Phytohormone and Amino Acid Changes in Cherry Radish as Metabolic Adaptive Response to Arsenic Single and Multi-Contamination
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000845
Ministerstvo Školství, Mládeže a Tělovýchovy
RO0423
Ministerstvo Zemědělství
PubMed
40149926
PubMed Central
PMC11940314
DOI
10.3390/biom15030390
PII: biom15030390
Knihovny.cz E-zdroje
- Klíčová slova
- amino acids, hormones, metalloid, stress, vegetable,
- MeSH
- aminokyseliny * metabolismus MeSH
- anthokyaniny metabolismus MeSH
- antioxidancia metabolismus MeSH
- arsen * metabolismus MeSH
- hlízy rostlin metabolismus růst a vývoj MeSH
- látky znečišťující půdu metabolismus toxicita MeSH
- listy rostlin metabolismus účinky léků MeSH
- malondialdehyd metabolismus MeSH
- oxidační stres účinky léků MeSH
- Raphanus * metabolismus růst a vývoj účinky léků MeSH
- regulátory růstu rostlin * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminokyseliny * MeSH
- anthokyaniny MeSH
- antioxidancia MeSH
- arsen * MeSH
- látky znečišťující půdu MeSH
- malondialdehyd MeSH
- regulátory růstu rostlin * MeSH
This study investigated the metabolic adaptive responses to As contamination and As co-contamination with cadmium, lead, and zinc in the leaves and tubers of cherry radish (Raphanus sativus var. sativus Pers.). The response was assessed by measuring malondialdehyde levels, total phenolic content (TPC), total anthocyanin pigment (TAC), growth and stress phytohormone concentration, and free amino acid content. The characteristic As accumulation of single contamination resulted in a decrease in tuber growth. However, in the case of co-contamination, As uptake was influenced by the presence of other potentially toxic elements (PTEs), mainly zinc, with no significant effect on growth. Both contaminated treatments exhibited significant differences in metabolite levels among the organs, along with notable changes in their contents. Increases in malondialdehyde, TPC, and TAC indicated induced oxidative stress and an antioxidant response that was more pronounced by As co-contamination. Also, the results for phytohormones, which showed both increases and decreases, along with selected free amino acids (which showed increases), demonstrated a more significant influence of As co-contamination. Based on these findings, it can be concluded that the response of cherry radish to contaminated treatments exhibited significant differences in the studied parameters, along with variability in the results, reflecting the extent of the effects of PTEs that induce oxidative stress.
Zobrazit více v PubMed
Wang Z., Meng B., Zhang W., Bai J., Ma Y., Liu M. Multi-target risk assessment of potentially toxic elements in farmland soil based on the environment-ecological-health effect. Int. J. Environ. Res. Public Health. 2018;15:1101. doi: 10.3390/ijerph15061101. PubMed DOI PMC
Niede R., Benbi D.K. Integrated review of the nexus between toxic elements in the environment and human health. AIMS Public Health. 2022;9:758. doi: 10.3934/publichealth.2022052. PubMed DOI PMC
Emamverdian A., Ding Y., Hasanuzzaman M., Barker J., Liu G., Li Y., Mokhberdoran F. Insight into the biochemical and physiological mechanisms of nanoparticles-induced arsenic tolerance in bamboo. Front. Plant Sci. 2023;14:1121886. doi: 10.3389/fpls.2023.1121886. PubMed DOI PMC
Awasthi S., Chauhan R., Srivastava S., Tripathi R.D., Peña-Castro J.M. The journey of arsenic from soil to grain in rice. Front. Plant Sci. 2017;8:1007. doi: 10.3389/fpls.2017.01007. PubMed DOI PMC
De Francisco P., Martín-González A., Rodriguez-Martín D., Díaz S. Interactions with arsenic: Mechanisms of toxicity and cellular resistance in eukaryotic microorganisms. Int. J. Environ. Res. Public Health. 2021;18:12226. doi: 10.3390/ijerph182212226. PubMed DOI PMC
Thakur S., Choudhary S., Majeed A., Singh A., Bhardwaj P. Insights into the molecular mechanism of arsenic phytoremediation. J. Plant Growth Regul. 2020;39:532–543. doi: 10.1007/s00344-019-10019-w. DOI
Piršelová B., Galuščáková Ľ., Lengyelová L., Kubová V., Jandová V., Hegrová J. Assessment of the hormetic effect of arsenic on growth and physiology of two cultivars of maize (Zea mays L.) Plants. 2022;11:3433. doi: 10.3390/plants11243433. PubMed DOI PMC
Sinha D., Datta S., Mishra R., Agarwal P., Kumari T., Adeyemi S.B., Kumar Maurya A., Ganguly S., Atique U., Seal S., et al. Negative impacts of arsenic on plants and mitigation strategies. Plants. 2023;12:1815. doi: 10.3390/plants12091815. PubMed DOI PMC
Van der Ent A., Baker A.J., Reeves R.D., Pollard A.J., Schat H. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil. 2013;362:319–334. doi: 10.1007/s11104-012-1287-3. DOI
Beniwal R., Yadav R., Ramakrishna W. Multifarious effects of arsenic on plants and strategies for mitigation. Agriculture. 2023;13:401. doi: 10.3390/agriculture13020401. DOI
Mondal S., Pramanik K., Ghosh S.K., Pal P., Ghosh P.K., Ghosh A., Maiti T.K. Molecular insight into arsenic uptake, transport, phytotoxicity, and defense responses in plants: A critical review. Planta. 2022;255:87. doi: 10.1007/s00425-022-03869-4. PubMed DOI
Novák M., Zemanová V., Lhotská M., Pavlík M., Klement A., Hnilička F., Pavlíková D. Response of carrot (Daucus carota L.) to multi-contaminated soil from historic mining and smelting activities. Int. J. Mol. Sci. 2023;24:17345. doi: 10.3390/ijms242417345. PubMed DOI PMC
Ali S., Tyagi A., Mushtaq M., Al-Mahmoudi H., Bae H. Harnessing plant microbiome for mitigating arsenic toxicity in sustainable agriculture. Environ. Pollut. 2022;300:118940. doi: 10.1016/j.envpol.2022.118940. PubMed DOI
Lhotská M., Zemanová V., Pavlík M., Pavlíková D., Hnilička F., Popov M. Leaf fitness and stress response after the application of contaminated soil dust particulate matter. Sci. Rep. 2022;12:10046. doi: 10.1038/s41598-022-13931-6. PubMed DOI PMC
Rodríguez-Ruiz M., Aparicio-Chacón M.V., Palma J.M., Corpas F.J. Arsenate disrupts ion balance, sulfur and nitric oxide metabolisms in roots and leaves of pea (Pisum sativum L.) plants. Environ. Exp. Bot. 2019;161:143–156. doi: 10.1016/j.envexpbot.2018.06.028. DOI
Li X., Ahammed G.J., Zhang X.-N., Zhang L., Yan P., Zhang L.-P., Fu J.-Y., Han W.-Y. Melatonin-mediated regulation of anthocyanin biosynthesis and antioxidant defense confer tolerance to arsenic stress in Camellia sinensis L. J. Hazard. Mater. 2021;403:123922. doi: 10.1016/j.jhazmat.2020.123922. PubMed DOI
Zemanová V., Lhotská M., Novák M., Hnilička F., Popov M., Pavlíková D. Multicontamination toxicity evaluation in the model plant Lactuca sativa L. Plants. 2024;13:1356. doi: 10.3390/plants13101356. PubMed DOI PMC
Pavlík M., Pavlíková D., Staszková L., Neuberg M., Kaliszová R., Száková J., Tlustoš P. The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L. Ecotox. Environ. Saf. 2010;73:1309–1313. doi: 10.1016/j.ecoenv.2010.07.008. PubMed DOI
Kumar A., Dwivedi S., Singh R.P., Chakrabarty D., Mallick S., Trivedi P.K., Adhikari B., Tripathi R.D. Evaluation of amino acid profile in contrasting arsenic accumulating rice genotypes under arsenic stress. Biol. Plant. 2014;58:733–742. doi: 10.1007/s10535-014-0435-4. DOI
Tripathi P., Tripathi R.D., Singh R.P., Dwivedi S., Chakrabarty D., Trivedi P.K., Adhikari B. Arsenite tolerance in rice (Oryza sativa L.) involves coordinated role of metabolic pathways of thiols and amino acids. Environ. Sci. Pollut. Res. 2013;20:884–896. doi: 10.1007/s11356-012-1205-5. PubMed DOI
Okunev R.V. Free amino acid accumulation in soil and tomato plants (Solanum lycopersicum L.) associated with arsenic stress. Water Air Soil Pollut. 2019;230:253. doi: 10.1007/s11270-019-4309-4. DOI
Zemanová V., Pavlíková D., Pavlík M. Free amino acid regulation in fronds and roots of two Pteris cretica L. ferns under arsenic stress. Plant Soil Environ. 2020;66:483–492. doi: 10.17221/369/2020-PSE. DOI
Pratelli R., Pilot G. Regulation of amino acid metabolic enzymes and transporters in plants. J. Exp. Bot. 2014;65:5535–5556. doi: 10.1093/jxb/eru320. PubMed DOI
Ros R., Muñoz-Bertomeu J., Krueger S. Serine in plants: Biosynthesis, metabolism, and functions. Trends Plant Sci. 2014;19:564–569. doi: 10.1016/j.tplants.2014.06.003. PubMed DOI
Lynch J.H., Dudareva N. Aromatic amino acids: A complex network ripe for future exploration. Trends Plant Sci. 2020;25:670–681. doi: 10.1016/j.tplants.2020.02.005. PubMed DOI
Less H., Angelovici R., Tzin V., Galili G. Principal transcriptional regulation and genome-wide system interactions of the Asp-family and aromatic amino acid networks of amino acid metabolism in plants. Amino Acids. 2010;39:1023–1028. doi: 10.1007/s00726-010-0566-7. PubMed DOI
Häusler R.E., Ludewig F., Krueger S. Amino acids—A life between metabolism and signaling. Plant Sci. 2014;229:225–237. doi: 10.1016/j.plantsci.2014.09.011. PubMed DOI
Schenck C.A., Maeda H.A. Tyrosine biosynthesis, metabolism, and catabolism in plants. Phytochemistry. 2018;149:82–102. doi: 10.1016/j.phytochem.2018.02.003. PubMed DOI
Pathare V., Srivastava S., Suprasanna P. Evaluation of effects of arsenic on carbon, nitrogen and sulphur metabolism in two contrasting varieties of Brassica juncea. Acta Physiol. Plant. 2013;35:3377–3389. doi: 10.1007/s11738-013-1370-2. DOI
Chen S., Wang Q., Lu H., Li J., Yang D., Liu J., Yan C. Phenolic metabolism and related heavy metal tolerance mechanism in Kandelia obovata under Cd and Zn stress. Ecotoxicol. Environ. Saf. 2019;169:134–143. doi: 10.1016/j.ecoenv.2018.11.004. PubMed DOI
Ghori N.H., Ghori T., Hayat M.Q., Imadi S.R., Gul A., Altay V., Ozturk M. Heavy metal stress and responses in plants. Int. J. Environ. Sci. Technol. 2019;16:1807–1828. doi: 10.1007/s13762-019-02215-8. DOI
Li Q., Gao Y., Yang A. Sulfur homeostasis in plants. Int. J. Mol. Sci. 2020;21:8926. doi: 10.3390/ijms21238926. PubMed DOI PMC
Zhao F.-J., McGrath S.P., Meharg A.A. Arsenic as a food chain contaminant: Mechanisms of plant uptake and metabolism and mitigation strategies. Annu. Rev. Plant Biol. 2010;61:535–559. doi: 10.1146/annurev-arplant-042809-112152. PubMed DOI
Kopřiva S., Karvansara P.R., Takahashi H. Adaptive modifications in plant sulfur metabolism over evolutionary time. J. Exp. Bot. 2024;75:4697–4711. doi: 10.1093/jxb/erae252. PubMed DOI PMC
Gopalapillai Y., Hale B.A. Internal versus external dose for describing ternary metal mixture (Ni, Cu, Cd) chronic toxicity to Lemna minor. Environ. Sci. Technol. 2017;51:5233–5241. doi: 10.1021/acs.est.6b06608. PubMed DOI
Shi G., Liu H., Zhou D., Zhou H., Fan G., Chen W., Li J., Lou L., Gao Y. Sulfur reduces the root-to-shoot translocation of arsenic and cadmium by regulating their vacuolar sequestration in wheat (Triticum aestivum L.) Front. Plant Sci. 2022;13:1032681. doi: 10.3389/fpls.2022.1032681. PubMed DOI PMC
Yang W., Luo L., Bostick B.C., Wiita E., Cheng Y., Shen Y. Effect of combined arsenic and lead exposure on their uptake and translocation in Indian mustard. Environ. Pollut. 2021;274:116549. doi: 10.1016/j.envpol.2021.116549. PubMed DOI
Gong B., He E., Qiu H., Van Gestel C.A.M., Romero-Freire A., Zhao L., Xu X., Cao X. Interactions of arsenic, copper, and zinc in soil-plant system: Partition, uptake and phytotoxicity. Sci. Total Environ. 2020;745:140926. doi: 10.1016/j.scitotenv.2020.140926. PubMed DOI
Campos N.V., Araújo T.O., Arcanjo-Silva S., Freitas-Silva L., Azevedo A.A., Nunes-Nesi A. Arsenic hyperaccumulation induces metabolic reprogramming in Pityrogramma calomelanos to reduce oxidative stress. Physiol. Plant. 2016;157:135–146. doi: 10.1111/ppl.12426. PubMed DOI
Zemanová V., Pavlíková D., Hnilička F., Pavlík M. Arsenic toxicity-induced physiological and metabolic changes in the shoots of Pteris cretica and Spinacia oleracea. Plants. 2021;10:2009. doi: 10.3390/plants10102009. PubMed DOI PMC
Pavlíková D., Zemanová V., Pavlík M. Health risk and quality assessment of vegetables cultivated on soils from a heavily polluted old mining area. Toxics. 2023;11:583. doi: 10.3390/toxics11070583. PubMed DOI PMC
Peng Y.-J., Hu C.Y., Li W., Dai Z.H., Liu C.J., Ma L.Q. Arsenic induced plant growth by increasing its nutrient uptake in As-hyperaccumulator Pteris vittata: Comparison of arsenate and arsenite. Environ. Pollut. 2023;322:121168. doi: 10.1016/j.envpol.2023.121168. PubMed DOI
Cao Q., Hu Q.H., Khan S., Wang Z.J., Lin A.J. Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil. J. Hazard. Mater. 2007;148:377–382. doi: 10.1016/j.jhazmat.2007.02.050. PubMed DOI
Ronzan M., Zanella L., Fattorini L., Della Rovere F., Urgast D., Cantamessa S., Nigro A., Barbieri M., Sanità di Toppi L., Berta G., et al. The morphogenic responses and phytochelatin complexes induced by arsenic in Pteris vittata change in the presence of cadmium. Environ. Exp. Bot. 2017;133:176–187. doi: 10.1016/j.envexpbot.2016.10.011. DOI
Liu Y.-M., Liu D.-Y., Zhang W., Chen X.-X., Zhao Q.-Y., Chen X.-P., Zou C.-Q. Health risk assessment of heavy metals (Zn, Cu, Cd, Pb, As and Cr) in wheat grain receiving repeated Zn fertilizers. Environ. Pollut. 2020;257:113581. doi: 10.1016/j.envpol.2019.113581. PubMed DOI
Chen X.J., Tao H.F., Wu Y.Z., Xu X.M. Effects of cadmium on metabolism of photosynthetic pigment and photosynthetic system in Lactuca sativa L. revealed by physiological and proteomics analysis. Sci. Hortic. 2022;305:111371. doi: 10.1016/j.scienta.2022.111371. DOI
Bidar G., Pelfrêne A., Schwartz C., Waterlot C., Sahmer K., Marot F., Douay F. Urban kitchen gardens: Effect of the soil contamination and parameters on the trace element accumulation in vegetables—A review. Sci. Total Environ. 2020;738:139569. doi: 10.1016/j.scitotenv.2020.139569. PubMed DOI
Vaněk A., Ettler V., Grygar T., Borůvka L., Šebek O., Drábek O. Combined chemical and mineralogical evidence for heavy metal binding in mining- and smelting-affected alluvial soils. Pedosphere. 2008;18:464–478. doi: 10.1016/S1002-0160(08)60037-5. DOI
Přerostová S., Dobrev P.I., Knirsch V., Jarošová J., Gaudinová A., Zupková B., Prášil I.T., Janda T., Brzobohatý B., Skalák J. Light quality and intensity modulate cold acclimation in Arabidopsis. Int. J. Mol. Sci. 2021;22:2736. doi: 10.3390/ijms22052736. PubMed DOI PMC
Heath R.L., Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968;125:189–198. doi: 10.1016/0003-9861(68)90654-1. PubMed DOI
Singleton V.L., Rossi J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965;16:144–158. doi: 10.5344/ajev.1965.16.3.144. DOI
Giusti M.M., Wrolstad R.E. Characterization and measurement of anthocyanins by UV-visible spectroscopy. In: Wrolstad R.E., Acree T.E., An H., Decker E.A., Penner M.H., Reid D.S., Schwartz S.J., Shoemaker C.F., Sporns P., editors. Current Protocols in Food Analytical Chemistry. John Wiley & Sons; New York, NY, USA: 2001. pp. F1.2.1–F1.2.13.
Tremlová J., Sehnal M., Száková J., Goessler W., Steiner O., Najmanová J., Horáková T., Tlustoš P. A Profile of arsenic species in different vegetables growing in arsenic-contaminated soils. Arch. Agron. Soil Sci. 2017;63:918–927. doi: 10.1080/03650340.2016.1242721. DOI
Kabata-Pendias A., Pendias H. Trace Elements in Soils and Plants. 3rd ed. CRC Press; Boca Raton, FL, USA: 2001. p. 403.
Paul S., Upadhyay S.K., Lal E.P. Accumulation of arsenic in radish (Raphanus sativus L.), and their effects on growth and antioxidant activities. Int. J. Pharm. Sci. Res. 2014;5:3536.
Pickering I.J., Prince R.C., George M.J., Smith R.D., George G.N., Salt D.E. Reduction and coordination of arsenic in Indian mustard. Plant Physiol. 2000;122:1171–1177. doi: 10.1104/pp.122.4.1171. PubMed DOI PMC
Di X., Beesley L., Zhang Z., Zhi S., Jia Y., Ding Y. Microbial arsenic methylation in soil and uptake and metabolism of methylated arsenic in plants: A review. Int. J. Environ. Res. Public Health. 2019;16:5012. doi: 10.3390/ijerph16245012. PubMed DOI PMC
Pavlík M., Pavlíková D., Zemanová V., Hnilička F., Urbanová V., Száková J. Trace elements present in airborne particulate matter–Stressors of plant metabolism. Ecotox. Environ. Safe. 2012;79:101–107. doi: 10.1016/j.ecoenv.2011.12.009. PubMed DOI
Fayiga A.O., Ma L.Q., Cao X. Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L. Environ. Pollut. 2004;132:289–296. doi: 10.1016/j.envpol.2004.04.020. PubMed DOI
Sneller F.E.C., Van Heerwaarden L.M., Schat H., Verkleij J.A. Toxicity, metal uptake, and accumulation of phytochelatins in Silene vulgaris exposed to mixtures of cadmium and arsenate. Environ. Toxicol. Chem. 2000;19:2982–2986. doi: 10.1002/etc.5620191219. DOI
Das D.K., Garai T.K., Sarkar S., Sur P. Interaction of arsenic with zinc and organics in a rice (Oryza sativa L.)—Cultivated field in India. Sci. World J. 2005;5:646–651. PubMed PMC
Das I., Sanyal S.K., Ghosh K., Das D.K. Arsenic mitigation in soil-plant system through zinc application in West Bengal soils. Bioremediat. J. 2016;20:24–37. doi: 10.1080/10889868.2015.1124062. DOI
Craw D., Chappell D.A. Metal redistribution in historic mine wastes, Coromandel Peninsula, New Zealand. N. Z. J. Geol. Geophys. 2000;43:187–198. doi: 10.1080/00288306.2000.9514880. DOI
Singh S., Parihar P., Singh R., Singh V.P., Prasad S.M. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Front. Plant Sci. 2016;6:1143. doi: 10.3389/fpls.2015.01143. PubMed DOI PMC
Ejaz U., Khan S.M., Khalid N., Ahmad Z., Jehangir S., Fatima Rizvi Z., Lho L.H., Han H., Raposo A. Detoxifying the heavy metals: A multipronged study of tolerance strategies against heavy metals toxicity in plants. Front. Plant Sci. 2023;14:1154571. doi: 10.3389/fpls.2023.1154571. PubMed DOI PMC
Alia N., Sardar K., Said M., Salma K., Sadia A., Sadaf S., Toqeer A., Miklas S. Toxicity and bioaccumulation of heavy metals in spinach (Spinacia oleracea) grown in a controlled environment. Int. J. Environ. Res. Public Health. 2015;12:7400–7416. doi: 10.3390/ijerph120707400. PubMed DOI PMC
Arif N., Yadav V., Singh S., Singh S., Ahmad P., Mishra R.K., Sharma S., Tripathi D.K., Dubey N.K., Chauhan D.K. Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Front. Environ. Sci. 2016;4:69. doi: 10.3389/fenvs.2016.00069. DOI
Ghani M.A., Abbas M.M., Ali B., Aziz R., Qadri R.W.K., Noor A., Azam M., Bahzad S., Saleem M.H., Abualreesh M.H., et al. Alleviating role of gibberellic acid in enhancing plant growth and stimulating phenolic compounds in carrot (Daucus carota L.) under lead stress. Sustainability. 2021;13:12329. doi: 10.3390/su132112329. DOI
Morales M., Munné-Bosch S. Malondialdehyde: Facts and artifacts. Plant Physiol. 2019;180:1246–1250. doi: 10.1104/pp.19.00405. PubMed DOI PMC
Lukatkin A.S., Bashmakov D.I., Al Harbawee W.E.Q., Da Silva J.A.T. Assessment of physiological and biochemical responses of Amaranthus retroflexus seedlings to the accumulation of heavy metals with regards to phytoremediation potential. Int. J. Phytoremediat. 2020;23:219–230. doi: 10.1080/15226514.2020.1807904. PubMed DOI
Cakaj A., Drzewiecka K., Hanć A., Lisiak-Zielińska M., Ciszewska L., Drapikowska M. Plants as effective bioindicators for heavy metal pollution monitoring. Environ. Res. 2024;256:119222. doi: 10.1016/j.envres.2024.119222. PubMed DOI
Aydin D., Yalçin E., Çavuşoğlu K. Metal chelating and anti-radical activity of Salvia officinalis in the ameliorative effects against uranium toxicity. Sci. Rep. 2022;12:15845. doi: 10.1038/s41598-022-20115-9. PubMed DOI PMC
Saeed S.H., Gillani G.M.S., Gazder U., Shaheen S., Gul A., Arifuzzaman M., Mahmood Q. Interactive effects of toxic metals on the total phenolic and flavonoid in Hydrocotyle umbellata L. Asian J. Agric. Biol. 2024;2024:2023122
Goncharuk E.A., Zagoskina N.V. Heavy metals, their phytotoxicity, and the role of phenolic antioxidants in plant stress responses with focus on cadmium: Review. Molecules. 2023;28:3921. doi: 10.3390/molecules28093921. PubMed DOI PMC
Sharma A., Shahzad B., Rehman A., Bhardwaj R., Landi M., Zheng B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules. 2019;24:2452. doi: 10.3390/molecules24132452. PubMed DOI PMC
Shomali A., Das S., Arif N., Sarraf M., Zahra N., Yadav V., Aliniaeifard S., Chauhan D.K., Hasanuzzaman M. Diverse physiological roles of flavonoids in plant environmental stress responses and tolerance. Plants. 2022;11:3158. doi: 10.3390/plants11223158. PubMed DOI PMC
Pratyusha D.S., Sarada D.V.L. MYB transcription factors-master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses. Plant Cell Rep. 2022;41:2245–2260. doi: 10.1007/s00299-022-02927-1. PubMed DOI
Shoeva O.Y., Khlestkina E.K. Anthocyanins participate in the protection of wheat seedlings against cadmium stress. Cereal Res. Commun. 2018;46:242–252. doi: 10.1556/0806.45.2017.070. DOI
Rahman S.U., Li Y., Hussain S., Hussain B., Khan W.-U.-D., Riaz L., Ashraf M.N., Khaliq M.A., Du Z., Cheng H. Role of phytohormones in heavy metal tolerance in plants: A review. Ecol. Indic. 2023;146:109844. doi: 10.1016/j.ecolind.2022.109844. DOI
Sharma A., Kapoor D., Gautam S., Landi M., Kandhol N., Araniti F., Ramakrishnan M., Satish L., Singh V.P., Sharma P., et al. Heavy metal induced regulation of plant biology: Recent insights. Physiol. Plant. 2022;174:e13688. doi: 10.1111/ppl.13688. PubMed DOI
Sah S.K., Reddy K.R., Li J. Abscisic acid and abiotic stress tolerance in crop plants. Front. Plant Sci. 2016;7:571. doi: 10.3389/fpls.2016.00571. PubMed DOI PMC
Bücker-Neto L., Paiva A.L.S., Machado R.D., Arenhart R.A., Margis-Pinheiro M. Interactions between plant hormones and heavy metals responses. Genet. Mol. Biol. 2017;40:373–386. doi: 10.1590/1678-4685-gmb-2016-0087. PubMed DOI PMC
Hajam A.H., Ali M.S., Singh S.K., Bashri G. Understanding cytokinin: Biosynthesis, signal transduction, growth regulation, and phytohormonal crosstalk under heavy metal stress. Environ. Exp. Bot. 2024;228:106025. doi: 10.1016/j.envexpbot.2024.106025. DOI
Chen P., Yang R., Bartels D., Dong T., Duan H. Roles of abscisic acid and gibberellins in stem/root tuber development. Int. J. Mol. Sci. 2022;23:4955. doi: 10.3390/ijms23094955. PubMed DOI PMC
Dai Z.H., Guan D.X., Bundschuh J., Ma L.Q. Roles of phytohormones in mitigating abiotic stress in plants induced by metal(loid)s As, Cd, Cr, Hg, and Pb. Crit. Rev. Environ. Sci. Technol. 2023;53:1310–1330. doi: 10.1080/10643389.2022.2134694. DOI
Mohan T.C., Castrillo G., Navarro C., Zarco-Fernandez S., Ramireddy E., Mateo C., Leyva A. Cytokinin determines thiol-mediated arsenic tolerance and accumulation. Plant Physiol. 2016;171:1418–1426. PubMed PMC
Sharma A., Prakash S., Chattopadhyay D. Killing two birds with a single stone—Genetic manipulation of cytokinin oxidase/dehydrogenase (CKX) genes for enhancing crop productivity and amelioration of drought stress response. Front. Genet. 2022;13:941595. doi: 10.3389/fgene.2022.941595. PubMed DOI PMC
Hoffmann M., Hentrich M., Pollmann S. Auxin-oxylipin crosstalk: Relationship of antagonists. J. Integr. Plant Biol. 2011;53:429–445. doi: 10.1111/j.1744-7909.2011.01053.x. PubMed DOI
Tran L.S.P., Shinozaki K., Yamaguchi-Shinozaki K. Role of cytokinin responsive two-component system in ABA and osmotic stress signaling. Plant Signal. Behav. 2010;5:148–150. doi: 10.4161/psb.5.2.10411. PubMed DOI PMC
Hönig M., Plíhalová L., Husičková A., Nisler J., Doležal K. Role of cytokinins in senescence, antioxidant defence and photosynthesis. Int. J. Mol. Sci. 2018;19:4045. doi: 10.3390/ijms19124045. PubMed DOI PMC
Wasternack C., Song S. Jasmonates: Biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J. Exp. Bot. 2017;68:1303–1321. doi: 10.1093/jxb/erw443. PubMed DOI
Yuan J., Cheng L., Li H., An C., Wang Y., Zhang F. Physiological and protein profiling analysis provides insight into the underlying molecular mechanism of potato tuber development regulated by jasmonic acid in vitro. BMC Plant Biol. 2022;22:481. doi: 10.1186/s12870-022-03852-x. PubMed DOI PMC
Islam E., Khan M.T., Irem S. Biochemical mechanisms of signaling: Perspectives in plants under arsenic stress. Ecotoxicol. Environ. Saf. 2015;114:126–133. doi: 10.1016/j.ecoenv.2015.01.017. PubMed DOI
Betti C., Della Rovere F., Piacentini D., Fattorini L., Falasca G., Altamura M.M. Jasmonates, ethylene and brassinosteroids control adventitious and lateral rooting as stress avoidance responses to heavy metals and metalloids. Biomolecules. 2021;11:77. doi: 10.3390/biom11010077. PubMed DOI PMC
Wang Y., Mostafa S., Zeng W., Jin B. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. Int. J. Mol. Sci. 2021;22:8568. doi: 10.3390/ijms22168568. PubMed DOI PMC
Liu J., Qiu G., Liu C., Li H., Chen X., Fu Q., Lin Y., Guo B. Salicylic acid, a multifaceted hormone, combats abiotic stresses in plants. Life. 2022;12:886. doi: 10.3390/life12060886. PubMed DOI PMC
Raza S.H., Shafiq F. Exploring the role of salicylic acid to attenuate cadmium accumulation in radish (Raphanus sativus) Int. J. Agric. Biol. 2013;15:547–552.
Wani A.B., Chadar H., Wani A.H., Singh S., Upadhyay N. Salicylic acid to decrease plant stress. Environ. Chem. Lett. 2017;15:101–123. doi: 10.1007/s10311-016-0584-0. DOI
Hildebrandt T., Nunes-Nesi A., Araujo W., Braun H.-P. Amino acid catabolism in plants. Mol. Plant. 2015;8:1563–1579. doi: 10.1016/j.molp.2015.09.005. PubMed DOI
Zemanová V., Popov M., Pavlíková D., Kotrba P., Hnilička F., Česká J., Pavlík M. Effect of arsenic stress on 5-methylcytosine, photosynthetic parameters and nutrient content in arsenic hyperaccumulator Pteris cretica (L.) var. Albo-lineata. BMC Plant Biol. 2020;20:130. doi: 10.1186/s12870-020-2325-6. PubMed DOI PMC
Parthasarathy A., Cross P.J., Dobson R.C.J., Adams L.E., Savka M.A., Hudson A.O. A three-ring circus: Metabolism of the three proteogenic aromatic amino acids and their role in the health of plants and animals. Front. Mol. Biosci. 2018;5:29. doi: 10.3389/fmolb.2018.00029. PubMed DOI PMC
Zhao Y. Auxin biosynthesis: A simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol. Plant. 2012;5:334–338. doi: 10.1093/mp/ssr104. PubMed DOI PMC
Singh H., Bhat J.A., Singh V.P., Corpas F.J., Yadav S.R. Auxin metabolic network regulates the plant response to metalloids stress. J. Hazard. Mater. 2021;405:124250. doi: 10.1016/j.jhazmat.2020.124250. PubMed DOI
Jiang J., Wang Z., Kong X., Chen Y., Li J. Exogenous tryptophan application improves cadmium tolerance and inhibits cadmium upward transport in broccoli (Brassica oleracea var. italica). Front. Plant Sci. 2022;13:969675. doi: 10.3389/fpls.2022.969675. PubMed DOI PMC
Amir R. Current understanding of the factors regulating methionine content in vegetative tissues of higher plants. Amino Acids. 2010;39:917–931. doi: 10.1007/s00726-010-0482-x. PubMed DOI
Zimmermann S.E., Benstein R.M., Flores-Tornero M., Blau S., Anoman A.D., Rosa-Téllez S., Gerlich S.C., Salem M.A., Alseekh S., Kopřiva S., et al. The phosphorylated pathway of serine biosynthesis links plant growth with nitrogen metabolism. Plant Physiol. 2021;186:1487–1506. doi: 10.1093/plphys/kiab167. PubMed DOI PMC
Glawischnig E., Tomas A., Eisenreich W., Spiteller P., Bacher A., Gierl A. Auxin biosynthesis in maize kernels. Plant Physiol. 2000;123:1109–1119. doi: 10.1104/pp.123.3.1109. PubMed DOI PMC
Pavlíková D., Pavlík M., Procházková D., Zemanová V., Hnilička F., Wilhelmová N. Nitrogen metabolism and gas exchange parameters associated with zinc stress in tobacco expressing an ipt gene for cytokinin synthesis. J. Plant Physiol. 2014;171:559–564. doi: 10.1016/j.jplph.2013.11.016. PubMed DOI