Phytohormone and Amino Acid Changes in Cherry Radish as Metabolic Adaptive Response to Arsenic Single and Multi-Contamination

. 2025 Mar 08 ; 15 (3) : . [epub] 20250308

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40149926

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000845 Ministerstvo Školství, Mládeže a Tělovýchovy
RO0423 Ministerstvo Zemědělství

This study investigated the metabolic adaptive responses to As contamination and As co-contamination with cadmium, lead, and zinc in the leaves and tubers of cherry radish (Raphanus sativus var. sativus Pers.). The response was assessed by measuring malondialdehyde levels, total phenolic content (TPC), total anthocyanin pigment (TAC), growth and stress phytohormone concentration, and free amino acid content. The characteristic As accumulation of single contamination resulted in a decrease in tuber growth. However, in the case of co-contamination, As uptake was influenced by the presence of other potentially toxic elements (PTEs), mainly zinc, with no significant effect on growth. Both contaminated treatments exhibited significant differences in metabolite levels among the organs, along with notable changes in their contents. Increases in malondialdehyde, TPC, and TAC indicated induced oxidative stress and an antioxidant response that was more pronounced by As co-contamination. Also, the results for phytohormones, which showed both increases and decreases, along with selected free amino acids (which showed increases), demonstrated a more significant influence of As co-contamination. Based on these findings, it can be concluded that the response of cherry radish to contaminated treatments exhibited significant differences in the studied parameters, along with variability in the results, reflecting the extent of the effects of PTEs that induce oxidative stress.

Zobrazit více v PubMed

Wang Z., Meng B., Zhang W., Bai J., Ma Y., Liu M. Multi-target risk assessment of potentially toxic elements in farmland soil based on the environment-ecological-health effect. Int. J. Environ. Res. Public Health. 2018;15:1101. doi: 10.3390/ijerph15061101. PubMed DOI PMC

Niede R., Benbi D.K. Integrated review of the nexus between toxic elements in the environment and human health. AIMS Public Health. 2022;9:758. doi: 10.3934/publichealth.2022052. PubMed DOI PMC

Emamverdian A., Ding Y., Hasanuzzaman M., Barker J., Liu G., Li Y., Mokhberdoran F. Insight into the biochemical and physiological mechanisms of nanoparticles-induced arsenic tolerance in bamboo. Front. Plant Sci. 2023;14:1121886. doi: 10.3389/fpls.2023.1121886. PubMed DOI PMC

Awasthi S., Chauhan R., Srivastava S., Tripathi R.D., Peña-Castro J.M. The journey of arsenic from soil to grain in rice. Front. Plant Sci. 2017;8:1007. doi: 10.3389/fpls.2017.01007. PubMed DOI PMC

De Francisco P., Martín-González A., Rodriguez-Martín D., Díaz S. Interactions with arsenic: Mechanisms of toxicity and cellular resistance in eukaryotic microorganisms. Int. J. Environ. Res. Public Health. 2021;18:12226. doi: 10.3390/ijerph182212226. PubMed DOI PMC

Thakur S., Choudhary S., Majeed A., Singh A., Bhardwaj P. Insights into the molecular mechanism of arsenic phytoremediation. J. Plant Growth Regul. 2020;39:532–543. doi: 10.1007/s00344-019-10019-w. DOI

Piršelová B., Galuščáková Ľ., Lengyelová L., Kubová V., Jandová V., Hegrová J. Assessment of the hormetic effect of arsenic on growth and physiology of two cultivars of maize (Zea mays L.) Plants. 2022;11:3433. doi: 10.3390/plants11243433. PubMed DOI PMC

Sinha D., Datta S., Mishra R., Agarwal P., Kumari T., Adeyemi S.B., Kumar Maurya A., Ganguly S., Atique U., Seal S., et al. Negative impacts of arsenic on plants and mitigation strategies. Plants. 2023;12:1815. doi: 10.3390/plants12091815. PubMed DOI PMC

Van der Ent A., Baker A.J., Reeves R.D., Pollard A.J., Schat H. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil. 2013;362:319–334. doi: 10.1007/s11104-012-1287-3. DOI

Beniwal R., Yadav R., Ramakrishna W. Multifarious effects of arsenic on plants and strategies for mitigation. Agriculture. 2023;13:401. doi: 10.3390/agriculture13020401. DOI

Mondal S., Pramanik K., Ghosh S.K., Pal P., Ghosh P.K., Ghosh A., Maiti T.K. Molecular insight into arsenic uptake, transport, phytotoxicity, and defense responses in plants: A critical review. Planta. 2022;255:87. doi: 10.1007/s00425-022-03869-4. PubMed DOI

Novák M., Zemanová V., Lhotská M., Pavlík M., Klement A., Hnilička F., Pavlíková D. Response of carrot (Daucus carota L.) to multi-contaminated soil from historic mining and smelting activities. Int. J. Mol. Sci. 2023;24:17345. doi: 10.3390/ijms242417345. PubMed DOI PMC

Ali S., Tyagi A., Mushtaq M., Al-Mahmoudi H., Bae H. Harnessing plant microbiome for mitigating arsenic toxicity in sustainable agriculture. Environ. Pollut. 2022;300:118940. doi: 10.1016/j.envpol.2022.118940. PubMed DOI

Lhotská M., Zemanová V., Pavlík M., Pavlíková D., Hnilička F., Popov M. Leaf fitness and stress response after the application of contaminated soil dust particulate matter. Sci. Rep. 2022;12:10046. doi: 10.1038/s41598-022-13931-6. PubMed DOI PMC

Rodríguez-Ruiz M., Aparicio-Chacón M.V., Palma J.M., Corpas F.J. Arsenate disrupts ion balance, sulfur and nitric oxide metabolisms in roots and leaves of pea (Pisum sativum L.) plants. Environ. Exp. Bot. 2019;161:143–156. doi: 10.1016/j.envexpbot.2018.06.028. DOI

Li X., Ahammed G.J., Zhang X.-N., Zhang L., Yan P., Zhang L.-P., Fu J.-Y., Han W.-Y. Melatonin-mediated regulation of anthocyanin biosynthesis and antioxidant defense confer tolerance to arsenic stress in Camellia sinensis L. J. Hazard. Mater. 2021;403:123922. doi: 10.1016/j.jhazmat.2020.123922. PubMed DOI

Zemanová V., Lhotská M., Novák M., Hnilička F., Popov M., Pavlíková D. Multicontamination toxicity evaluation in the model plant Lactuca sativa L. Plants. 2024;13:1356. doi: 10.3390/plants13101356. PubMed DOI PMC

Pavlík M., Pavlíková D., Staszková L., Neuberg M., Kaliszová R., Száková J., Tlustoš P. The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L. Ecotox. Environ. Saf. 2010;73:1309–1313. doi: 10.1016/j.ecoenv.2010.07.008. PubMed DOI

Kumar A., Dwivedi S., Singh R.P., Chakrabarty D., Mallick S., Trivedi P.K., Adhikari B., Tripathi R.D. Evaluation of amino acid profile in contrasting arsenic accumulating rice genotypes under arsenic stress. Biol. Plant. 2014;58:733–742. doi: 10.1007/s10535-014-0435-4. DOI

Tripathi P., Tripathi R.D., Singh R.P., Dwivedi S., Chakrabarty D., Trivedi P.K., Adhikari B. Arsenite tolerance in rice (Oryza sativa L.) involves coordinated role of metabolic pathways of thiols and amino acids. Environ. Sci. Pollut. Res. 2013;20:884–896. doi: 10.1007/s11356-012-1205-5. PubMed DOI

Okunev R.V. Free amino acid accumulation in soil and tomato plants (Solanum lycopersicum L.) associated with arsenic stress. Water Air Soil Pollut. 2019;230:253. doi: 10.1007/s11270-019-4309-4. DOI

Zemanová V., Pavlíková D., Pavlík M. Free amino acid regulation in fronds and roots of two Pteris cretica L. ferns under arsenic stress. Plant Soil Environ. 2020;66:483–492. doi: 10.17221/369/2020-PSE. DOI

Pratelli R., Pilot G. Regulation of amino acid metabolic enzymes and transporters in plants. J. Exp. Bot. 2014;65:5535–5556. doi: 10.1093/jxb/eru320. PubMed DOI

Ros R., Muñoz-Bertomeu J., Krueger S. Serine in plants: Biosynthesis, metabolism, and functions. Trends Plant Sci. 2014;19:564–569. doi: 10.1016/j.tplants.2014.06.003. PubMed DOI

Lynch J.H., Dudareva N. Aromatic amino acids: A complex network ripe for future exploration. Trends Plant Sci. 2020;25:670–681. doi: 10.1016/j.tplants.2020.02.005. PubMed DOI

Less H., Angelovici R., Tzin V., Galili G. Principal transcriptional regulation and genome-wide system interactions of the Asp-family and aromatic amino acid networks of amino acid metabolism in plants. Amino Acids. 2010;39:1023–1028. doi: 10.1007/s00726-010-0566-7. PubMed DOI

Häusler R.E., Ludewig F., Krueger S. Amino acids—A life between metabolism and signaling. Plant Sci. 2014;229:225–237. doi: 10.1016/j.plantsci.2014.09.011. PubMed DOI

Schenck C.A., Maeda H.A. Tyrosine biosynthesis, metabolism, and catabolism in plants. Phytochemistry. 2018;149:82–102. doi: 10.1016/j.phytochem.2018.02.003. PubMed DOI

Pathare V., Srivastava S., Suprasanna P. Evaluation of effects of arsenic on carbon, nitrogen and sulphur metabolism in two contrasting varieties of Brassica juncea. Acta Physiol. Plant. 2013;35:3377–3389. doi: 10.1007/s11738-013-1370-2. DOI

Chen S., Wang Q., Lu H., Li J., Yang D., Liu J., Yan C. Phenolic metabolism and related heavy metal tolerance mechanism in Kandelia obovata under Cd and Zn stress. Ecotoxicol. Environ. Saf. 2019;169:134–143. doi: 10.1016/j.ecoenv.2018.11.004. PubMed DOI

Ghori N.H., Ghori T., Hayat M.Q., Imadi S.R., Gul A., Altay V., Ozturk M. Heavy metal stress and responses in plants. Int. J. Environ. Sci. Technol. 2019;16:1807–1828. doi: 10.1007/s13762-019-02215-8. DOI

Li Q., Gao Y., Yang A. Sulfur homeostasis in plants. Int. J. Mol. Sci. 2020;21:8926. doi: 10.3390/ijms21238926. PubMed DOI PMC

Zhao F.-J., McGrath S.P., Meharg A.A. Arsenic as a food chain contaminant: Mechanisms of plant uptake and metabolism and mitigation strategies. Annu. Rev. Plant Biol. 2010;61:535–559. doi: 10.1146/annurev-arplant-042809-112152. PubMed DOI

Kopřiva S., Karvansara P.R., Takahashi H. Adaptive modifications in plant sulfur metabolism over evolutionary time. J. Exp. Bot. 2024;75:4697–4711. doi: 10.1093/jxb/erae252. PubMed DOI PMC

Gopalapillai Y., Hale B.A. Internal versus external dose for describing ternary metal mixture (Ni, Cu, Cd) chronic toxicity to Lemna minor. Environ. Sci. Technol. 2017;51:5233–5241. doi: 10.1021/acs.est.6b06608. PubMed DOI

Shi G., Liu H., Zhou D., Zhou H., Fan G., Chen W., Li J., Lou L., Gao Y. Sulfur reduces the root-to-shoot translocation of arsenic and cadmium by regulating their vacuolar sequestration in wheat (Triticum aestivum L.) Front. Plant Sci. 2022;13:1032681. doi: 10.3389/fpls.2022.1032681. PubMed DOI PMC

Yang W., Luo L., Bostick B.C., Wiita E., Cheng Y., Shen Y. Effect of combined arsenic and lead exposure on their uptake and translocation in Indian mustard. Environ. Pollut. 2021;274:116549. doi: 10.1016/j.envpol.2021.116549. PubMed DOI

Gong B., He E., Qiu H., Van Gestel C.A.M., Romero-Freire A., Zhao L., Xu X., Cao X. Interactions of arsenic, copper, and zinc in soil-plant system: Partition, uptake and phytotoxicity. Sci. Total Environ. 2020;745:140926. doi: 10.1016/j.scitotenv.2020.140926. PubMed DOI

Campos N.V., Araújo T.O., Arcanjo-Silva S., Freitas-Silva L., Azevedo A.A., Nunes-Nesi A. Arsenic hyperaccumulation induces metabolic reprogramming in Pityrogramma calomelanos to reduce oxidative stress. Physiol. Plant. 2016;157:135–146. doi: 10.1111/ppl.12426. PubMed DOI

Zemanová V., Pavlíková D., Hnilička F., Pavlík M. Arsenic toxicity-induced physiological and metabolic changes in the shoots of Pteris cretica and Spinacia oleracea. Plants. 2021;10:2009. doi: 10.3390/plants10102009. PubMed DOI PMC

Pavlíková D., Zemanová V., Pavlík M. Health risk and quality assessment of vegetables cultivated on soils from a heavily polluted old mining area. Toxics. 2023;11:583. doi: 10.3390/toxics11070583. PubMed DOI PMC

Peng Y.-J., Hu C.Y., Li W., Dai Z.H., Liu C.J., Ma L.Q. Arsenic induced plant growth by increasing its nutrient uptake in As-hyperaccumulator Pteris vittata: Comparison of arsenate and arsenite. Environ. Pollut. 2023;322:121168. doi: 10.1016/j.envpol.2023.121168. PubMed DOI

Cao Q., Hu Q.H., Khan S., Wang Z.J., Lin A.J. Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil. J. Hazard. Mater. 2007;148:377–382. doi: 10.1016/j.jhazmat.2007.02.050. PubMed DOI

Ronzan M., Zanella L., Fattorini L., Della Rovere F., Urgast D., Cantamessa S., Nigro A., Barbieri M., Sanità di Toppi L., Berta G., et al. The morphogenic responses and phytochelatin complexes induced by arsenic in Pteris vittata change in the presence of cadmium. Environ. Exp. Bot. 2017;133:176–187. doi: 10.1016/j.envexpbot.2016.10.011. DOI

Liu Y.-M., Liu D.-Y., Zhang W., Chen X.-X., Zhao Q.-Y., Chen X.-P., Zou C.-Q. Health risk assessment of heavy metals (Zn, Cu, Cd, Pb, As and Cr) in wheat grain receiving repeated Zn fertilizers. Environ. Pollut. 2020;257:113581. doi: 10.1016/j.envpol.2019.113581. PubMed DOI

Chen X.J., Tao H.F., Wu Y.Z., Xu X.M. Effects of cadmium on metabolism of photosynthetic pigment and photosynthetic system in Lactuca sativa L. revealed by physiological and proteomics analysis. Sci. Hortic. 2022;305:111371. doi: 10.1016/j.scienta.2022.111371. DOI

Bidar G., Pelfrêne A., Schwartz C., Waterlot C., Sahmer K., Marot F., Douay F. Urban kitchen gardens: Effect of the soil contamination and parameters on the trace element accumulation in vegetables—A review. Sci. Total Environ. 2020;738:139569. doi: 10.1016/j.scitotenv.2020.139569. PubMed DOI

Vaněk A., Ettler V., Grygar T., Borůvka L., Šebek O., Drábek O. Combined chemical and mineralogical evidence for heavy metal binding in mining- and smelting-affected alluvial soils. Pedosphere. 2008;18:464–478. doi: 10.1016/S1002-0160(08)60037-5. DOI

Přerostová S., Dobrev P.I., Knirsch V., Jarošová J., Gaudinová A., Zupková B., Prášil I.T., Janda T., Brzobohatý B., Skalák J. Light quality and intensity modulate cold acclimation in Arabidopsis. Int. J. Mol. Sci. 2021;22:2736. doi: 10.3390/ijms22052736. PubMed DOI PMC

Heath R.L., Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968;125:189–198. doi: 10.1016/0003-9861(68)90654-1. PubMed DOI

Singleton V.L., Rossi J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965;16:144–158. doi: 10.5344/ajev.1965.16.3.144. DOI

Giusti M.M., Wrolstad R.E. Characterization and measurement of anthocyanins by UV-visible spectroscopy. In: Wrolstad R.E., Acree T.E., An H., Decker E.A., Penner M.H., Reid D.S., Schwartz S.J., Shoemaker C.F., Sporns P., editors. Current Protocols in Food Analytical Chemistry. John Wiley & Sons; New York, NY, USA: 2001. pp. F1.2.1–F1.2.13.

Tremlová J., Sehnal M., Száková J., Goessler W., Steiner O., Najmanová J., Horáková T., Tlustoš P. A Profile of arsenic species in different vegetables growing in arsenic-contaminated soils. Arch. Agron. Soil Sci. 2017;63:918–927. doi: 10.1080/03650340.2016.1242721. DOI

Kabata-Pendias A., Pendias H. Trace Elements in Soils and Plants. 3rd ed. CRC Press; Boca Raton, FL, USA: 2001. p. 403.

Paul S., Upadhyay S.K., Lal E.P. Accumulation of arsenic in radish (Raphanus sativus L.), and their effects on growth and antioxidant activities. Int. J. Pharm. Sci. Res. 2014;5:3536.

Pickering I.J., Prince R.C., George M.J., Smith R.D., George G.N., Salt D.E. Reduction and coordination of arsenic in Indian mustard. Plant Physiol. 2000;122:1171–1177. doi: 10.1104/pp.122.4.1171. PubMed DOI PMC

Di X., Beesley L., Zhang Z., Zhi S., Jia Y., Ding Y. Microbial arsenic methylation in soil and uptake and metabolism of methylated arsenic in plants: A review. Int. J. Environ. Res. Public Health. 2019;16:5012. doi: 10.3390/ijerph16245012. PubMed DOI PMC

Pavlík M., Pavlíková D., Zemanová V., Hnilička F., Urbanová V., Száková J. Trace elements present in airborne particulate matter–Stressors of plant metabolism. Ecotox. Environ. Safe. 2012;79:101–107. doi: 10.1016/j.ecoenv.2011.12.009. PubMed DOI

Fayiga A.O., Ma L.Q., Cao X. Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L. Environ. Pollut. 2004;132:289–296. doi: 10.1016/j.envpol.2004.04.020. PubMed DOI

Sneller F.E.C., Van Heerwaarden L.M., Schat H., Verkleij J.A. Toxicity, metal uptake, and accumulation of phytochelatins in Silene vulgaris exposed to mixtures of cadmium and arsenate. Environ. Toxicol. Chem. 2000;19:2982–2986. doi: 10.1002/etc.5620191219. DOI

Das D.K., Garai T.K., Sarkar S., Sur P. Interaction of arsenic with zinc and organics in a rice (Oryza sativa L.)—Cultivated field in India. Sci. World J. 2005;5:646–651. PubMed PMC

Das I., Sanyal S.K., Ghosh K., Das D.K. Arsenic mitigation in soil-plant system through zinc application in West Bengal soils. Bioremediat. J. 2016;20:24–37. doi: 10.1080/10889868.2015.1124062. DOI

Craw D., Chappell D.A. Metal redistribution in historic mine wastes, Coromandel Peninsula, New Zealand. N. Z. J. Geol. Geophys. 2000;43:187–198. doi: 10.1080/00288306.2000.9514880. DOI

Singh S., Parihar P., Singh R., Singh V.P., Prasad S.M. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Front. Plant Sci. 2016;6:1143. doi: 10.3389/fpls.2015.01143. PubMed DOI PMC

Ejaz U., Khan S.M., Khalid N., Ahmad Z., Jehangir S., Fatima Rizvi Z., Lho L.H., Han H., Raposo A. Detoxifying the heavy metals: A multipronged study of tolerance strategies against heavy metals toxicity in plants. Front. Plant Sci. 2023;14:1154571. doi: 10.3389/fpls.2023.1154571. PubMed DOI PMC

Alia N., Sardar K., Said M., Salma K., Sadia A., Sadaf S., Toqeer A., Miklas S. Toxicity and bioaccumulation of heavy metals in spinach (Spinacia oleracea) grown in a controlled environment. Int. J. Environ. Res. Public Health. 2015;12:7400–7416. doi: 10.3390/ijerph120707400. PubMed DOI PMC

Arif N., Yadav V., Singh S., Singh S., Ahmad P., Mishra R.K., Sharma S., Tripathi D.K., Dubey N.K., Chauhan D.K. Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Front. Environ. Sci. 2016;4:69. doi: 10.3389/fenvs.2016.00069. DOI

Ghani M.A., Abbas M.M., Ali B., Aziz R., Qadri R.W.K., Noor A., Azam M., Bahzad S., Saleem M.H., Abualreesh M.H., et al. Alleviating role of gibberellic acid in enhancing plant growth and stimulating phenolic compounds in carrot (Daucus carota L.) under lead stress. Sustainability. 2021;13:12329. doi: 10.3390/su132112329. DOI

Morales M., Munné-Bosch S. Malondialdehyde: Facts and artifacts. Plant Physiol. 2019;180:1246–1250. doi: 10.1104/pp.19.00405. PubMed DOI PMC

Lukatkin A.S., Bashmakov D.I., Al Harbawee W.E.Q., Da Silva J.A.T. Assessment of physiological and biochemical responses of Amaranthus retroflexus seedlings to the accumulation of heavy metals with regards to phytoremediation potential. Int. J. Phytoremediat. 2020;23:219–230. doi: 10.1080/15226514.2020.1807904. PubMed DOI

Cakaj A., Drzewiecka K., Hanć A., Lisiak-Zielińska M., Ciszewska L., Drapikowska M. Plants as effective bioindicators for heavy metal pollution monitoring. Environ. Res. 2024;256:119222. doi: 10.1016/j.envres.2024.119222. PubMed DOI

Aydin D., Yalçin E., Çavuşoğlu K. Metal chelating and anti-radical activity of Salvia officinalis in the ameliorative effects against uranium toxicity. Sci. Rep. 2022;12:15845. doi: 10.1038/s41598-022-20115-9. PubMed DOI PMC

Saeed S.H., Gillani G.M.S., Gazder U., Shaheen S., Gul A., Arifuzzaman M., Mahmood Q. Interactive effects of toxic metals on the total phenolic and flavonoid in Hydrocotyle umbellata L. Asian J. Agric. Biol. 2024;2024:2023122

Goncharuk E.A., Zagoskina N.V. Heavy metals, their phytotoxicity, and the role of phenolic antioxidants in plant stress responses with focus on cadmium: Review. Molecules. 2023;28:3921. doi: 10.3390/molecules28093921. PubMed DOI PMC

Sharma A., Shahzad B., Rehman A., Bhardwaj R., Landi M., Zheng B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules. 2019;24:2452. doi: 10.3390/molecules24132452. PubMed DOI PMC

Shomali A., Das S., Arif N., Sarraf M., Zahra N., Yadav V., Aliniaeifard S., Chauhan D.K., Hasanuzzaman M. Diverse physiological roles of flavonoids in plant environmental stress responses and tolerance. Plants. 2022;11:3158. doi: 10.3390/plants11223158. PubMed DOI PMC

Pratyusha D.S., Sarada D.V.L. MYB transcription factors-master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses. Plant Cell Rep. 2022;41:2245–2260. doi: 10.1007/s00299-022-02927-1. PubMed DOI

Shoeva O.Y., Khlestkina E.K. Anthocyanins participate in the protection of wheat seedlings against cadmium stress. Cereal Res. Commun. 2018;46:242–252. doi: 10.1556/0806.45.2017.070. DOI

Rahman S.U., Li Y., Hussain S., Hussain B., Khan W.-U.-D., Riaz L., Ashraf M.N., Khaliq M.A., Du Z., Cheng H. Role of phytohormones in heavy metal tolerance in plants: A review. Ecol. Indic. 2023;146:109844. doi: 10.1016/j.ecolind.2022.109844. DOI

Sharma A., Kapoor D., Gautam S., Landi M., Kandhol N., Araniti F., Ramakrishnan M., Satish L., Singh V.P., Sharma P., et al. Heavy metal induced regulation of plant biology: Recent insights. Physiol. Plant. 2022;174:e13688. doi: 10.1111/ppl.13688. PubMed DOI

Sah S.K., Reddy K.R., Li J. Abscisic acid and abiotic stress tolerance in crop plants. Front. Plant Sci. 2016;7:571. doi: 10.3389/fpls.2016.00571. PubMed DOI PMC

Bücker-Neto L., Paiva A.L.S., Machado R.D., Arenhart R.A., Margis-Pinheiro M. Interactions between plant hormones and heavy metals responses. Genet. Mol. Biol. 2017;40:373–386. doi: 10.1590/1678-4685-gmb-2016-0087. PubMed DOI PMC

Hajam A.H., Ali M.S., Singh S.K., Bashri G. Understanding cytokinin: Biosynthesis, signal transduction, growth regulation, and phytohormonal crosstalk under heavy metal stress. Environ. Exp. Bot. 2024;228:106025. doi: 10.1016/j.envexpbot.2024.106025. DOI

Chen P., Yang R., Bartels D., Dong T., Duan H. Roles of abscisic acid and gibberellins in stem/root tuber development. Int. J. Mol. Sci. 2022;23:4955. doi: 10.3390/ijms23094955. PubMed DOI PMC

Dai Z.H., Guan D.X., Bundschuh J., Ma L.Q. Roles of phytohormones in mitigating abiotic stress in plants induced by metal(loid)s As, Cd, Cr, Hg, and Pb. Crit. Rev. Environ. Sci. Technol. 2023;53:1310–1330. doi: 10.1080/10643389.2022.2134694. DOI

Mohan T.C., Castrillo G., Navarro C., Zarco-Fernandez S., Ramireddy E., Mateo C., Leyva A. Cytokinin determines thiol-mediated arsenic tolerance and accumulation. Plant Physiol. 2016;171:1418–1426. PubMed PMC

Sharma A., Prakash S., Chattopadhyay D. Killing two birds with a single stone—Genetic manipulation of cytokinin oxidase/dehydrogenase (CKX) genes for enhancing crop productivity and amelioration of drought stress response. Front. Genet. 2022;13:941595. doi: 10.3389/fgene.2022.941595. PubMed DOI PMC

Hoffmann M., Hentrich M., Pollmann S. Auxin-oxylipin crosstalk: Relationship of antagonists. J. Integr. Plant Biol. 2011;53:429–445. doi: 10.1111/j.1744-7909.2011.01053.x. PubMed DOI

Tran L.S.P., Shinozaki K., Yamaguchi-Shinozaki K. Role of cytokinin responsive two-component system in ABA and osmotic stress signaling. Plant Signal. Behav. 2010;5:148–150. doi: 10.4161/psb.5.2.10411. PubMed DOI PMC

Hönig M., Plíhalová L., Husičková A., Nisler J., Doležal K. Role of cytokinins in senescence, antioxidant defence and photosynthesis. Int. J. Mol. Sci. 2018;19:4045. doi: 10.3390/ijms19124045. PubMed DOI PMC

Wasternack C., Song S. Jasmonates: Biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J. Exp. Bot. 2017;68:1303–1321. doi: 10.1093/jxb/erw443. PubMed DOI

Yuan J., Cheng L., Li H., An C., Wang Y., Zhang F. Physiological and protein profiling analysis provides insight into the underlying molecular mechanism of potato tuber development regulated by jasmonic acid in vitro. BMC Plant Biol. 2022;22:481. doi: 10.1186/s12870-022-03852-x. PubMed DOI PMC

Islam E., Khan M.T., Irem S. Biochemical mechanisms of signaling: Perspectives in plants under arsenic stress. Ecotoxicol. Environ. Saf. 2015;114:126–133. doi: 10.1016/j.ecoenv.2015.01.017. PubMed DOI

Betti C., Della Rovere F., Piacentini D., Fattorini L., Falasca G., Altamura M.M. Jasmonates, ethylene and brassinosteroids control adventitious and lateral rooting as stress avoidance responses to heavy metals and metalloids. Biomolecules. 2021;11:77. doi: 10.3390/biom11010077. PubMed DOI PMC

Wang Y., Mostafa S., Zeng W., Jin B. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. Int. J. Mol. Sci. 2021;22:8568. doi: 10.3390/ijms22168568. PubMed DOI PMC

Liu J., Qiu G., Liu C., Li H., Chen X., Fu Q., Lin Y., Guo B. Salicylic acid, a multifaceted hormone, combats abiotic stresses in plants. Life. 2022;12:886. doi: 10.3390/life12060886. PubMed DOI PMC

Raza S.H., Shafiq F. Exploring the role of salicylic acid to attenuate cadmium accumulation in radish (Raphanus sativus) Int. J. Agric. Biol. 2013;15:547–552.

Wani A.B., Chadar H., Wani A.H., Singh S., Upadhyay N. Salicylic acid to decrease plant stress. Environ. Chem. Lett. 2017;15:101–123. doi: 10.1007/s10311-016-0584-0. DOI

Hildebrandt T., Nunes-Nesi A., Araujo W., Braun H.-P. Amino acid catabolism in plants. Mol. Plant. 2015;8:1563–1579. doi: 10.1016/j.molp.2015.09.005. PubMed DOI

Zemanová V., Popov M., Pavlíková D., Kotrba P., Hnilička F., Česká J., Pavlík M. Effect of arsenic stress on 5-methylcytosine, photosynthetic parameters and nutrient content in arsenic hyperaccumulator Pteris cretica (L.) var. Albo-lineata. BMC Plant Biol. 2020;20:130. doi: 10.1186/s12870-020-2325-6. PubMed DOI PMC

Parthasarathy A., Cross P.J., Dobson R.C.J., Adams L.E., Savka M.A., Hudson A.O. A three-ring circus: Metabolism of the three proteogenic aromatic amino acids and their role in the health of plants and animals. Front. Mol. Biosci. 2018;5:29. doi: 10.3389/fmolb.2018.00029. PubMed DOI PMC

Zhao Y. Auxin biosynthesis: A simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol. Plant. 2012;5:334–338. doi: 10.1093/mp/ssr104. PubMed DOI PMC

Singh H., Bhat J.A., Singh V.P., Corpas F.J., Yadav S.R. Auxin metabolic network regulates the plant response to metalloids stress. J. Hazard. Mater. 2021;405:124250. doi: 10.1016/j.jhazmat.2020.124250. PubMed DOI

Jiang J., Wang Z., Kong X., Chen Y., Li J. Exogenous tryptophan application improves cadmium tolerance and inhibits cadmium upward transport in broccoli (Brassica oleracea var. italica). Front. Plant Sci. 2022;13:969675. doi: 10.3389/fpls.2022.969675. PubMed DOI PMC

Amir R. Current understanding of the factors regulating methionine content in vegetative tissues of higher plants. Amino Acids. 2010;39:917–931. doi: 10.1007/s00726-010-0482-x. PubMed DOI

Zimmermann S.E., Benstein R.M., Flores-Tornero M., Blau S., Anoman A.D., Rosa-Téllez S., Gerlich S.C., Salem M.A., Alseekh S., Kopřiva S., et al. The phosphorylated pathway of serine biosynthesis links plant growth with nitrogen metabolism. Plant Physiol. 2021;186:1487–1506. doi: 10.1093/plphys/kiab167. PubMed DOI PMC

Glawischnig E., Tomas A., Eisenreich W., Spiteller P., Bacher A., Gierl A. Auxin biosynthesis in maize kernels. Plant Physiol. 2000;123:1109–1119. doi: 10.1104/pp.123.3.1109. PubMed DOI PMC

Pavlíková D., Pavlík M., Procházková D., Zemanová V., Hnilička F., Wilhelmová N. Nitrogen metabolism and gas exchange parameters associated with zinc stress in tobacco expressing an ipt gene for cytokinin synthesis. J. Plant Physiol. 2014;171:559–564. doi: 10.1016/j.jplph.2013.11.016. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...