High Diversity of Novel Viruses in the Tree Pathogen Phytophthora castaneae Revealed by High-Throughput Sequencing of Total and Small RNA

. 2022 ; 13 () : 911474. [epub] 20220616

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35783401

Phytophthora castaneae, an oomycete pathogen causing root and trunk rot of different tree species in Asia, was shown to harbor a rich diversity of novel viruses from different families. Four P. castaneae isolates collected from Chamaecyparis hodginsii in a semi-natural montane forest site in Vietnam were investigated for viral presence by traditional and next-generation sequencing (NGS) techniques, i.e., double-stranded RNA (dsRNA) extraction and high-throughput sequencing (HTS) of small RNAs (sRNAs) and total RNA. Genome organization, sequence similarity, and phylogenetic analyses indicated that the viruses were related to members of the order Bunyavirales and families Endornaviridae, Megabirnaviridae, Narnaviridae, Totiviridae, and the proposed family "Fusagraviridae." The study describes six novel viruses: Phytophthora castaneae RNA virus 1-5 (PcaRV1-5) and Phytophthora castaneae negative-stranded RNA virus 1 (PcaNSRV1). All six viruses were detected by sRNA sequencing, which demonstrates an active RNA interference (RNAi) system targeting viruses in P. castaneae. To our knowledge, this is the first report of viruses in P. castaneae and the whole Phytophthora major Clade 5, as well as of the activity of an RNAi mechanism targeting viral genomes among Clade 5 species. PcaRV1 is the first megabirnavirus described in oomycetes and the genus Phytophthora.

Zobrazit více v PubMed

Abudurexiti A., Adkins S., Alioto D., Alkhovsky S. V., Avšič-Županc T., Ballinger M. J., et al. . (2019). Taxonomy of the order Bunyavirales: update 2019. Arch. Virol. 164, 1949–1965. doi: 10.1007/s00705-019-04253-6, PMID: PubMed DOI PMC

Adalia E. J. M., Diez J. J., Fernández M. M., Vainio J. H. E. J. (2018). Characterization of small RNAs originating from mitoviruses infecting the conifer pathogen Fusarium circinatum. Arch. Virol. 163, 1009–1018. doi: 10.1007/s00705-018-3712-2, PMID: PubMed DOI

Akopyants N. S., Lye L. F., Dobson D. E., Lukeš J., Beverley S. M. (2016). A narnavirus in the trypanosomatid protist plant pathogen Phytomonas serpens. Genome Announc. 4:e00711-16. doi: 10.1128/GENOMEA.00711-16, PMID: PubMed DOI PMC

Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., et al. . (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Oxford University Press Available at: https://academic.oup.com/nar/article/25/17/3389/1061651 (Accessed January 6, 2021). PubMed PMC

Andrews S. (2010). Babraham bioinformatics - FastQC A quality control tool for high throughput sequence data. Soil Available at: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (Accessed January 5, 2021).

Arjona-Lopez J. M., Telengech P., Jamal A., Hisano S., Kondo H., Yelin M. D., et al. . (2018). Novel, diverse RNA viruses from Mediterranean isolates of the phytopathogenic fungus, Rosellinia necatrix: insights into evolutionary biology of fungal viruses. Environ. Microbiol. 20, 1464–1483. doi: 10.1111/1462-2920.14065 PubMed DOI

Bartholomäus A., Wibberg D., Winkler A., Pühler A., Schlüter A., Varrelmann M. (2016). Deep sequencing analysis reveals the mycoviral diversity of the virome of an avirulent isolate of Rhizoctonia solani AG-2-2 IV. PLoS One 11:e0165965. doi: 10.1371/journal.pone.0165965, PMID: PubMed DOI PMC

Beakes G. W., Honda D., Thines M. (2014). “Systematics of the Straminipila: Labyrinthulomycota, Hyphochytriomycota, and Oomycota,” in Systematics and Evolution Part A. The Mycota Book Series. Vol. 7A. eds. McLaughli D. J., Spatafora J. W. (Luxemburg: Springer Science+Business Media; ), 39–97.

Bekaert M., Richard H., Prum B., Rousset J. P. (2005). Identification of programmed translational −1 frameshifting sites in the genome of Saccharomyces cerevisiae. Genome Res. 15, 1411–1420. doi: 10.1101/gr.4258005, PMID: PubMed DOI PMC

Botella L., Hantula J. (2018). Description, distribution, and relevance of viruses of the forest pathogen Gremmeniella abietina. Viruses 10, 1–14. doi: 10.3390/v10110654, PMID: PubMed DOI PMC

Botella L., Janoušek J., Maia C., Jung M. H., Raco M., Jung T. (2020). Marine oomycetes of the genus Halophytophthora harbor viruses related to Bunyaviruses. Front. Microbiol. 11:1467. doi: 10.3389/fmicb.2020.01467, PMID: PubMed DOI PMC

Botella L., Jung T. (2021). Multiple viral infections detected in Phytophthora condilina by Total and small RNA sequencing. Viruses 13:620. doi: 10.3390/v13040620, PMID: PubMed DOI PMC

Botella L., Tuomivirta T. T., Hantula J., Diez J. J., Jankovsky L. (2015). The European race of Gremmeniella abietina hosts a single species of Gammapartitivirus showing a global distribution and possible recombinant events in its history. Fungal Biol. 119, 125–135. doi: 10.1016/J.FUNBIO.2014.12.001 PubMed DOI PMC

Botella L., Tuomivirta T. T., Vervuurt S., Diez J. J., Hantula J. (2012). Occurrence of two different species of mitoviruses in the European race of Gremmeniella abietina var. abietina, both hosted by the genetically unique Spanish population. Fungal Biol. 116, 872–882. doi: 10.1016/J.FUNBIO.2012.05.004 PubMed DOI

Bruce B. (1999). “Occurrence and impact of Phytophthora cinnamomi and other Phytophthora species in rainforests of the wet tropics world heritage area, and of the mackay region, qld” in Patch Deaths in Tropical Queensland Rainforests: Association and Impact of Phytophthora. ed. Gadek P. A. (Cairns, Australia: Cooperative Research Centre for Tropical Rainforest Ecology and Management; )

Cai G., Fry W. E., Hillman B. I. (2019a). PiRV-2 stimulates sporulation in Phytophthora infestans. Virus Res. 271:197674. doi: 10.1016/j.virusres.2019.197674, PMID: PubMed DOI

Cai G., Hillman B. I. (2013). Phytophthora viruses. Adv. Virus Res. 86, 327–350. doi: 10.1016/B978-0-12-394315-6.00012-X PubMed DOI

Cai G., Krychiw J. F., Myers K., Fry W. E., Hillman B. I. (2013). A new virus from the plant pathogenic oomycete Phytophthora infestans with an 8 kb dsRNA genome: The sixth member of a proposed new virus genus. Virology 435, 341–349. doi: 10.1016/J.VIROL.2012.10.012, PMID: PubMed DOI

Cai G., Myers K., Fry W. E., Hillman B. I. (2012). A member of the virus family Narnaviridae from the plant pathogenic oomycete Phytophthora infestans. Arch. Virol. 157, 165–169. doi: 10.1007/s00705-011-1126-5, PMID: PubMed DOI

Cai G., Myers K., Fry W. E., Hillman B. I. (2019b). Phytophthora infestans RNA virus 2, a novel RNA virus from Phytophthora infestans, does not belong to any known virus group. Arch. Virol. 164, 567–572. doi: 10.1007/s00705-018-4050-0, PMID: PubMed DOI

Cai G., Myers K., Hillman B. I., Fry W. E. (2009). A novel virus of the late blight pathogen, Phytophthora infestans, with two RNA segments and a supergroup 1 RNA-dependent RNA polymerase. Virology 392, 52–61. doi: 10.1016/j.virol.2009.06.040, PMID: PubMed DOI

Chandler J. A., Liu R. M., Bennett S. N. (2015). RNA shotgun metagenomic sequencing of northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi. Front. Microbiol. 6:185. doi: 10.3389/FMICB.2015.00185/BIBTEX PubMed DOI PMC

Chang S.-S., Zhang Z., Liu Y. (2012). RNA interference pathways in fungi: mechanisms and functions. Annu. Rev. Microbiol. 66, 305–323. doi: 10.1146/annurev-micro-092611-150138, PMID: PubMed DOI PMC

Charon J., Grigg M. J., Eden J. S., Piera K. A., Rana H., William T., et al. . (2019). Novel RNA viruses associated with plasmodium vivax in human malaria and Leucocytozoon parasites in avian disease. PLoS Pathog. 15:e1008216. doi: 10.1371/journal.ppat.1008216, PMID: PubMed DOI PMC

Charon J., Murray S., Holmes E. C. (2021). Revealing RNA virus diversity and evolution in unicellular algae transcriptomes. Virus Evol. 7, 1–18. doi: 10.1093/ve/veab070 PubMed DOI PMC

Chen S., Cao L., Huang Q., Qian Y., Zhou X. (2016). The complete genome sequence of a novel maize-associated totivirus. Arch. Virol. 161, 487–490. doi: 10.1007/s00705-015-2657-y, PMID: PubMed DOI

Chiapello M., Rodríguez-Romero J., Ayllón M. A., Turina M. (2020). Analysis of the virome associated to grapevine downy mildew lesions reveals new mycovirus lineages. Virus Evol. 6, 1–18. doi: 10.1093/ve/veaa058, PMID: PubMed DOI PMC

Chiba Y., Oiki S., Yaguchi T., Urayama S.-I., Hagiwara D. (2020). Discovery of divided RdRp sequences and a hitherto unknown genomic complexity in fungal viruses. Virus Evol. 7:1. doi: 10.1093/ve/veaa101, PMID: PubMed DOI PMC

Chiba S., Salaipeth L., Lin Y.-H., Sasaki A., Kanematsu S., Suzuki N. (2009). A novel bipartite double-stranded RNA Mycovirus from the white root rot fungus Rosellinia necatrix: molecular and biological characterization, taxonomic considerations, and potential for biological control. J. Virol. 83, 12801–12812. doi: 10.1128/JVI.01830-09, PMID: PubMed DOI PMC

Cook S., Chung B. Y. W., Bass D., Moureau G., Tang S., McAlister E., et al. . (2013). Novel virus discovery and genome reconstruction from field RNA samples reveals highly divergent viruses in dipteran hosts. PLoS One 8:e80720. doi: 10.1371/JOURNAL.PONE.0080720, PMID: PubMed DOI PMC

De Lima J. G. S., Teixeira D. G., Freitas T. T., Lima J. P. M. S., Lanza D. C. F. (2019). Evolutionary origin of 2A-like sequences in Totiviridae genomes. Virus Res. 259, 1–9. doi: 10.1016/j.virusres.2018.10.011, PMID: PubMed DOI

Deakin G., Dobbs E., Bennett J. M., Jones I. M., Grogan H. M., Burton K. S. (2017). Multiple viral infections in Agaricus bisporus – characterisation of 18 unique RNA viruses and 8 ORFans identified by deep sequencing. Sci. Rep. 7, 2469–2413. doi: 10.1038/s41598-017-01592-9, PMID: PubMed DOI PMC

DeRisi J. L., Huber G., Kistler A., Retallack H., Wilkinson M., Yllanes D. (2019). An exploration of ambigrammatic sequences in narnaviruses. Sci. Rep. 9:17982. doi: 10.1038/s41598-019-54181-3, PMID: PubMed DOI PMC

Dinan A. M., Lukhovitskaya N. I., Olendraite I., Firth A. E. (2020). A case for a negative-strand coding sequence in a group of positive-sense RNA viruses. Virus Evol. 6:veaa007. doi: 10.1093/ve/veaa007, PMID: PubMed DOI PMC

Doherty M., Sanganee K., Kozlakidis Z., Coutts R. H. A., Brasier C. M., Buck K. W. (2007). Molecular characterization of a totivirus and a partitivirus from the genus Ophiostoma. J. Phytopathol. 155, 188–192. doi: 10.1111/j.1439-0434.2007.01207.x DOI

Donaire L., Pagán I., Ayllón M. A. (2016). Characterization of Botrytis cinerea negative-stranded RNA virus 1, a new mycovirus related to plant viruses, and a reconstruction of host pattern evolution in negative-sense ssRNA viruses. Virology 499, 212–218. doi: 10.1016/J.VIROL.2016.09.017, PMID: PubMed DOI

Dunker F., Trutzenberg A., Rothenpieler J. S., Kuhn S., Schreiber T., Tissier A., et al. . (2020). Oomycete small RNAs bind to the plant RNA-induced silencing complex for virulence. eLife 9:e56096. doi: 10.7554/eLife.56096 PubMed DOI PMC

Edgar R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. doi: 10.1093/nar/gkh340, PMID: PubMed DOI PMC

Erwin C. D., Ribeiro K. O. (1996). Phytophthora Diseases Worldwide. Minesota: The American Phytopathological Society.

Fahlgren N., Bollmann S. R., Kasschau K. D., Cuperus J. T., Press C. M. (2013). Phytophthora have distinct endogenous small RNA populations that include short interfering and micrornas. PLoS One 8:77181. doi: 10.1371/journal.pone.0077181, PMID: PubMed DOI PMC

Fukuhara T., Gibbs M. J. (2012). “Family Endornaviridae,” in Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of The International Committee on Taxonomy of Viruses. eds. King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J. (Elsevier Academic Press; ), 1055–1057.

Fukunishi M., Sasai S., Tojo M., Mochizuki T. (2021). Novel fusari-and toti-like viruses, with probable different origins, in the plant pathogenic oomycete Globisporangium ultimum. Viruses 13:1931. doi: 10.3390/v13101931, PMID: PubMed DOI PMC

Garrison A. R., Alkhovsky S. V., Avšič-Županc T., Bente D. A., Bergeron É., Burt F., et al. . (2020). ICTV virus taxonomy profile: Nairoviridae ICTV virus taxonomy profile ICTV. J. Gen. Virol. 101, 798–799. doi: 10.1099/jgv.0.001485, PMID: PubMed DOI PMC

Ghabrial S. A., Castón J. R., Jiang D., Nibert M. L., Suzuki N. (2015). 50-plus years of fungal viruses. Virology 480, 356–368. doi: 10.1016/j.virol.2015.02.034, PMID: PubMed DOI

Gillings M. R., Ttesoriero L. A., Gunn L. V. (1993). Detection of double-stranded RNA and virus-like particles in Australian isolates of Pythium irregulare. Plant Pathol. 42, 6–15. doi: 10.1111/j.1365-3059.1993.tb01466.x DOI

Göertz G. P., Miesen P., Overheul G. J., Van Rij R. P., Van Oers M. M., Pijlman G. P. (2019). Mosquito small RNA responses to West Nile and insect-specific virus infections in Aedes and Culex mosquito cells. Viruses 11:271. doi: 10.3390/V11030271 PubMed DOI PMC

Grabherr M. G., Haas B. J., Yassour M., Levin J. Z., Thompson D. A., Amit I., et al. . (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652. doi: 10.1038/nbt.1883, PMID: PubMed DOI PMC

Grasse W., Spring O. (2017). ssRNA viruses from biotrophic Oomycetes form a new phylogenetic group between Nodaviridae and Tombusviridae. Arch. Virol. 162, 1319–1324. doi: 10.1007/s00705-017-3243-2, PMID: PubMed DOI

Grybchuk D., Akopyants N. S., Kostygov A. Y., Konovalovas A., Lye L. F., Dobson D. E., et al. . (2018). Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Leishmania. Proc. Natl. Acad. Sci. U. S. A. 115, E506–E515. doi: 10.1073/PNAS.1717806115/-/DCSUPPLEMENTAL, PMID: PubMed DOI PMC

Hantula J., Mäkelä S., Xu P., Brusila V., Nuorteva H., Kashif M., et al. . (2020). Multiple virus infections on Heterobasidion sp. Fungal Biol. 124, 102–109. doi: 10.1016/j.funbio.2019.12.004, PMID: PubMed DOI

Harvey E., Rose K., Eden J. S., Lawrence A., Doggett S. L., Holmes E. C. (2019). Identification of diverse arthropod associated viruses in native Australian fleas. Virology 535, 189–199. doi: 10.1016/j.virol.2019.07.010, PMID: PubMed DOI

Heller-Dohmen M., Göpfert J. C., Pfannstiel J., Spring O. (2011). The nucleotide sequence and genome organization of Plasmopara halstedii virus. Virol. J. 8:123. doi: 10.1186/1743-422X-8-123, PMID: PubMed DOI PMC

Hillman B. I., Annisa A., Suzuki N. (2018). Viruses of plant-interacting fungi. Adv. Virus Res. 100, 99–116. doi: 10.1016/bs.aivir.2017.10.003, PMID: PubMed DOI

Hughes H. R., Adkins S., Alkhovskiy S., Beer M., Blair C., Calisher C. H., et al. . (2020). ICTV virus taxonomy profile: Peribunyaviridae. J. Gen. Virol. 101, 1–2. doi: 10.1099/jgv.0.001365, PMID: PubMed DOI PMC

Jia J., Fu Y., Jiang D., Mu F., Cheng J., Lin Y., et al. . (2021). Interannual dynamics, diversity and evolution of the virome in Sclerotinia sclerotiorum from a single crop field. Virus Evol. 7:veab032. doi: 10.1093/ve/veab032 PubMed DOI PMC

Jia J., Lu W., Zhong C., Zhou R., Xu J., Liu W., et al. . (2017). The 25-26 nt small RNAs in Phytophthora parasitica are associated with efficient silencing of homologous endogenous genes. Front. Microbiol. 8, 1–15. doi: 10.3389/fmicb.2017.00773, PMID: PubMed DOI PMC

Jung T., Chang T. T., Bakonyi J., Seress D., Perez-Sierra A. P., Yang X., et al. . (2017). Diversity of Phytophthora species in natural ecosystems of Taiwan and association with disease symptoms. Plant Pathol. 66, 194–211. doi: 10.1111/ppa.12564 DOI

Jung T., Pérez-Sierra A., Durán A., Jung M. H., Balci Y., Scanu B. (2018). Canker and decline diseases caused by soil- and airborne Phytophthora species in forests and woodlands. Persoonia Mol. Phylogeny Evol. Fungi 40, 182–220. doi: 10.3767/persoonia.2018.40.08, PMID: PubMed DOI PMC

Jung T., Scanu B., Brasier C. M., Webber J., Milenković I., Corcobado T., et al. . (2020). A survey in natural forest ecosystems of Vietnam reveals high diversity of both new and described phytophthora taxa including P. ramorum. Forests 11:93. doi: 10.3390/f11010093 DOI

Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. doi: 10.1093/molbev/mst010, PMID: PubMed DOI PMC

Ketting R. F. (2011). The many faces of RNAi. Dev. Cell 20, 148–161. doi: 10.1016/j.devcel.2011.01.012, PMID: PubMed DOI

Kocanová M., Eichmeier A., Botella L. (2020). A novel mitovirus detected in Diaporthe rudis, a fungus associated with Phomopsis dieback on grapevines. Arch. Virol. 165, 2405–2408. doi: 10.1007/s00705-020-04755-8, PMID: PubMed DOI

Koyama S., Urayama S. I., Ohmatsu T., Sassa Y., Sakai C., Takata M., et al. . (2015). Identification, characterization and full-length sequence analysis of a novel dsRNA virus isolated from the arboreal ant Camponotus yamaokai. J. Gen. Virol. 96, 1930–1937. doi: 10.1099/vir.0.000126, PMID: PubMed DOI

Kozlakidis Z., Brown N. A., Jamal A., Phoon X., Coutts R. H. A. (2010). Incidence of endornaviruses in Phytophthora taxon douglasfir and Phytophthora ramorum. Virus Genes 40, 130–134. doi: 10.1007/s11262-009-0421-7, PMID: PubMed DOI

Kreuze J. F., Perez A., Untiveros M., Quispe D., Fuentes S., Barker I., et al. . (2009). Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: A generic method for diagnosis, discovery and sequencing of viruses. Virology 388, 1–7. doi: 10.1016/j.virol.2009.03.024, PMID: PubMed DOI

Langmead B., Salzberg S. L. (2012). Fast gapped-read alignment with bowtie 2. Nat. Methods 9, 357–359. doi: 10.1038/nmeth.1923, PMID: PubMed DOI PMC

Langmead B., Trapnell C., Pop M., Salzberg S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25–R10. doi: 10.1186/GB-2009-10-3-R25, PMID: PubMed DOI PMC

Legeay J., Husson C., Boudier B., Louisanna E., Baraloto C., Schimann H., et al. . (2020). Surprising low diversity of the plant pathogen Phytophthora in Amazonian forests. Environ. Microbiol. 22, 5019–5032. doi: 10.1111/1462-2920.15099, PMID: PubMed DOI

Leventhal S. S., Wilson D., Feldmann H., Hawman D. W., Brennan B. (2021). A look into bunyavirales genomes: functions of non-structural (ns) proteins. Viruses 13:314. doi: 10.3390/v13020314, PMID: PubMed DOI PMC

Li H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Available at: http://github.com/lh3/bwa. (Accessed January 11, 2021).

Linnakoski R., Sutela S., Coetzee M. P. A., Duong T. A., Pavlov I. N., Litovka Y. A., et al. . (2021). Armillaria root rot fungi host single-stranded RNA viruses. Sci. Rep. 11:7336. doi: 10.1038/s41598-021-86343-7, PMID: PubMed DOI PMC

Lye L. F., Akopyants N. S., Dobson D. E., Beverley S. M. (2016). A narnavirus-like element from the trypanosomatid protozoan parasite Leptomonas seymouri. Genome Announc. 4:e00713-16. doi: 10.1128/GENOMEA.00713-16, PMID: PubMed DOI PMC

Maia C., Horta Jung M., Carella G., Milenković I., Janoušek J., Tomšovský M., et al. . (2022). Eight new Halophytophthora species from marine and brackish-water ecosystems in portugal and an updated phylogeny for the genus. Persoonia Mol. Phylogeny Evol. Fungi. 48, 54–90. doi: 10.3767/PERSOONIA.2022.48.02 PubMed DOI PMC

Martin F. N., Blair J. E., Coffey M. D. (2014). A combined mitochondrial and nuclear multilocus phylogeny of the genus Phytophthora. Fungal Genet. Biol. 66, 19–32. doi: 10.1016/j.fgb.2014.02.006, PMID: PubMed DOI

Martinez J., Lepetit D., Ravallec M., Fleury F., Varaldi J. (2016). Additional heritable virus in the parasitic wasp Leptopilina boulardi: prevalence, transmission and phenotypic effects. J. Gen. Virol. 97, 523–535. doi: 10.1099/jgv.0.000360, PMID: PubMed DOI

Mascia T., Labarile R., Doohan F., Gallitelli D. (2019). Tobacco mosaic virus infection triggers an RNAi-based response in Phytophthora infestans. Sci. Rep. 9, 2657–2613. doi: 10.1038/s41598-019-39162-w, PMID: PubMed DOI PMC

Massart S., Chiumenti M., Jonghe K., Glover R., Haegeman A., Koloniuk I., et al. . (2019). Virus detection by high-throughput sequencing of small RNAs: large-scale performance testing of sequence analysis strategies. doi: 10.1094/PHYTO-02-18-0067-R, 109, 488–497, PMID: PubMed DOI

Meister G., Tuschl T. (2004). Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349. doi: 10.1038/nature02873 PubMed DOI

Miller M. A., Pfeiffer W., Schwartz T. (2010). “Science Gateway for inference of large phylogenetic trees.” in 2010 gateway computing environments workshop (GCE); November 14, 2010.

Mor S. K., Phelps N. B. D. (2016). Molecular detection of a novel totivirus from golden shiner (Notemigonus crysoleucas) baitfish in the USA. Arch. Virol. 161, 2227–2234. doi: 10.1007/s00705-016-2906-8, PMID: PubMed DOI

Morris T. J., Dodds J. A. (1979). Isolation and analysis of double-stranded RNA from virus-infected plant and fungal tissue. Phytopathology 69:854. doi: 10.1094/phyto-69-854 DOI

Nerva L., Ciuffo M., Vallino M., Margaria P., Varese G. C., Gnavi G., et al. . (2016). Multiple approaches for the detection and characterization of viral and plasmid symbionts from a collection of marine fungi. Virus Res. 219, 22–38. doi: 10.1016/j.virusres.2015.10.028, PMID: PubMed DOI

Osaki H., Sasaki A., Nomiyama K., Tomioka K. (2016). Multiple virus infection in a single strain of Fusarium poae shown by deep sequencing. Virus Genes 52, 835–847. doi: 10.1007/S11262-016-1379-X/FIGURES/6, PMID: PubMed DOI

Poimala A., Parikka P., Hantula J., Vainio E. J. (2021). Viral diversity in Phytophthora cactorum population infecting strawberry. Environ. Microbiol. 23, 5200–5221. doi: 10.1111/1462-2920.15519, PMID: PubMed DOI

Poimala A., Vainio E. J. (2020). Complete genome sequence of a novel toti-like virus from the plant-pathogenic oomycete Phytophthora cactorum. Arch. Virol. 165, 1679–1682. doi: 10.1007/s00705-020-04642-2, PMID: PubMed DOI PMC

R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

Rampersad S., Tennant P. (2018). “Replication and expression strategies of viruses,” in Viruses: Molecular Biology, Host Interactions, and Applications to Biotechnology. eds. Paula T., Fermin G., Foster J. (Academic Press; ), 55–82.

Reguera J., Weber F., Cusack S. (2010). Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription. PLoS Pathog. 6:e1001101. doi: 10.1371/journal.ppat.1001101, PMID: PubMed DOI PMC

Romano N., Macino G., Umana B., Biologia S., Umberto C. P., La R. (1992). Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol. Microbiol. 6, 3343–3353. doi: 10.1111/j.1365-2958.1992.tb02202.x PubMed DOI

Ruiz-Padilla A., Rodríguez-Romero J., Gómez-Cid I., Pacifico D., Ayllón M. A. (2021). Novel mycoviruses discovered in the mycovirome of a necrotrophic fungus. MBio 12:e03705-20. doi: 10.1128/mBio.03705-20, PMID: PubMed DOI PMC

Sasai S., Tamura K., Tojo M., Herrero M. L., Hoshino T., Ohki S. T., et al. . (2018). A novel non-segmented double-stranded RNA virus from an Arctic isolate of Pythium polare. Virology 522, 234–243. doi: 10.1016/j.virol.2018.07.012, PMID: PubMed DOI

Sasaki A., Nakamura H., Suzuki N., Kanematsu S. (2016). Characterization of a new megabirnavirus that confers hypovirulence with the aid of a co-infecting partitivirus to the host fungus, Rosellinia necatrix. Virus Res. 219, 73–82. doi: 10.1016/j.virusres.2015.12.009, PMID: PubMed DOI

Sato Y., Miyazaki N., Kanematsu S., Xie J., Ghabrial S. A., Hillman B. I., et al. . (2019). ICTV virus taxonomy profile: Megabirnaviridae. J. Gen. Virol. 100, 1269–1270. doi: 10.1099/jgv.0.001297, PMID: PubMed DOI

Shi M., Lin X. D., Tian J. H., Chen L. J., Chen X., Li C. X., et al. . (2016). Redefining the invertebrate RNA virosphere. Nature 540, 539–543. doi: 10.1038/nature20167 PubMed DOI

Shi M., Neville P., Nicholson J., Eden J.-S., Imrie A., Holmes E. C. (2017). High-resolution Metatranscriptomics reveals the ecological dynamics of mosquito-associated RNA viruses in Western Australia. J. Virol. 91, 680–697. doi: 10.1128/JVI.00680-17, PMID: PubMed DOI PMC

Shiba K., Hatta C., Sasai S., Tojo M., Ohki S. T., Mochizuki T. (2019). A novel toti-like virus from a plant pathogenic oomycete Globisporangium splendens. Virology 537, 165–171. doi: 10.1016/j.virol.2019.08.025, PMID: PubMed DOI

Shiba K., Hatta C., Sasai S., Tojo M., Ohki S., Mochizuki T., et al. . (2018). Genome sequence of a novel partitivirus identified from the oomycete Pythium Nunn. Arch. Virol. 163, 2561–2563. doi: 10.1007/s00705-018-3880-0, PMID: PubMed DOI

Stamatakis A., Hoover P., Rougemont J., Diego S., Jolla L. (2008). A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 57, 758–771. doi: 10.1080/10635150802429642, PMID: PubMed DOI

Studholme D. J., McDougal R. L., Sambles C., Hansen E., Hardy G., Grant M., et al. . (2016). Genome sequences of six Phytophthora species associated with forests in New Zealand. Genomics Data 7, 54–56. doi: 10.1016/j.gdata.2015.11.015, PMID: PubMed DOI PMC

Sutela S., Forgia M., Vainio E. J., Chiapello M., Daghino S., Vallino M., et al. . (2020). The virome from a collection of endomycorrhizal fungi reveals new viral taxa with unprecedented genome organization. Virus Evol. 6:veaa076. doi: 10.1093/VE/VEAA076, PMID: PubMed DOI PMC

Sutela S., Piri T., Vainio E. J. (2021). Discovery and community dynamics of novel ssRNA mycoviruses in the conifer pathogen Heterobasidion parviporum. Front. Microbiol. 12:3337. doi: 10.3389/fmicb.2021.770787, PMID: PubMed DOI PMC

Svoboda P. (2020). Key mechanistic principles and considerations concerning RNA interference. Front. Plant Sci. 11, 1–13. doi: 10.3389/fpls.2020.01237, PMID: PubMed DOI PMC

Thapa V., Roossinck M. J. (2019). Determinants of coinfection in the mycoviruses. Front. Cell. Infect. Microbiol. 9:169. doi: 10.3389/fcimb.2019.00169 PubMed DOI PMC

Thines M., Choi Y. J. (2016). Evolution, diversity, and taxonomy of the Peronosporaceae, with focus on the genus Peronospora. Phytopathology 106, 6–18. doi: 10.1094/PHYTO-05-15-0127-RVW, PMID: PubMed DOI

Tuomivirta T. T., Uotila A., Hantula J. (2002). Two independent double-stranded RNA patterns occur in the Finnish Gremmeniella abietina var. abietina type A. For. Pathol. 32, 197–205. doi: 10.1046/j.1439-0329.2002.00285.x DOI

Uchida K., Sakuta K., Ito A., Takahashi Y., Katayama Y., Fukuhara T., et al. . (2021). Two novel endornaviruses co-infecting a Phytophthora pathogen of Asparagus officinalis modulate the developmental stages and fungicide sensitivities of the host oomycete. Front. Microbiol. 12:633502. doi: 10.3389/fmicb.2021.633502, PMID: PubMed DOI PMC

Vainio E. J., Jurvansuu J., Streng J., Rajamäki M. L., Hantula J., Valkonen J. P. T. (2015a). Diagnosis and discovery of fungal viruses using deep sequencing of small RNAs. J. Gen. Virol. 96, 714–725. doi: 10.1099/jgv.0.000003, PMID: PubMed DOI

Vainio E. J., Müller M. M., Korhonen K., Piri T., Hantula J. (2015b). Viruses accumulate in aging infection centers of a fungal forest pathogen. ISME J. 9, 497–507. doi: 10.1038/ismej.2014.145, PMID: PubMed DOI PMC

Valverde R. A., Khalifa M. E., Okada R., Fukuhara T., Sabanadzovic S. (2019). ICTV virus taxonomy profile: Endornaviridae. J. Gen. Virol. 100, 1204–1205. doi: 10.1099/jgv.0.001277, PMID: PubMed DOI

Velasco L., Arjona-Girona I., Ariza-Fernández M. T., Cretazzo E., López-Herrera C. (2018). A novel hypovirus species from Xylariaceae fungi infecting avocado. Front. Microbiol. 9:778. doi: 10.3389/fmicb.2018.00778, PMID: PubMed DOI PMC

Waldron F. M., Stone G. N., Obbard D. J. (2018). Metagenomic sequencing suggests a diversity of RNA interference-like responses to viruses across multicellular eukaryotes. PLoS Genet. 14:e1007533. doi: 10.1371/JOURNAL.PGEN.1007533, PMID: PubMed DOI PMC

Wang M., Wang Y., Sun X., Cheng J., Fu Y., Liu H., et al. . (2015). Characterization of a novel megabirnavirus from Sclerotinia sclerotiorum reveals horizontal gene transfer from single-stranded RNA virus to double-stranded RNA virus. J. Virol. 89, 8567–8579. doi: 10.1128/jvi.00243-15, PMID: PubMed DOI PMC

Wang L., Zhang J., Zhang H., Qiu D., Guo L. (2016). Two novel relative double-stranded RNA mycoviruses infecting Fusarium poae strain SX63. Int. J. Mol. Sci. 17:641. doi: 10.3390/ijms17050641, PMID: PubMed DOI PMC

Weiland J. J., Sundsbak J. L. (2000). Differentiation and detection of sugar beet fungal pathogens using PCR amplification of actin coding sequences and the ITS region of the rRNA gene. Plant Dis. 84, 475–482. doi: 10.1094/PDIS.2000.84.4.475, PMID: PubMed DOI

Weir B. S., Paderes E. P., Anand N., Uchida J. Y., Pennycook S. R., Bellgard S. E., et al. . (2015). A taxonomic revision of Phytophthora clade 5 including two new species, Phytophthora agathidicida and P. cocois. Phytotaxa 205, 21–38. doi: 10.11646/phytotaxa.205.1.2 DOI

Wickner R. B., Ghabrial S. A., Nibert M. L., Patterson J. L., Wang C. C. (2012). “Family Totiviridae,” in Virus Taxonomy: Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses. eds. King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J. (Elsevier Academic Press; ), 639–650.

Xu Z., Khalifa M. E., Frampton R. A., Smith G. R., McDougal R. L., Macdiarmid R. M., et al. . (2022). Characterization of a novel double-stranded RNA virus from Phytophthora pluvialis in New Zealand. Viruses 14:247. doi: 10.3390/v14020247, PMID: PubMed DOI PMC

Yokoi T., Takemoto Y., Suzuki M., Yamashita S., Hibi T. (1999). The nucleotide sequence and genome organization of Sclerophthora macrospora virus B. Virology 264, 344–349. doi: 10.1006/viro.1999.0018, PMID: PubMed DOI

Yokoi T., Yamashita S., Hibi T. (2003). The nucleotide sequence and genome organization of Sclerophthora macrospora virus A. Virology 311, 394–399. doi: 10.1016/S0042-6822(03)00183-1, PMID: PubMed DOI

Zerbino D. R., Birney E. (2008). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829. doi: 10.1101/gr.074492.107, PMID: PubMed DOI PMC

Zhang X., Gao F., Zhang F., Xie Y., Zhou L., Yuan H., et al. . (2018). The complete genomic sequence of a novel megabirnavirus from Fusarium pseudograminearum, the causal agent of wheat crown rot. Arch. Virol. 163, 3173–3175. doi: 10.1007/s00705-018-3970-z, PMID: PubMed DOI

Zhong J., Chen C. Y., Da Gao B. (2015). Genome sequence of a novel mycovirus of Rhizoctonia solani, a plant pathogenic fungus. Virus Genes 51, 167–170. doi: 10.1007/S11262-015-1219-4/FIGURES/1, PMID: PubMed DOI

Zhu J. Z., Zhu H. J., Gao B., Zhou Q., Zhong J. (2018). Diverse, novel mycoviruses from the virome of a hypovirulent Sclerotium rolfsii strain. Front. Plant Sci. 9, 1–14. doi: 10.3389/fpls.2018.01738, PMID: PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace