–R10. doi: 10.1186/GB-2009-10-3-R25, PMID: PubMed DOI PMC
Legeay J., Husson C., Boudier B., Louisanna E., Baraloto C., Schimann H., et al. . (2020). Surprising low diversity of the plant pathogen Phytophthora in Amazonian forests. Environ. Microbiol. 22, 5019–5032. doi: 10.1111/1462-2920.15099, PMID: PubMed DOI
Leventhal S. S., Wilson D., Feldmann H., Hawman D. W., Brennan B. (2021). A look into bunyavirales genomes: functions of non-structural (ns) proteins. Viruses 13:314. doi: 10.3390/v13020314, PMID: PubMed DOI PMC
Li H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Available at: http://github.com/lh3/bwa. (Accessed January 11, 2021).
Linnakoski R., Sutela S., Coetzee M. P. A., Duong T. A., Pavlov I. N., Litovka Y. A., et al. . (2021). Armillaria root rot fungi host single-stranded RNA viruses. Sci. Rep. 11:7336. doi: 10.1038/s41598-021-86343-7, PMID: PubMed DOI PMC
Lye L. F., Akopyants N. S., Dobson D. E., Beverley S. M. (2016). A narnavirus-like element from the trypanosomatid protozoan parasite Leptomonas seymouri. Genome Announc. 4:e00713-16. doi: 10.1128/GENOMEA.00713-16, PMID: PubMed DOI PMC
Maia C., Horta Jung M., Carella G., Milenković I., Janoušek J., Tomšovský M., et al. . (2022). Eight new Halophytophthora species from marine and brackish-water ecosystems in portugal and an updated phylogeny for the genus. Persoonia Mol. Phylogeny Evol. Fungi. 48, 54–90. doi: 10.3767/PERSOONIA.2022.48.02 PubMed DOI PMC
Martin F. N., Blair J. E., Coffey M. D. (2014). A combined mitochondrial and nuclear multilocus phylogeny of the genus Phytophthora. Fungal Genet. Biol. 66, 19–32. doi: 10.1016/j.fgb.2014.02.006, PMID: PubMed DOI
Martinez J., Lepetit D., Ravallec M., Fleury F., Varaldi J. (2016). Additional heritable virus in the parasitic wasp Leptopilina boulardi: prevalence, transmission and phenotypic effects. J. Gen. Virol. 97, 523–535. doi: 10.1099/jgv.0.000360, PMID: PubMed DOI
Mascia T., Labarile R., Doohan F., Gallitelli D. (2019). Tobacco mosaic virus infection triggers an RNAi-based response in Phytophthora infestans. Sci. Rep. 9, 2657–2613. doi: 10.1038/s41598-019-39162-w, PMID: PubMed DOI PMC
Massart S., Chiumenti M., Jonghe K., Glover R., Haegeman A., Koloniuk I., et al. . (2019). Virus detection by high-throughput sequencing of small RNAs: large-scale performance testing of sequence analysis strategies. doi: 10.1094/PHYTO-02-18-0067-R, 109, 488–497, PMID: PubMed DOI
Meister G., Tuschl T. (2004). Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349. doi: 10.1038/nature02873 PubMed DOI
Miller M. A., Pfeiffer W., Schwartz T. (2010). “Science Gateway for inference of large phylogenetic trees.” in 2010 gateway computing environments workshop (GCE); November 14, 2010.
Mor S. K., Phelps N. B. D. (2016). Molecular detection of a novel totivirus from golden shiner (Notemigonus crysoleucas) baitfish in the USA. Arch. Virol. 161, 2227–2234. doi: 10.1007/s00705-016-2906-8, PMID: PubMed DOI
Morris T. J., Dodds J. A. (1979). Isolation and analysis of double-stranded RNA from virus-infected plant and fungal tissue. Phytopathology 69:854. doi: 10.1094/phyto-69-854 DOI
Nerva L., Ciuffo M., Vallino M., Margaria P., Varese G. C., Gnavi G., et al. . (2016). Multiple approaches for the detection and characterization of viral and plasmid symbionts from a collection of marine fungi. Virus Res. 219, 22–38. doi: 10.1016/j.virusres.2015.10.028, PMID: PubMed DOI
Osaki H., Sasaki A., Nomiyama K., Tomioka K. (2016). Multiple virus infection in a single strain of Fusarium poae shown by deep sequencing. Virus Genes 52, 835–847. doi: 10.1007/S11262-016-1379-X/FIGURES/6, PMID: PubMed DOI
Poimala A., Parikka P., Hantula J., Vainio E. J. (2021). Viral diversity in Phytophthora cactorum population infecting strawberry. Environ. Microbiol. 23, 5200–5221. doi: 10.1111/1462-2920.15519, PMID: PubMed DOI
Poimala A., Vainio E. J. (2020). Complete genome sequence of a novel toti-like virus from the plant-pathogenic oomycete Phytophthora cactorum. Arch. Virol. 165, 1679–1682. doi: 10.1007/s00705-020-04642-2, PMID: PubMed DOI PMC
R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
Rampersad S., Tennant P. (2018). “Replication and expression strategies of viruses,” in Viruses: Molecular Biology, Host Interactions, and Applications to Biotechnology. eds. Paula T., Fermin G., Foster J. (Academic Press; ), 55–82.
Reguera J., Weber F., Cusack S. (2010). Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription. PLoS Pathog. 6:e1001101. doi: 10.1371/journal.ppat.1001101, PMID: PubMed DOI PMC
Romano N., Macino G., Umana B., Biologia S., Umberto C. P., La R. (1992). Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol. Microbiol. 6, 3343–3353. doi: 10.1111/j.1365-2958.1992.tb02202.x PubMed DOI
Ruiz-Padilla A., Rodríguez-Romero J., Gómez-Cid I., Pacifico D., Ayllón M. A. (2021). Novel mycoviruses discovered in the mycovirome of a necrotrophic fungus. MBio 12:e03705-20. doi: 10.1128/mBio.03705-20, PMID: PubMed DOI PMC
Sasai S., Tamura K., Tojo M., Herrero M. L., Hoshino T., Ohki S. T., et al. . (2018). A novel non-segmented double-stranded RNA virus from an Arctic isolate of Pythium polare. Virology 522, 234–243. doi: 10.1016/j.virol.2018.07.012, PMID: PubMed DOI
Sasaki A., Nakamura H., Suzuki N., Kanematsu S. (2016). Characterization of a new megabirnavirus that confers hypovirulence with the aid of a co-infecting partitivirus to the host fungus, Rosellinia necatrix. Virus Res. 219, 73–82. doi: 10.1016/j.virusres.2015.12.009, PMID: PubMed DOI
Sato Y., Miyazaki N., Kanematsu S., Xie J., Ghabrial S. A., Hillman B. I., et al. . (2019). ICTV virus taxonomy profile: Megabirnaviridae. J. Gen. Virol. 100, 1269–1270. doi: 10.1099/jgv.0.001297, PMID: PubMed DOI
Shi M., Lin X. D., Tian J. H., Chen L. J., Chen X., Li C. X., et al. . (2016). Redefining the invertebrate RNA virosphere. Nature 540, 539–543. doi: 10.1038/nature20167 PubMed DOI
Shi M., Neville P., Nicholson J., Eden J.-S., Imrie A., Holmes E. C. (2017). High-resolution Metatranscriptomics reveals the ecological dynamics of mosquito-associated RNA viruses in Western Australia. J. Virol. 91, 680–697. doi: 10.1128/JVI.00680-17, PMID: PubMed DOI PMC
Shiba K., Hatta C., Sasai S., Tojo M., Ohki S. T., Mochizuki T. (2019). A novel toti-like virus from a plant pathogenic oomycete Globisporangium splendens. Virology 537, 165–171. doi: 10.1016/j.virol.2019.08.025, PMID: PubMed DOI
Shiba K., Hatta C., Sasai S., Tojo M., Ohki S., Mochizuki T., et al. . (2018). Genome sequence of a novel partitivirus identified from the oomycete Pythium Nunn. Arch. Virol. 163, 2561–2563. doi: 10.1007/s00705-018-3880-0, PMID: PubMed DOI
Stamatakis A., Hoover P., Rougemont J., Diego S., Jolla L. (2008). A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 57, 758–771. doi: 10.1080/10635150802429642, PMID: PubMed DOI
Studholme D. J., McDougal R. L., Sambles C., Hansen E., Hardy G., Grant M., et al. . (2016). Genome sequences of six Phytophthora species associated with forests in New Zealand. Genomics Data 7, 54–56. doi: 10.1016/j.gdata.2015.11.015, PMID: PubMed DOI PMC
Sutela S., Forgia M., Vainio E. J., Chiapello M., Daghino S., Vallino M., et al. . (2020). The virome from a collection of endomycorrhizal fungi reveals new viral taxa with unprecedented genome organization. Virus Evol. 6:veaa076. doi: 10.1093/VE/VEAA076, PMID: PubMed DOI PMC
Sutela S., Piri T., Vainio E. J. (2021). Discovery and community dynamics of novel ssRNA mycoviruses in the conifer pathogen Heterobasidion parviporum. Front. Microbiol. 12:3337. doi: 10.3389/fmicb.2021.770787, PMID: PubMed DOI PMC
Svoboda P. (2020). Key mechanistic principles and considerations concerning RNA interference. Front. Plant Sci. 11, 1–13. doi: 10.3389/fpls.2020.01237, PMID: PubMed DOI PMC
Thapa V., Roossinck M. J. (2019). Determinants of coinfection in the mycoviruses. Front. Cell. Infect. Microbiol. 9:169. doi: 10.3389/fcimb.2019.00169 PubMed DOI PMC
Thines M., Choi Y. J. (2016). Evolution, diversity, and taxonomy of the Peronosporaceae, with focus on the genus Peronospora. Phytopathology 106, 6–18. doi: 10.1094/PHYTO-05-15-0127-RVW, PMID: PubMed DOI
Tuomivirta T. T., Uotila A., Hantula J. (2002). Two independent double-stranded RNA patterns occur in the Finnish Gremmeniella abietina var. abietina type A. For. Pathol. 32, 197–205. doi: 10.1046/j.1439-0329.2002.00285.x DOI
Uchida K., Sakuta K., Ito A., Takahashi Y., Katayama Y., Fukuhara T., et al. . (2021). Two novel endornaviruses co-infecting a Phytophthora pathogen of Asparagus officinalis modulate the developmental stages and fungicide sensitivities of the host oomycete. Front. Microbiol. 12:633502. doi: 10.3389/fmicb.2021.633502, PMID: PubMed DOI PMC
Vainio E. J., Jurvansuu J., Streng J., Rajamäki M. L., Hantula J., Valkonen J. P. T. (2015a). Diagnosis and discovery of fungal viruses using deep sequencing of small RNAs. J. Gen. Virol. 96, 714–725. doi: 10.1099/jgv.0.000003, PMID: PubMed DOI
Vainio E. J., Müller M. M., Korhonen K., Piri T., Hantula J. (2015b). Viruses accumulate in aging infection centers of a fungal forest pathogen. ISME J. 9, 497–507. doi: 10.1038/ismej.2014.145, PMID: PubMed DOI PMC
Valverde R. A., Khalifa M. E., Okada R., Fukuhara T., Sabanadzovic S. (2019). ICTV virus taxonomy profile: Endornaviridae. J. Gen. Virol. 100, 1204–1205. doi: 10.1099/jgv.0.001277, PMID: PubMed DOI
Velasco L., Arjona-Girona I., Ariza-Fernández M. T., Cretazzo E., López-Herrera C. (2018). A novel hypovirus species from Xylariaceae fungi infecting avocado. Front. Microbiol. 9:778. doi: 10.3389/fmicb.2018.00778, PMID: PubMed DOI PMC
Waldron F. M., Stone G. N., Obbard D. J. (2018). Metagenomic sequencing suggests a diversity of RNA interference-like responses to viruses across multicellular eukaryotes. PLoS Genet. 14:e1007533. doi: 10.1371/JOURNAL.PGEN.1007533, PMID: PubMed DOI PMC
Wang M., Wang Y., Sun X., Cheng J., Fu Y., Liu H., et al. . (2015). Characterization of a novel megabirnavirus from Sclerotinia sclerotiorum reveals horizontal gene transfer from single-stranded RNA virus to double-stranded RNA virus. J. Virol. 89, 8567–8579. doi: 10.1128/jvi.00243-15, PMID: PubMed DOI PMC
Wang L., Zhang J., Zhang H., Qiu D., Guo L. (2016). Two novel relative double-stranded RNA mycoviruses infecting Fusarium poae strain SX63. Int. J. Mol. Sci. 17:641. doi: 10.3390/ijms17050641, PMID: PubMed DOI PMC
Weiland J. J., Sundsbak J. L. (2000). Differentiation and detection of sugar beet fungal pathogens using PCR amplification of actin coding sequences and the ITS region of the rRNA gene. Plant Dis. 84, 475–482. doi: 10.1094/PDIS.2000.84.4.475, PMID: PubMed DOI
Weir B. S., Paderes E. P., Anand N., Uchida J. Y., Pennycook S. R., Bellgard S. E., et al. . (2015). A taxonomic revision of Phytophthora clade 5 including two new species, Phytophthora agathidicida and P. cocois. Phytotaxa 205, 21–38. doi: 10.11646/phytotaxa.205.1.2 DOI
Wickner R. B., Ghabrial S. A., Nibert M. L., Patterson J. L., Wang C. C. (2012). “Family Totiviridae,” in Virus Taxonomy: Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses. eds. King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J. (Elsevier Academic Press; ), 639–650.
Xu Z., Khalifa M. E., Frampton R. A., Smith G. R., McDougal R. L., Macdiarmid R. M., et al. . (2022). Characterization of a novel double-stranded RNA virus from Phytophthora pluvialis in New Zealand. Viruses 14:247. doi: 10.3390/v14020247, PMID: PubMed DOI PMC
Yokoi T., Takemoto Y., Suzuki M., Yamashita S., Hibi T. (1999). The nucleotide sequence and genome organization of Sclerophthora macrospora virus B. Virology 264, 344–349. doi: 10.1006/viro.1999.0018, PMID: PubMed DOI
Yokoi T., Yamashita S., Hibi T. (2003). The nucleotide sequence and genome organization of Sclerophthora macrospora virus A. Virology 311, 394–399. doi: 10.1016/S0042-6822(03)00183-1, PMID: PubMed DOI
Zerbino D. R., Birney E. (2008). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829. doi: 10.1101/gr.074492.107, PMID: PubMed DOI PMC
Zhang X., Gao F., Zhang F., Xie Y., Zhou L., Yuan H., et al. . (2018). The complete genomic sequence of a novel megabirnavirus from Fusarium pseudograminearum, the causal agent of wheat crown rot. Arch. Virol. 163, 3173–3175. doi: 10.1007/s00705-018-3970-z, PMID: PubMed DOI
Zhong J., Chen C. Y., Da Gao B. (2015). Genome sequence of a novel mycovirus of Rhizoctonia solani, a plant pathogenic fungus. Virus Genes 51, 167–170. doi: 10.1007/S11262-015-1219-4/FIGURES/1, PMID: PubMed DOI
Zhu J. Z., Zhu H. J., Gao B., Zhou Q., Zhong J. (2018). Diverse, novel mycoviruses from the virome of a hypovirulent Sclerotium rolfsii strain. Front. Plant Sci. 9, 1–14. doi: 10.3389/fpls.2018.01738, PMID: PubMed DOI PMC
Diversity and impact of single-stranded RNA viruses in Czech Heterobasidion populations
Bunyaviruses Affect Growth, Sporulation, and Elicitin Production in Phytophthora cactorum