Diversity and impact of single-stranded RNA viruses in Czech Heterobasidion populations

. 2024 Oct 22 ; 9 (10) : e0050624. [epub] 20240917

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39287383

Grantová podpora
LDF_VP_2019034 Mendelova Univerzita v Brně (MENDELU)
CZ.02.1.01/0.0/0.0/15_003/0000453 EC | European Regional Development Fund (ERDF)
Project CIPROM/2022/21 Generalitat Valenciana (GVA)

Heterobasidion annosum sensu lato comprises some of the most devastating pathogens of conifers. Exploring virocontrol as a potential strategy to mitigate economic losses caused by these fungi holds promise for the future. In this study, we conducted a comprehensive screening for viruses in 98 H. annosum s.l. specimens from different regions of Czechia aiming to identify viruses inducing hypovirulence. Initial examination for dsRNA presence was followed by RNA-seq analyses using pooled RNA libraries constructed from H. annosum and Heterobasidion parviporum, with diverse bioinformatic pipelines employed for virus discovery. Our study uncovered 25 distinct ssRNA viruses, including two ourmia-like viruses, one mitovirus, one fusarivirus, one tobamo-like virus, one cogu-like virus, one bisegmented narna-like virus and one segment of another narna-like virus, and 17 ambi-like viruses, for which hairpin and hammerhead ribozymes were detected. Coinfections of up to 10 viruses were observed in six Heterobasidion isolates, whereas another six harbored a single virus. Seventy-three percent of the isolates analyzed by RNA-seq were virus-free. These findings show that the virome of Heterobasidion populations in Czechia is highly diverse and differs from that in the boreal region. We further investigated the host effects of certain identified viruses through comparisons of the mycelial growth rate and proteomic analyses and found that certain tested viruses caused growth reductions of up to 22% and significant alterations in the host proteome profile. Their intraspecific transmission rates ranged from 0% to 33%. Further studies are needed to fully understand the biocontrol potential of these viruses in planta.IMPORTANCEHeterobasidion annosum sensu lato is a major pathogen causing significant damage to conifer forests, resulting in substantial economic losses. This study is significant as it explores the potential of using viruses (virocontrol) to combat these fungal pathogens. By identifying and characterizing a diverse array of viruses in H. annosum populations from Czechia, the research opens new avenues for biocontrol strategies. The discovery of 25 distinct ssRNA viruses, some of which reduce fungal growth and alter proteome profiles, suggests that these viruses could be harnessed to mitigate the impact of Heterobasidion. Understanding the interactions between these viruses and their fungal hosts is crucial for developing effective, environmentally friendly methods to protect conifer forests and maintain ecosystem health. This study lays the groundwork for future research on the application of mycoviruses in forest disease management.

Zobrazit více v PubMed

Garbelotto MM, Gonthier P. 2013. Biology, epidemiology, and control of Heterobasidion species worldwide. Annu Rev Phytopathol 51:39–59. doi:10.1146/annurev-phyto-082712-102225 PubMed DOI

Dálya LB, Sedlák P. 2020. Prevalence of major wood‐decay agaricomycetes in artificial, managed near‐natural and undisturbed forests of South Moravia, Czechia. For Pathol 50:e12636. doi:10.1111/efp.12636 DOI

Shaw D, Edmonds R, Littke W, Browning J, Russell K, Driver CH. 1994. Influence of forest management on annosus root disease in coastal western hemlock, Washington State, USA. Proceedings of the Eighth International Conference on Root and Butt Rots, Wik, Sweden and Haikko. , p 646–655Swedish University of Agricultural Sciences, Uppsala, Sweden

Woodward S, Stenlid J, Karjalainen R, Hüttermann A. 1998. Heterobasidion annosum: biology, ecology, impact, and control. CABI, Wallingford, UK.

Černý A. 1989. Parazitické dřevokazné houby [Parasitic wood-decaying fungi]. Prague, Czechia: Státní zemědělské nakladatelství

Sedlák P, Tomšovský M. 2014. Species distribution, host affinity and genetic variability of Heterobasidion annosum sensu lato in the Czech Republic. For Pathol 44:310–319. doi:10.1111/efp.12102 DOI

Wahlman W. 2024. The effect of Heterobasidion root rot on Ips typographus infestation risk on Norway spruce. University of Helsinki, Finland.

Ministry of Agriculture of the Czech Republic . 2021. Zpráva o stavu lesa a lesního hospodářství České republiky v roce 2020 [Report of the state of forests and forestry in Czechia 2020]. Prague, Czechia

Gonthier P, Thor M. 2013. Annosus root and butt rots, p 128–158. In Gonthier P, Nicolotti G (ed), Infectious forest diseases. CABI, Wallingford, UK.

Dálya LB, Dvořák M, Sedlák P. 2022. Volumetric spore traps are a viable alternative tool for estimating Heterobasidion infection risk. Fores 13:2146. doi:10.3390/f13122146 DOI

Piri T, Hamberg L. 2015. Persistence and infectivity of Heterobasidion parviporum in Norway spruce root residuals following stump harvesting. For Ecol Manage 353:49–58. doi:10.1016/j.foreco.2015.05.012 DOI

Walmsley JD, Godbold DL. 2010. Stump harvesting for bioenergy - a review of the environmental impacts. Fores 83:17–38. doi:10.1093/forestry/cpp028 DOI

Ihrmark K, Zheng J, Stenström E, Stenlid J. 2001. Presence of double-stranded RNA in Heterobasidion annosum. For Pathol 31:387–394. doi:10.1046/j.1439-0329.2001.00263.x DOI

Vainio EJ, Jurvansuu J, Hyder R, Kashif M, Piri T, Tuomivirta TT, Poimala A, Xu P, Mäkelä S, Nitisa D, Hantula J. 2018. Heterobasidion partitivirus 13 mediates severe growth debilitation and major alterations in the gene expression of a fungal forest pathogen. J Virol 92:e01744-17. doi:10.1128/JVI.01744-17 PubMed DOI PMC

Hough B, Steenkamp E, Wingfield BD, Read D. 2023. Fungal viruses unveiled: a comprehensive review of mycoviruses. Viruses 15:1202. doi:10.3390/v15051202 PubMed DOI PMC

Edgar RC, Taylor B, Lin V, Altman T, Barbera P, Meleshko D, Lohr D, Novakovsky G, Buchfink B, Al-Shayeb B, Banfield JF, de la Peña M, Korobeynikov A, Chikhi R, Babaian A. 2022. Petabase-scale sequence alignment catalyses viral discovery. Nature New Biol 602:142–147. doi:10.1038/s41586-021-04332-2 PubMed DOI

Hillman BI, Annisa A, Suzuki N. 2018. Viruses of plant-interacting fungi. Adv Virus Res 100:99–116. doi:10.1016/bs.aivir.2017.10.003 PubMed DOI

Heiniger U, Rigling D. 1994. Biological control of chestnut blight in Europe. Annu Rev Phytopathol 32:581–599. doi:10.1146/annurev.py.32.090194.003053 DOI

García-Pedrajas MD, Cañizares MC, Sarmiento-Villamil JL, Jacquat AG, Dambolena JS. 2019. Mycoviruses in biological control: from basic research to field implementation. Phytopathology 109:1828–1839. doi:10.1094/PHYTO-05-19-0166-RVW PubMed DOI

Ihrmark K. 2001. Double-stranded RNA elements in the root rot fungus Heterobasidion annosum. Swedish University of Agricultural Sciences, Acta Univ Agric Sueciae, Uppsala.

Vainio E.J, Hakanpää J, Dai Y-C, Hansen E, Korhonen K, Hantula J. 2011. Species of Heterobasidion host a diverse pool of partitiviruses with global distribution and interspecies transmission. Fungal Biol 115:1234–1243. doi:10.1016/j.funbio.2011.08.008 PubMed DOI

Vainio Eeva J, Hyder R, Aday G, Hansen E, Piri T, Doğmuş-Lehtijärvi T, Lehtijärvi A, Korhonen K, Hantula J. 2012. Population structure of a novel putative mycovirus infecting the conifer root-rot fungus Heterobasidion annosum sensu lato. Virology (Auckl) 422:366–376. doi:10.1016/j.virol.2011.10.032 PubMed DOI

Sutela S, Piri T, Vainio EJ. 2021. Discovery and community dynamics of novel ssRNA mycoviruses in the conifer pathogen Heterobasidion parviporum. Front Microbiol 12:770787. doi:10.3389/fmicb.2021.770787 PubMed DOI PMC

Vainio E.J, Jurvansuu J, Streng J, Rajamäki M-L, Hantula J, Valkonen JPT. 2015. Diagnosis and discovery of fungal viruses using deep sequencing of small RNAs. J Gen Virol 96:714–725. doi:10.1099/jgv.0.000003 PubMed DOI

Vainio EJ. 2019. Mitoviruses in the conifer root rot pathogens Heterobasidion annosum and H. parviporum. Virus Res 271:197681. doi:10.1016/j.virusres.2019.197681 PubMed DOI

Kuhn JH, Botella L, de la Peña M, Vainio EJ, Krupovic M, Lee BD, Navarro B, Sabanadzovic S, Simmonds P, Turina M. 2024. Ambiviricota, a novel ribovirian phylum for viruses with viroid-like properties. J Virol 98:e0083124. doi:10.1128/jvi.00831-24 PubMed DOI PMC

Vainio EJ, Keriö S, Hantula J. 2011. Description of a new putative virus infecting the conifer pathogenic fungus Heterobasidion parviporum with resemblance to Heterobasidion annosum P-type partitivirus. Arch Virol 156:79–86. doi:10.1007/s00705-010-0823-9 PubMed DOI

Vainio EJ, Korhonen K, Tuomivirta TT, Hantula J. 2010. A novel putative partitivirus of the saprotrophic fungus Heterobasidion ecrustosum infects pathogenic species of the Heterobasidion annosum complex. Fungal Biol 114:955–965. doi:10.1016/j.funbio.2010.09.006 PubMed DOI

Ihrmark K, Johannesson H, Stenström E, Stenlid J. 2002. Transmission of double-stranded RNA in Heterobasidion annosum. Fungal Genet Biol 36:147–154. doi:10.1016/S1087-1845(02)00011-7 PubMed DOI

Kashif M, Jurvansuu J, Vainio EJ, Hantula J. 2019. Alphapartitiviruses of Heterobasidion wood decay fungi affect each other’s transmission and host growth. Front Cell Infect Microbiol 9:64. doi:10.3389/fcimb.2019.00064 PubMed DOI PMC

Hantula J, Mäkelä S, Xu P, Brusila V, Nuorteva H, Kashif M, Hyder R, Vainio EJ. 2020. Multiple virus infections on Heterobasidion sp. Fungal Biol 124:102–109. doi:10.1016/j.funbio.2019.12.004 PubMed DOI

Vainio EJ, Piri T, Hantula J. 2013. Virus community dynamics in the conifer pathogenic fungus Heterobasidion parviporum following an artificial introduction of a partitivirus. Microb Ecol 65:28–38. doi:10.1007/s00248-012-0118-7 PubMed DOI

Vainio EJ, Müller MM, Korhonen K, Piri T, Hantula J. 2015. Viruses accumulate in aging infection centers of a fungal forest pathogen. ISME J 9:497–507. doi:10.1038/ismej.2014.145 PubMed DOI PMC

Piri T, Vainio EJ, Hantula J. 2023. Preventing mycelial spread of Heterobasidion annosum in young scots pine stands using fungal and viral biocontrol agents. Biol Control 184:105263. doi:10.1016/j.biocontrol.2023.105263 DOI

Ihrmark K, Stenström E, Stenlid J. 2004. Double-stranded RNA transmission through basidiospores of Heterobasidion annosum. Mycol Res 108:149–153. doi:10.1017/s0953756203008839 PubMed DOI

Hyder R, Pennanen T, Hamberg L, Vainio EJ, Piri T, Hantula J. 2013. Two viruses of Heterobasidion confer beneficial, cryptic or detrimental effects to their hosts in different situations. Fungal Ecol 6:387–396. doi:10.1016/j.funeco.2013.05.005 DOI

Jurvansuu J, Kashif M, Vaario L, Vainio EJ, Hantula J. 2014. Partitiviruses of a fungal forest pathogen have species-specific quantities of genome segments and transcripts. Virol (Auckl) 462–463:25–33. doi:10.1016/j.virol.2014.05.021 PubMed DOI

Stenlid J. 1985. Population structure of Heterobasidion annosumas determined by somatic incompatibility, sexual incompatibility, and isoenzyme patterns. Can J Bot 63:2268–2273. doi:10.1139/b85-322 DOI

Morris TJ, Dodds JA. 1979. Isolation and analysis of double-stranded RNA from virus-infected plant and fungal tissue. Phytopathology 69:854. doi:10.1094/Phyto-69-854 DOI

Tuomivirta TT, Uotila A, Hantula J. 2002. Two independent double-stranded RNA patterns occur in the Finnish Gremmeniella abietina var. abietina type A. For Pathol 32:197–205. doi:10.1046/j.1439-0329.2002.00285.x DOI

Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j 17:10. doi:10.14806/ej.17.1.200 DOI

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652. doi:10.1038/nbt.1883 PubMed DOI PMC

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421. doi:10.1186/1471-2105-10-421 PubMed DOI PMC

Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997v2 [q-bio.GN]

Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, Li H. 2021. Twelve years of SAMtools and BCFtools. Gigascience 10:1–4. doi:10.1093/gigascience/giab008 PubMed DOI PMC

Barnett DW, Garrison EK, Quinlan AR, Strömberg MP, Marth GT. 2011. BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinformatics 27:1691–1692. doi:10.1093/bioinformatics/btr174 PubMed DOI PMC

Okonechnikov K, Conesa A, García-Alcalde F. 2016. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 32:292–294. doi:10.1093/bioinformatics/btv566 PubMed DOI PMC

Milne I, Stephen G, Bayer M, Cock PJA, Pritchard L, Cardle L, Shaw PD, Marshall D. 2013. Using tablet for visual exploration of second-generation sequencing data. Brief Bioinform 14:193–202. doi:10.1093/bib/bbs012 PubMed DOI

Song L, Florea L. 2015. Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads. Gigascience 4:48. doi:10.1186/s13742-015-0089-y PubMed DOI PMC

Nawrocki EP, Eddy SR. 2013. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29:2933–2935. doi:10.1093/bioinformatics/btt509 PubMed DOI PMC

Forgia M, Navarro B, Daghino S, Cervera A, Gisel A, Perotto S, Aghayeva DN, Akinyuwa MF, Gobbi E, Zheludev IN, Edgar RC, Chikhi R, Turina M, Babaian A, Di Serio F, de la Peña M. 2023. Hybrids of RNA viruses and viroid-like elements replicate in fungi. Nat Commun 14:2591. doi:10.1038/s41467-023-38301-2 PubMed DOI PMC

Botella L, Janoušek J, Maia C, Jung MH, Raco M, Jung T. 2020. Marine oomycetes of the genus Halophytophthora harbor viruses related to bunyaviruses. Front Microbiol 11:1467. doi:10.3389/fmicb.2020.01467 PubMed DOI PMC

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010 PubMed DOI PMC

Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027. doi:10.1093/molbev/msab120 PubMed DOI PMC

Hantula J, Dusabenyagasani M, Hamelin RC. 1996. Random amplified microsatellites (RAMS) — a novel method for characterizing genetic variation within fungi. Eur J Forest Pathol 26:159–166. doi:10.1111/j.1439-0329.1996.tb00720.x DOI

Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/nmeth.2089 PubMed DOI PMC

R Core Team . 2022. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: https://www.R-project.org/. Retrieved 8 Aug 2023.

Dufková H, Berka M, Psota V, Brzobohatý B, Černý M. 2023. Environmental impacts on barley grain composition and longevity. J Exp Bot 74:1609–1628. doi:10.1093/jxb/erac498 PubMed DOI

Olson Å, Aerts A, Asiegbu F, Belbahri L, Bouzid O, Broberg A, Canbäck B, Coutinho PM, Cullen D, Dalman K, et al. . 2012. Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen. New Phytol 194:1001–1013. doi:10.1111/j.1469-8137.2012.04128.x PubMed DOI

Dorfer V, Pichler P, Stranzl T, Stadlmann J, Taus T, Winkler S, Mechtler K. 2014. MS amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. J Proteome Res 13:3679–3684. doi:10.1021/pr500202e PubMed DOI PMC

Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, Gauthier C, Jacques P-É, Li S, Xia J. 2021. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res 49:W388–W396. doi:10.1093/nar/gkab382 PubMed DOI PMC

Mu F, Li B, Cheng S, Jia J, Jiang D, Fu Y, Cheng J, Lin Y, Chen T, Xie J. 2021. Nine viruses from eight lineages exhibiting new evolutionary modes that co-infect a hypovirulent phytopathogenic fungus. PLOS Pathog 17:e1009823. doi:10.1371/journal.ppat.1009823 PubMed DOI PMC

Li W, Sun H, Cao S, Zhang A, Zhang H, Shu Y, Chen H. 2023. Extreme diversity of mycoviruses present in single strains of Rhizoctonia cerealis, the pathogen of wheat sharp eyespot. Microbiol Spectr 11:e00522–23. doi:10.1128/spectrum.00522-23 PubMed DOI PMC

Botella L, Jung MH, Rost M, Jung T. 2022. Natural populations from the Phytophthora palustris Complex show a high diversity and abundance of ssRNA and dsRNA viruses. JoF 8:1118. doi:10.3390/jof8111118 PubMed DOI PMC

Raco M, Vainio EJ, Sutela S, Eichmeier A, Hakalová E, Jung T, Botella L. 2022. High diversity of novel viruses in the tree pathogen Phytophthora castaneae revealed by high-throughput sequencing of total and small RNA. Front Microbiol 13:911474. doi:10.3389/fmicb.2022.911474 PubMed DOI PMC

Shahi S, Eusebio-Cope A, Kondo H, Hillman BI, Suzuki N. 2019. Investigation of host range of and host defense against a mitochondrially replicating mitovirus. J Virol 93:e01503-18. doi:10.1128/JVI.01503-18 PubMed DOI PMC

Whelan S, Goldman N. 2001. A general empirical model of protein evolution derived from multiple protein families using A maximum-likelihood approach. Mol Biol Evol 18:691–699. doi:10.1093/oxfordjournals.molbev.a003851 PubMed DOI

Jia J, Fu Y, Jiang D, Mu F, Cheng J, Lin Y, Li B, Marzano S-Y, Xie J. 2021. Interannual dynamics, diversity and evolution of the virome in Sclerotinia sclerotiorum from a single crop field. Virus Evol 7:veab032. doi:10.1093/ve/veab032 PubMed DOI PMC

Chiapello M, Rodríguez-Romero J, Ayllón MA, Turina M. 2020. Analysis of the virome associated to grapevine downy mildew lesions reveals new mycovirus lineages. Virus Evol 6:veaa058. doi:10.1093/ve/veaa058 PubMed DOI PMC

Guo M, Shen G, Wang J, Liu M, Bian Y, Xu Z. 2021. Mycoviral diversity and characteristics of a negative-stranded RNA virus LeNSRV1 in the edible mushroom Lentinula edodes. Virology (Auckl) 555:89–101. doi:10.1016/j.virol.2020.11.008 PubMed DOI

Drenkhan T, Sutela S, Veeväli V, Vainio EJ. 2022. Phlebiopsis gigantea strains from Estonia show potential as native biocontrol agents against heterobasidion root rot and contain diverse dsRNA and ssRNA viruses. Biol Control 167:104837. doi:10.1016/j.biocontrol.2022.104837 DOI

Le SQ, Gascuel O. 2008. An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320. doi:10.1093/molbev/msn067 PubMed DOI

Firth AE, Brierley I. 2012. Non-canonical translation in RNA viruses. J Gen Virol 93:1385–1409. doi:10.1099/vir.0.042499-0 PubMed DOI PMC

Niu S, Cao S, Wong S-M. 2014. An infectious RNA with a hepta-adenosine stretch responsible for programmed -1 ribosomal frameshift derived from a full-length cDNA clone of Hibiscus latent Singapore virus. Virol (Auckl) 449:229–234. doi:10.1016/j.virol.2013.11.021 PubMed DOI PMC

Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. doi:10.1007/BF01731581 PubMed DOI

Turina M, Lee BD, Sabanadzovic S, Vainio EJ, Navarro B, Simmonds P, Kuhn JH, Peña M, Botella L, Krupovic M. 2023. Create one new phylum, ambiviricota, including one new class, one new order, four new families, four new genera, and 20 new species, in kingdom orthornavirae (Realm riboviria). Available from: https://ictv.global/filebrowser/download/14052

Sutela S, Forgia M, Vainio EJ, Chiapello M, Daghino S, Vallino M, Martino E, Girlanda M, Perotto S, Turina M. 2020. The virome from a collection of endomycorrhizal fungi reveals new viral taxa with unprecedented genome organization. Virus Evol 6:veaa076. doi:10.1093/ve/veaa076 PubMed DOI PMC

Lee BD, Neri U, Roux S, Wolf YI, Camargo AP, Krupovic M, Simmonds P, Kyrpides N, Gophna U, Dolja VV, Koonin EV, RNA Virus Discovery Consortium . 2023. Mining metatranscriptomes reveals a vast world of viroid-like circular RNAs. Cell 186:646–661. doi:10.1016/j.cell.2022.12.039 PubMed DOI PMC

Chong LC, Lauber C. 2023. Viroid-like RNA-dependent RNA polymerase-encoding ambiviruses are abundant in complex fungi. Front Microbiol 14:1144003. doi:10.3389/fmicb.2023.1144003 PubMed DOI PMC

Forgia M, Isgandarli E, Aghayeva DN, Huseynova I, Turina M. 2021. Virome characterization of Cryphonectria parasitica isolates from Azerbaijan unveiled a new mymonavirus and a putative new RNA virus unrelated to described viral sequences. Virology (Auckl) 553:51–61. doi:10.1016/j.virol.2020.10.008 PubMed DOI

Linnakoski R, Sutela S, Coetzee MPA, Duong TA, Pavlov IN, Litovka YA, Hantula J, Wingfield BD, Vainio EJ. 2021. Armillaria root rot fungi host single-stranded RNA viruses. Sci Rep 11:7336. doi:10.1038/s41598-021-86343-7 PubMed DOI PMC

Chen Y-M, Sadiq S, Tian J-H, Chen X, Lin X-D, Shen J-J, Chen H, Hao Z-Y, Wille M, Zhou Z-C, Wu J, Li F, Wang H-W, Yang W-D, Xu Q-Y, Wang W, Gao W-H, Holmes EC, Zhang Y-Z. 2022. RNA viromes from terrestrial sites across China expand environmental viral diversity. Nat Microbiol 7:1312–1323. doi:10.1038/s41564-022-01180-2 PubMed DOI

Jalos E. 2008. Kasvatusolosuhteiden vaikutus kaksoisjuoste-RNA-virusten esiintymiseen juurikäävässä [The effect of growth conditions on the occurrence of double-stranded RNA viruses in Heterobasidion sp.]. Helsinki Metropolia University of Applied Sciences, Helsinki, Finland.

Chu Y-M, Jeon J-J, Yea S-J, Kim Y-H, Yun S-H, Lee Y-W, Kim K-H. 2002. Double-stranded RNA mycovirus from Fusarium graminearum. Appl Environ Microbiol 68:2529–2534. doi:10.1128/AEM.68.5.2529-2534.2002 PubMed DOI PMC

Hao F, Ding T, Wu M, Zhang J, Yang L, Chen W, Li G. 2018. Two novel hypovirulence-associated mycoviruses in the phytopathogenic fungus Botrytis cinerea: molecular characterization and suppression of infection cushion formation. Viruses 10:254. doi:10.3390/v10050254 PubMed DOI PMC

Segers GC, Zhang X, Deng F, Sun Q, Nuss DL. 2007. Evidence that RNA silencing functions as an antiviral defense mechanism in fungi. Proc Natl Acad Sci U S A 104:12902–12906. doi:10.1073/pnas.0702500104 PubMed DOI PMC

Hammond TM, Andrewski MD, Roossinck MJ, Keller NP. 2008. Aspergillus mycoviruses are targets and suppressors of RNA silencing. Eukaryot Cell 7:350–357. doi:10.1128/EC.00356-07 PubMed DOI PMC

Chiba S, Lin Y-H, Kondo H, Kanematsu S, Suzuki N. 2016. A novel betapartitivirus RnPV6 from Rosellinia necatrix tolerates host RNA silencing but is interfered by its defective RNAs. Virus Res 219:62–72. doi:10.1016/j.virusres.2015.10.017 PubMed DOI

Nuss DL. 2011. Mycoviruses, RNA silencing, and viral RNA recombination. Adv Virus Res 80:25–48. doi:10.1016/B978-0-12-385987-7.00002-6 PubMed DOI PMC

Zhao Y, Zhang Y, Wan X, She Y, Li M, Xi H, Xie J, Wen C. 2020. A novel ourmia-like mycovirus confers hypovirulence-associated traits on Fusarium oxysporum. Front Microbiol 11:569869. doi:10.3389/fmicb.2020.569869 PubMed DOI PMC

Hai D, Li J, Lan S, Wu T, Li Y, Cheng J, Fu Y, Lin Y, Jiang D, Wang M, Xie J. 2022. Discovery and evolution of six positive-sense RNA viruses co-infecting the hypovirulent strain SCH733 of Sclerotinia sclerotiorum. Phytopathology 112:2449–2461. doi:10.1094/PHYTO-05-22-0148-R PubMed DOI

Nuskern L, Tkalec M, Srezović B, Ježić M, Gačar M, Ćurković-Perica M. 2021. Laccase activity in fungus cryphonectria parasitica is affected by growth conditions and fungal–viral genotypic interactions. JoF 7:958. doi:10.3390/jof7110958 PubMed DOI PMC

Bradley EL, Ökmen B, Doehlemann G, Henrissat B, Bradshaw RE, Mesarich CH. 2022. Secreted glycoside hydrolase proteins as effectors and invasion patterns of plant-associated fungi and oomycetes. Front Plant Sci 13:853106. doi:10.3389/fpls.2022.853106 PubMed DOI PMC

Sun L, Dong S, Ge Y, Fonseca JP, Robinson ZT, Mysore KS, Mehta P. 2019. DiVenn: an interactive and integrated web-Based visualization tool for comparing gene lists. Front Genet 10:421. doi:10.3389/fgene.2019.00421 PubMed DOI PMC

Li S. 2019. Regulation of ribosomal proteins on viral infection. Cells 8:508. doi:10.3390/cells8050508 PubMed DOI PMC

Popp M-L, Cho H, Maquat LE. 2020. Viral subversion of nonsense-mediated mRNA decay. RNA 26:1509–1518. doi:10.1261/rna.076687.120 PubMed DOI PMC

Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S, Kundu DJ, Prakash A, Frericks-Zipper A, Eisenacher M, Walzer M, Wang S, Brazma A, Vizcaíno JA. 2022. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 50:D543–D552. doi:10.1093/nar/gkab1038 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...