Multiple Viral Infections Detected in Phytophthora condilina by Total and Small RNA Sequencing
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33916635
PubMed Central
PMC8067226
DOI
10.3390/v13040620
PII: v13040620
Knihovny.cz E-zdroje
- Klíčová slova
- Bunyavirales, RdRp, Totiviridae, dsRNA, estuaries, mycovirus, oomycete,
- MeSH
- fylogeneze MeSH
- genom virový MeSH
- malá nekódující RNA genetika MeSH
- otevřené čtecí rámce MeSH
- Phytophthora virologie MeSH
- RNA virová genetika MeSH
- RNA-viry klasifikace genetika izolace a purifikace MeSH
- sekvenční analýza DNA MeSH
- sekvenční analýza RNA * MeSH
- sekvenování transkriptomu MeSH
- virové nemoci virologie MeSH
- výpočetní biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Portugalsko MeSH
- Názvy látek
- malá nekódující RNA MeSH
- RNA virová MeSH
Marine oomycetes have recently been shown to be concurrently infected by (-)ssRNA viruses of the order Bunyavirales. In this work, even higher virus variability was found in a single isolate of Phytophthora condilina, a recently described member of Phytophthora phylogenetic Clade 6a, which was isolated from brackish estuarine waters in southern Portugal. Using total and small RNA-seq the full RdRp of 13 different potential novel bunya-like viruses and two complete toti-like viruses were detected. All these viruses were successfully confirmed by reverse transcription polymerase chain reaction (RT-PCR) using total RNA as template, but complementarily one of the toti-like and five of the bunya-like viruses were confirmed when dsRNA was purified for RT-PCR. In our study, total RNA-seq was by far more efficient for de novo assembling of the virus sequencing but small RNA-seq showed higher read numbers for most viruses. Two main populations of small RNAs (21 nts and 25 nts-long) were identified, which were in accordance with other Phytophthora species. To the best of our knowledge, this is the first study using small RNA sequencing to identify viruses in Phytophthora spp.
Zobrazit více v PubMed
Burgess T.I., Simamora A.V., White D., Wiliams B., Schwager M., Stukely M.J.C., Hardy G.E.S.J. New species from Phytophthora clade 6a: Evidence for recent radiation. Persoonia Mol. Phylogeny Evol. Fungi. 2018;41:1–17. doi: 10.3767/persoonia.2018.41.01. PubMed DOI PMC
Reddell P., Bowen G.D., Robson A.D. Nodulation of Casuarinaceae in relation to host species and soil properties. Aust. J. Bot. 1986 doi: 10.1071/BT9860435. DOI
Jung T., Stukely M.J.C., Hardy G.E.S.J., White D., Paap T., Dunstan W.A., Burgess T.I. Multiple new Phytophthora species from ITS clade 6 associated with natural ecosystems in Australia: Evolutionary and ecological implications. Persoonia Mol. Phylogeny Evol. Fungi. 2011 doi: 10.3767/003158511X557577. PubMed DOI PMC
Hacker C.V., Brasier C.M., Buck K.W. A double-stranded RNA from a Phytophthora species is related to the plant endornaviruses and contains a putative UDP glycosyltransferase gene. J. Gen. Virol. 2005;86:1561–1570. doi: 10.1099/vir.0.80808-0. PubMed DOI
Kozlakidis Z., Brown N.A., Jamal A., Phoon X., Coutts R.H.A. Incidence of endornaviruses in Phytophthora taxon douglasfir and Phytophthora ramorum. Virus Genes. 2010;40:130–134. doi: 10.1007/s11262-009-0421-7. PubMed DOI
Cai G., Myers K., Hillman B.I., Fry W.E. A novel virus of the late blight pathogen, Phytophthora infestans, with two RNA segments and a supergroup 1 RNA-dependent RNA polymerase. Virology. 2009;392:52–61. doi: 10.1016/j.virol.2009.06.040. PubMed DOI
Cai G., Hillman B.I. Phytophthora Viruses. 1st ed. Volume 86. Elsevier Inc.; Amsterdam, The Netherlands: 2013.
Cai G., Krychiw J.F., Myers K., Fry W.E., Hillman B.I. A new virus from the plant pathogenic oomycete Phytophthora infestans with an 8 kb dsRNA genome: The sixth member of a proposed new virus genus. Virology. 2013;435:341–349. doi: 10.1016/j.virol.2012.10.012. PubMed DOI
Cai G., Myers K., Fry W.E., Hillman B.I. A member of the virus family Narnaviridae from the plant pathogenic oomycete Phytophthora infestans. Arch. Virol. 2012;157:165–169. doi: 10.1007/s00705-011-1126-5. PubMed DOI
Cai G., Fry W.E., Hillman B.I. PiRV-2 stimulates sporulation in Phytophthora infestans. Virus Res. 2019;271:197674. doi: 10.1016/j.virusres.2019.197674. PubMed DOI
Poimala A., Vainio E.J. Complete genome sequence of a novel toti-like virus from the plant—Pathogenic oomycete Phytophthora cactorum. Arch. Virol. 2020;165:1679–1682. doi: 10.1007/s00705-020-04642-2. PubMed DOI PMC
Uchida K., Sakuta K., Ito A., Takahashi Y., Katayama Y., Fukuhara T., Uematsu S., Okada R., Moriyama H. Two novel endornaviruses co-infecting a Phytophthora pathogen of Asparagus officinalis modulate the developmental stages and fungicide sensitivities of the host oomycete. Front. Microbiol. 2021;12:122. doi: 10.3389/fmicb.2021.633502. PubMed DOI PMC
Yokoi T., Yamashita S., Hibi T. The nucleotide sequence and genome organization of Sclerophthora macrospora virus A. Virology. 2003;311:394–399. doi: 10.1016/S0042-6822(03)00183-1. PubMed DOI
Grasse W., Zipper R., Totska M., Spring O. Plasmopara halstedii virus causes hypovirulence in Plasmopara halstedii, the downy mildew pathogen of the sunflower. Fungal Genet. Biol. 2013;57:42–47. doi: 10.1016/j.fgb.2013.05.009. PubMed DOI
Grasse W., Spring O. ssRNA viruses from biotrophic Oomycetes form a new phylogenetic group between Nodaviridae and Tombusviridae. Arch. Virol. 2017;162:1319–1324. doi: 10.1007/s00705-017-3243-2. PubMed DOI
Chiapello M., Rodríguez-Romero J., Nerva L., Forgia M., Chitarra W., Ayllón M.A., Turina M. Putative new plant viruses associated with Plasmopara viticola-infected grapevine samples. Ann. Appl. Biol. 2020;176:180–191. doi: 10.1111/aab.12563. DOI
Chiapello M., Rodríguez-Romero J., Ayllón M.A., Turina M. Analysis of the virome associated to grapevine downy mildew lesions reveals new mycovirus lineages. Virus Evol. 2020;6:veaa058. doi: 10.1093/ve/veaa058. PubMed DOI PMC
Gillings M.R., Tesoriero L.A., Gunn L.V. Detection of double-stranded RNA and virus-like particles in Australian isolates of Pythium irregulare. Plant Pathol. 1993;42:6–15. doi: 10.1111/j.1365-3059.1993.tb01466.x. DOI
Shiba K., Hatta C., Sasai S., Tojo M., Ohki S.T., Mochizuki T. Genome sequence of a novel partitivirus isolated from the oomycete Pythium nunn. Arch. Virol. 2018;163:2561–2563. doi: 10.1007/s00705-018-3880-0. PubMed DOI
Sasai S., Tamura K., Tojo M., Herrero M.L., Hoshino T., Ohki S.T., Mochizuki T. A novel non-segmented double-stranded RNA virus from an Arctic isolate of Pythium polare. Virology. 2018;522:234–243. doi: 10.1016/j.virol.2018.07.012. PubMed DOI
Botella L., Janoušek J., Maia C., Jung M.H., Raco M., Jung T. Marine oomycetes of the genus Halophytophthora harbor viruses related to Bunyaviruses. Front. Microbiol. 2020;11:1467. doi: 10.3389/fmicb.2020.01467. PubMed DOI PMC
Kreuze J.F., Perez A., Untiveros M., Quispe D., Fuentes S., Barker I., Simon R. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: A generic method for diagnosis, discovery and sequencing of viruses. Virology. 2009;388:1–7. doi: 10.1016/j.virol.2009.03.024. PubMed DOI
Segers G.C., Zhang X., Deng F., Sun Q., Nuss D.L. Evidence that RNA silencing functions as an antiviral defense mechanism in fungi. Proc. Natl. Acad. Sci. USA. 2007;104:12902–12906. doi: 10.1073/pnas.0702500104. PubMed DOI PMC
Nuss D.L. Mycoviruses, RNA silencing, and viral RNA recombination. Adv. Virus Res. 2011;80:25–48. doi: 10.1016/B978-0-12-385987-7.00002-6. PubMed DOI PMC
Chiba S., Lin Y.H., Kondo H., Kanematsu S., Suzuki N. A novel betapartitivirus RnPV6 from Rosellinia necatrix tolerates host RNA silencing but is interfered by its defective RNAs. Virus Res. 2016;219:62–72. doi: 10.1016/j.virusres.2015.10.017. PubMed DOI
Ozkan S., Mohorianu I., Xu P., Dalmay T., Coutts R.H.A. Profile and functional analysis of small RNAs derived from Aspergillus fumigatus infected with double-stranded RNA mycoviruses. BMC Genom. 2017;18:416. doi: 10.1186/s12864-017-3773-8. PubMed DOI PMC
Silvestri A., Turina M., Fiorilli V., Miozzi L., Venice F., Bonfante P., Lanfranco L. Different genetic sources contribute to the small RNA population in the arbuscular mycorrhizal fungus Gigaspora margarita. Front. Microbiol. 2020 doi: 10.3389/fmicb.2020.00395. PubMed DOI PMC
Vainio E.J., Jurvansuu J., Streng J., Rajama M., Hantula J., Valkonen J.P.T. Diagnosis and discovery of fungal viruses using deep sequencing of small RNAs. J. Gen. Virol. 2015;96:714–725. doi: 10.1099/jgv.0.000003. PubMed DOI
Donaire L., Pagán I., Ayllón M.A. Characterization of Botrytis cinerea negative-stranded RNA virus 1, a new mycovirus related to plant viruses, and a reconstruction of host pattern evolution in negative-sense ssRNA viruses. Virology. 2016;499:212–218. doi: 10.1016/j.virol.2016.09.017. PubMed DOI
Nerva L., Ciuffo M., Vallino M., Margaria P., Varese G.C., Gnavi G., Turina M. Multiple approaches for the detection and characterization of viral and plasmid symbionts from a collection of marine fungi. Virus Res. 2016;219:22–38. doi: 10.1016/j.virusres.2015.10.028. PubMed DOI
Vetukuri R.R., Åsman A.K.M., Tellgren-Roth C., Jahan S.N., Reimegård J., Fogelqvist J., Savenkov E., Söderbom F., Avrova A.O., Whisson S.C., et al. Evidence for small RNAs homologous to effector-encoding genes and transposable elements in the oomycete Phytophthora infestans. PLoS ONE. 2012;7:e51399. doi: 10.1371/journal.pone.0051399. PubMed DOI PMC
Fahlgren N., Bollmann S.R., Kasschau K.D., Cuperus J.T., Press C.M., Sullivan C.M., Chapman E.J., Hoyer J.S., Gilbert K.B., Grünwald N.J., et al. Phytophthora have distinct endogenous small RNA populations that include short interfering and microRNAs. PLoS ONE. 2013;8:e77181. doi: 10.1371/journal.pone.0077181. PubMed DOI PMC
Jia J., Lu W., Zhong C., Zhou R., Xu J., Liu W., Gou X., Wang Q., Yin J., Xu C., et al. The 25-26 nt small RNAs in Phytophthora parasitica are associated with efficient silencing of homologous endogenous genes. Front. Microbiol. 2017;8:773. doi: 10.3389/fmicb.2017.00773. PubMed DOI PMC
Dunker F., Trutzenberg A., Rothenpieler J.S., Kuhn S., Pröls R., Schreiber T., Tissier A., Kemen A., Kemen E., Hückelhoven R., et al. Oomycete small RNAs bind to the plant RNA-induced silencing complex for virulence. Elife. 2020;9:e56096. doi: 10.7554/eLife.56096. PubMed DOI PMC
Suttle C.A. Marine viruses—Major players in the global ecosystem. Nat. Rev. Microbiol. 2007;5:801–812. doi: 10.1038/nrmicro1750. PubMed DOI
Wommack K.E., Colwell R.R. Virioplankton: Viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 2000;64:69–114. doi: 10.1128/MMBR.64.1.69-114.2000. PubMed DOI PMC
Weinbauer M.G., Rassoulzadegan F. Are viruses driving microbial diversification and diversity? Environ. Microbiol. 2004;6:1–11. doi: 10.1046/j.1462-2920.2003.00539.x. PubMed DOI
Breitbart M. Marine viruses: Truth or Dare. Ann. Rev. Mar. Sci. 2012;4:425–448. doi: 10.1146/annurev-marine-120709-142805. PubMed DOI
Chen X., Wei W., Wang J., Li H., Sun J., Ma R., Jiao N., Zhang R. Tide driven microbial dynamics through virus-host interactions in the estuarine ecosystem. Water Res. 2019;160:118–129. doi: 10.1016/j.watres.2019.05.051. PubMed DOI
Hingamp P., Grimsley N., Acinas S.G., Clerissi C., Subirana L., Poulain J., Ferrera I., Sarmento H., Villar E., Lima-Mendez G., et al. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME J. 2013;7:1678–1695. doi: 10.1038/ismej.2013.59. PubMed DOI PMC
Jung T., Scanu B., Brasier C., Webber J., Milenković I., Corcobado T., Tomšovský M., Pánek M., Bakonyi J., Maia C., et al. A survey in natural forest ecosystems of Vietnam reveals high diversity of both new and described Phytophthora taxa including P. ramorum. Forests. 2020;11:93. doi: 10.3390/f11010093. DOI
Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC
Edgar R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Miller M.A., Pfeiffer W., Schwartz T. Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees; Proceedings of the Gateway Computing Environments Workshop (GCE); New Orleans, LA, USA. 14 November 2010; pp. 1–8.
Wickner R.B., Ghabrial S.A., Nibert M.L., Patterson J.L., Wang C. Virus Taxonomy. Elsevier; Amsterdam, The Netherlands: 2012. Totiviridae; pp. 639–650.
Doherty M., Sanganee K., Kozlakidis Z., Coutts R.H.A., Brasier C.M., Buck K.W. Molecular Characterization of a totivirus and a partitivirus from the Genus Ophiostoma. For. Res. 2007;192:188–192. doi: 10.1111/j.1439-0434.2007.01207.x. DOI
Sasaki A., Kanematsu S., Onoue M., Oyama Y., Yoshida K. Infection of Rosellinia necatrix with purified viral particles of a member of Partitiviridae (RnPV1-W8) Arch. Virol. 2006;151:697–707. doi: 10.1007/s00705-005-0662-2. PubMed DOI
Deakin G., Dobbs E., Bennett J.M., Jones I.M., Grogan H.M., Burton K.S. Multiple viral infections in Agaricus bisporus—Characterisation of 18 unique RNA viruses and 8 ORFans identified by deep sequencing. Sci. Rep. 2017;7:2469. doi: 10.1038/s41598-017-01592-9. PubMed DOI PMC
Zhu J.Z., Zhu H.J., Gao B.D., Zhou Q., Zhong J. Diverse, Novel mycoviruses from the virome of a hypovirulent Sclerotium rolfsii strain. Front. Plant Sci. 2018;9:1738. doi: 10.3389/fpls.2018.01738. PubMed DOI PMC
Hillman B.I., Annisa A., Suzuki N. Advances in Virus Research. Volume 100. Academic Press Inc.; New York, NY, USA: 2018. Viruses of plant-interacting fungi; pp. 99–116. PubMed
Hantula J., Mäkelä S., Xu P., Brusila V., Nuorteva H., Kashif M., Hyder R., Vainio E.J. Multiple virus infections on Heterobasidion sp. Fungal Biol. 2020;124:102–109. doi: 10.1016/j.funbio.2019.12.004. PubMed DOI
Botella L., Hantula J. Description, distribution, and relevance of viruses of the forest pathogen Gremmeniella abietina. Viruses. 2018;10:654. doi: 10.3390/v10110654. PubMed DOI PMC
Vainio E.J., Müller M.M., Korhonen K., Piri T., Hantula J. Viruses accumulate in aging infection centers of a fungal forest pathogen. ISME J. 2015;9:497–507. doi: 10.1038/ismej.2014.145. PubMed DOI PMC
Ferron F., Weber F., de la Torre J.C., Reguera J. Transcription and replication mechanisms of Bunyaviridae and Arenaviridae L proteins. Virus Res. 2017;234:118–134. doi: 10.1016/j.virusres.2017.01.018. PubMed DOI PMC
Nerva L., Forgia M., Ciuffo M., Chitarra W., Chiapello M., Vallino M., Varesec G.C., Turinaa M. The mycovirome of a fungal collection from the sea cucumber Holothuria polii. Virus Res. 2019;273:197737. doi: 10.1016/j.virusres.2019.197737. PubMed DOI
Lin Y.-H., Fujita M., Chiba S., Hyodo K., Andika I.B., Suzuki N., Kondo H. Two novel fungal negative-strand RNA viruses related to mymonaviruses and phenuiviruses in the shiitake mushroom (Lentinula edodes) Virology. 2019;533:125–136. doi: 10.1016/j.virol.2019.05.008. PubMed DOI
Muller R., Poch O., Delarue M., Bishop D.H.L., Bouloy M. Rift valley fever virus L segment: Correction of the sequence and possible functional role of newly identified regions conserved in RNA-dependent polymerases. J. Gen. Virol. 1994;75:1345–1352. doi: 10.1099/0022-1317-75-6-1345. PubMed DOI
Makarova K.S., Aravind L., Grishin N.V., Rogozin I.B., Koonin E.V. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res. 2002;30:482–496. doi: 10.1093/nar/30.2.482. PubMed DOI PMC
Terns M.P., Terns R.M. CRISPR-based adaptive immune systems. Curr. Opin. Microbiol. 2011;14:321–327. doi: 10.1016/j.mib.2011.03.005. PubMed DOI PMC
Touriol C., Bornes S., Bonnal S., Audigier S., Prats H., Prats A.C., Vagner S. Generation of protein isoform diversity by alternative initiation of translation at non-AUG codons. Biol. Cell. 2003;95:169–178. doi: 10.1016/S0248-4900(03)00033-9. PubMed DOI
Bekaert M., Richard H., Prum B., Rousset J.P. Identification of programmed translational -1 frameshifting sites in the genome of Saccharomyces cerevisiae. Genome Res. 2005;15:1411–1420. doi: 10.1101/gr.4258005. PubMed DOI PMC
Firth A.E., Brierley I. Non-canonical translation in RNA viruses. J. Gen. Virol. 2012;93:1385. doi: 10.1099/vir.0.042499-0. PubMed DOI PMC
Weber F., Wagner V., Rasmussen S.B., Hartmann R., Paludan S.R. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J. Virol. 2006;80:5059–5064. doi: 10.1128/JVI.80.10.5059-5064.2006. PubMed DOI PMC
O’Brien C.A., Hobson-Peters J., Yam A.W.Y., Colmant A.M.G., McLean B.J., Prow N.A., Watterson D., Hall-Mendelin S., Warrilow D., Ng M.L., et al. Viral RNA intermediates as targets for detection and discovery of novel and emerging mosquito-borne viruses. PLoS Negl. Trop. Dis. 2015;9:e0003629. doi: 10.1371/journal.pntd.0003629. PubMed DOI PMC
Wang Q., Li T., Xu K., Zhang W., Wang X., Quan J., Jin W., Zhang M., Fan G., Wang M.-B., et al. The tRNA-derived small rnas regulate gene expression through triggering sequence-specific degradation of target transcripts in the oomycete pathogen Phytophthora sojae. Front. Plant Sci. 2016;7 doi: 10.3389/fpls.2016.01938. PubMed DOI PMC
Mueller S., Gausson V., Vodovar N., Deddouche S., Troxler L., Perot J., Pfeffer S., Hoffmann J.A., Saleh M.-C., Imler J.-L. RNAi-mediated immunity provides strong protection against the negative-strand RNA vesicular stomatitis virus in Drosophila. Proc. Natl. Acad. Sci. USA. 2010;107:19390–19395. doi: 10.1073/pnas.1014378107. PubMed DOI PMC
Chiba S., Lin Y.-H., Kondo H., Kanematsu S., Suzuki N. A Novel victorivirus from a phytopathogenic fungus, Rosellinia necatrix, is infectious as particles and targeted by RNA silencing. J. Virol. 2013;87:6727–6738. doi: 10.1128/JVI.00557-13. PubMed DOI PMC
Nerva L., Turina M., Zanzotto A., Gardiman M., Gaiotti F., Gambino G., Chitarra W. Isolation, molecular characterization and virome analysis of culturable wood fungal endophytes in esca symptomatic and asymptomatic grapevine plants. Environ. Microbiol. 2019;21:2886–2904. doi: 10.1111/1462-2920.14651. PubMed DOI
Kuhn J.H., Adkins S., Alioto D., Alkhovsky S.V., Amarasinghe G.K., Anthony S.J., Avšiā-Županc T., Ayllón M.A., Bahl J. Taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Arch. Virol. 2020;165:3023–3072. doi: 10.1007/s00705-020-04731-2. PubMed DOI PMC
Sutela S., Forgia M., Vainio E.J., Chiapello M., Daghino S., Vallino M., Martino E., Girlanda M., Perotto S., Turina M. The virome from a collection of endomycorrhizal fungi reveals new viral taxa with unprecedented genome organization. Virus Evol. 2020;6:veaa076. doi: 10.1093/ve/veaa076. PubMed DOI PMC
Shi M., Lin X.-D., Tian J.-H., Chen L.-J., Chen X., Li C.-X., Qin X.-C., Li J., Cao J.-P., Eden J.-S., et al. Redefining the invertebrate RNA virosphere. Nature. 2016;540:539–543. doi: 10.1038/nature20167. PubMed DOI
Charon J., Marcelino V.R., Wetherbee R., Verbruggen H., Holmes E.C. Metatranscriptomic identification of diverse and divergent RNA viruses in green and chlorarachniophyte algae cultures. Viruses. 2020;12:1180. doi: 10.3390/v12101180. PubMed DOI PMC
Beakes G.W., Sekimoto S. The evolutionary phylogeny of oomycetes—Insights gained from studies of holocarpic parasites of algae and invertebrates. In: Lamour K., Kamoun S., editors. Oomycete Genetics and Genomics: Diversity, Interactions, and Research Tools. John Wiley and Sons Inc.; Hoboken, NJ, USA: 2009. pp. 1–24.
O’Callaghan I., Harrison S., Fitzpatrick D., Sullivan T. The freshwater isopod Asellus aquaticus as a model biomonitor of environmental pollution: A review. Chemosphere. 2019;235:498–509. doi: 10.1016/j.chemosphere.2019.06.217. PubMed DOI
Thines M., Choi Y.-J. Evolution, Diversity, and Taxonomy of the Peronosporaceae, with Focus on the Genus Peronospora. Phytopathology. 2016;106:6–18. doi: 10.1094/PHYTO-05-15-0127-RVW. PubMed DOI
Characterization of Mycoviruses in Armillaria ostoyae and A. cepistipes in the Czech Republic
Bunyaviruses Affect Growth, Sporulation, and Elicitin Production in Phytophthora cactorum