Light Quality and Intensity Modulate Cold Acclimation in Arabidopsis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-04607S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000738
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33800491
PubMed Central
PMC7962961
DOI
10.3390/ijms22052736
PII: ijms22052736
Knihovny.cz E-zdroje
- Klíčová slova
- auxin, combined stress, cryptochrome, cytokinin, gene expression, gibberellin, phytochrome, plant hormones,
- MeSH
- aklimatizace * MeSH
- Arabidopsis * genetika metabolismus MeSH
- proteiny huseníčku * biosyntéza genetika MeSH
- regulace genové exprese u rostlin * MeSH
- světlo * MeSH
- zmrazování * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny huseníčku * MeSH
Plant survival in temperate zones requires efficient cold acclimation, which is strongly affected by light and temperature signal crosstalk, which converge in modulation of hormonal responses. Cold under low light conditions affected Arabidopsis responses predominantly in apices, possibly because energy supplies were too limited for requirements of these meristematic tissues, despite a relatively high steady-state quantum yield. Comparing cold responses at optimal light intensity and low light, we found activation of similar defence mechanisms-apart from CBF1-3 and CRF3-4 pathways, also transient stimulation of cytokinin type-A response regulators, accompanied by fast transient increase of trans-zeatin in roots. Upregulated expression of components of strigolactone (and karrikin) signalling pathway indicated involvement of these phytohormones in cold responses. Impaired response of phyA, phyB, cry1 and cry2 mutants reflected participation of these photoreceptors in acquiring freezing tolerance (especially cryptochrome CRY1 at optimal light intensity and phytochrome PHYA at low light). Efficient cold acclimation at optimal light was associated with upregulation of trans-zeatin in leaves and roots, while at low light, cytokinin (except cis-zeatin) content remained diminished. Cold stresses induced elevation of jasmonic acid and salicylic acid (in roots). Low light at optimal conditions resulted in strong suppression of cytokinins, jasmonic and salicylic acid.
Zobrazit více v PubMed
Lau O.S., Deng X.W. Plant hormone signaling lightens up: Integrators of light and hormones. Curr. Opin. Plant Biol. 2010;13:571–577. doi: 10.1016/j.pbi.2010.07.001. PubMed DOI
Franklin K.A. Light and temperature signal crosstalk in plant development. Curr. Opin. Plant Biol. 2009;12:63–68. doi: 10.1016/j.pbi.2008.09.007. PubMed DOI
Huner N.P.A., Öquistm G., Sarhan F. Energy balance and acclimation to light and cold. Trends Plant Sci. 1998;3:224–230. doi: 10.1016/S1360-1385(98)01248-5. DOI
Janda T., Majlath I., Szalai G. Interaction of temperature and light in the development of freezing tolerance in plants. J. Plant Growth Regul. 2014;33:460–469. doi: 10.1007/s00344-013-9381-1. DOI
Szalai G., Pap M., Janda T. Light-induced frost tolerance differs in winter and spring wheat plants. J. Plant Physiol. 2009;166:1826–1831. doi: 10.1016/j.jplph.2009.04.016. PubMed DOI
Ballaré C.L., Pierik R. The shade-avoidance syndrome: Multiple signals and ecological consequences. Plant Cell Environ. 2017;40:2530–2543. doi: 10.1111/pce.12914. PubMed DOI
Debrieux D., Fankhauser C. Light-induced degradation of phyA is promoted by transfer of the photoreceptor into the nucleus. Plant Mol. Biol. 2010;73:687–695. doi: 10.1007/s11103-010-9649-9. PubMed DOI
Shinomura T., Nagatani A., Hanzawa H., Kubota M., Watanabe M., Furuya M. Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 1996;93:8129–8133. doi: 10.1073/pnas.93.15.8129. PubMed DOI PMC
Franklin K.A., Quail P.H. Phytochrome functions in Arabidopsis development. J. Exp. Bot. 2010;61:11–24. doi: 10.1093/jxb/erp304. PubMed DOI PMC
Wang F., Zhang L., Chen X., Wu X., Xiang X., Zhou J., Xia X., Shi K., Yu J., Foyer C.H., et al. SlHY5 integrates temperature, light, and hormone signaling to balance plant growth and cold tolerance. Plant Physiol. 2019;179:749–760. doi: 10.1104/pp.18.01140. PubMed DOI PMC
Wang F., Guo Z., Li H., Wang M., Onac E., Zhou J., Xia X., Shi K., Yu J., Zhou Y. Phytochrome A and B function antagonistically to regulate cold tolerance via abscisic acid-dependent jasmonate signaling. Plant Physiol. 2016;170:459–471. doi: 10.1104/pp.15.01171. PubMed DOI PMC
Jiang B., Shi Y., Peng Y., Jia Y., Yan Y., Dong X., Li J., Gong Z., Thomashow M.F., Yang S. Cold-induced CBF-PIF3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in Arabidopsis. Mol. Plant. 2020;13:894–906. doi: 10.1016/j.molp.2020.04.006. PubMed DOI
Sharabi-Schwager M., Samach A., Porat R. Overexpression of the CBF2 transcriptional activator in Arabidopsis counteracts hormone activation of leaf senescence. Plant Signal. Behav. 2010;5:296–299. doi: 10.4161/psb.5.3.10739. PubMed DOI PMC
Wang F., Chen X., Dong S., Jiang X., Wang L., Yu J., Zhou Y. Crosstalk of PIF4 and DELLA modulates CBF transcript and hormone homeostasis in cold response in tomato. Plant Biotechnol. J. 2020;18:1041–1055. doi: 10.1111/pbi.13272. PubMed DOI PMC
Li J., Li G., Gao S., Martinez C., He G., Zhou Z., Huang X., Lee J.H., Zhang H., Shen Y., et al. Arabidopsis transcription factor ELONGATED HYPOCOTYL5 plays a role in the feedback regulation of phytochrome A signaling. Plant Cell. 2010;22:3634–3649. doi: 10.1105/tpc.110.075788. PubMed DOI PMC
Hu Y., Jiang L., Wang F., Yu D. Jasmonate regulates the inducer of CBF expression–c-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell. 2013;25:2907–2924. doi: 10.1105/tpc.113.112631. PubMed DOI PMC
Vlot A.C., Dempsey D.M.A., Klessig D.F. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 2009;47:177–206. doi: 10.1146/annurev.phyto.050908.135202. PubMed DOI
Pluhařová K., Leontovyčová H., Stoudková V., Pospíchalová R., Maršík P., Klouček P., Starodubtseva A., Iakovenko O., Krčková Z., Valentová O., et al. “Salicylic Acid Mutant Collection” as a tool to explore the role of salicylic acid in regulation of plant growth under a changing environment. Int. J. Mol. Sci. 2019;20:6365. doi: 10.3390/ijms20246365. PubMed DOI PMC
Pál M., Janda T., Majláth I., Szalai G. Involvement of salicylic acid and other phenolic compounds in light-dependent cold acclimation in maize. Int. J. Mol. Sci. 2020;21:1942. doi: 10.3390/ijms21061942. PubMed DOI PMC
Tajti J., Hamow K.Á., Majláth I., Gierczik K., Németh E., Janda T., Pál M. Polyamine-induced hormonal changes in eds5 and sid2 mutant Arabidopsis plants. Int. J. Mol. Sci. 2019;20:5746. doi: 10.3390/ijms20225746. PubMed DOI PMC
Tao Y., Ferrer J.L., Ljung K., Pojer F., Hong F., Long J.A., Li L., Moreno J.E., Bowman M.E., Ivans L.J., et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell. 2008;133:164–176. doi: 10.1016/j.cell.2008.01.049. PubMed DOI PMC
Gray W.M., Östin A., Sandberg G., Romano C.P., Estelle M. High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc. Natl. Acad. Sci. USA. 1998;95:7197–7202. doi: 10.1073/pnas.95.12.7197. PubMed DOI PMC
Fankhauser C. Light perception in plants: Cytokinins and red light join forces to keep phytochrome B active. Trends Plant Sci. 2002;7:143–145. doi: 10.1016/S1360-1385(02)02228-8. PubMed DOI
Jeon J., Kim N.Y., Kim S., Kang N.Y., Novák O., Ku S.J., Cho C., Lee D.J., Lee E.J., Strnad M., et al. A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J. Biol. Chem. 2010;285:23371–23386. doi: 10.1074/jbc.M109.096644. PubMed DOI PMC
Kosová K., Prášil I.T., Vítámvás P., Dobrev P., Motyka V., Floková K., Novák O., Turečková V., Rolčik J., Pešek B., et al. Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J. Plant Physiol. 2012;169:567–576. doi: 10.1016/j.jplph.2011.12.013. PubMed DOI
Prerostova S., Černý M., Dobrev P.I., Motyka V., Hluskova L., Zupkova B., Gaudinova A., Knirsch V., Janda T., Brzobohatý B., et al. Light regulates the cytokinin-dependent cold stress responses in Arabidopsis. Front. Plant Sci. 2021;11:608711. doi: 10.3389/fpls.2020.608711. PubMed DOI PMC
Cortleven A., Leuendorf J.E., Frank M., Pezzetta D., Bolt S., Schmülling T. Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ. 2019;42:998–1018. doi: 10.1111/pce.13494. PubMed DOI
Achard P., Gong F., Cheminant S., Alioua M., Hedden P., Genschik P. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell. 2008;20:2117–2129. doi: 10.1105/tpc.108.058941. PubMed DOI PMC
Ha C.V., Leyva-González M.A., Osakabe Y., Tran U.T., Nishiyama R., Watanabe Y., Tanaka M., Seki M., Yamaguchi S., Van Dong N., et al. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc. Natl. Acad. Sci. USA. 2014;111:851–856. doi: 10.1073/pnas.1322135111. PubMed DOI PMC
Ballaré C.L. Light regulation of plant defense. Annu. Rev. Plant Biol. 2014;65:335–363. doi: 10.1146/annurev-arplant-050213-040145. PubMed DOI
De Wit M., Spoel S.H., Sanchez-Perez G.F., Gommers C.M., Pieterse C.M., Voesenek L.A., Pierik R. Perception of low red:far-red ratio compromises both salicylic acid-and jasmonic acid-dependent pathogen defences in Arabidopsis. Plant J. 2013;75:90–103. doi: 10.1111/tpj.12203. PubMed DOI
Lee K.W., Rahman M.A., Song Y., Ji H.C., Choi G.J., Kim K.Y., Lee S.H. Cold stress-induced regulation of differentially expressed genes in barley (Hordeum vulgare L.) leaves. J. Anim. Plant Sci. 2019;29:1673–1679.
Franklin K.A., Whitelam G.C. Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Nat. Genet. 2007;39:1410–1413. doi: 10.1038/ng.2007.3. PubMed DOI
Wang F., Wu N., Zhang L., Ahammed G.J., Chen X., Xiang X., Zhou J., Xia X., Shi K., Yu J., et al. Light signaling-dependent regulation of photoinhibition and photoprotection in tomato. Plant Physiol. 2018;176:1311–1326. doi: 10.1104/pp.17.01143. PubMed DOI PMC
Imai H., Kawamura Y., Nagatani A., Uemura M. Effects of the blue light–cryptochrome system on the early process of cold acclimation of Arabidopsis thaliana. Environ. Exp. Bot. 2020;183:104340. doi: 10.1016/j.envexpbot.2020.104340. DOI
Kim H.J., Kim Y.K., Park J.Y., Kim J. Light signalling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. Plant J. 2002;29:693–704. doi: 10.1046/j.1365-313X.2002.01249.x. PubMed DOI
Jiang B.C., Shi Y.T., Zhang X.Y., Xin X.Y., Qi L.J., Guo H.W., Li J.G., Yang S.H. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2017;114:E6695–E6702. doi: 10.1073/pnas.1706226114. PubMed DOI PMC
Lin L., Liu X., Yin R. PIF3 integrates light and low temperature signaling. Trends Plant Sci. 2018;23:93–95. doi: 10.1016/j.tplants.2017.12.003. PubMed DOI
Hahm J., Kim K., Qiu Y., Chen M. Increasing ambient temperature progressively disassembles Arabidopsis phytochrome B from individual photobodies with distinct thermostabilities. Nat. Commun. 2020;11:1660. doi: 10.1038/s41467-020-15526-z. PubMed DOI PMC
Thomashow M.F. Molecular basis of plant cold acclimation: Insights gained from studying the CBF cold response pathway. Plant Physiol. 2010;154:571–577. doi: 10.1104/pp.110.161794. PubMed DOI PMC
Kosová K., Vítámvás P., Prášil I.T. Wheat and barley dehydrins under cold, drought and salinity - what can LEA-II proteins tell us about plant stress response? Front. Plant Sci. 2014;5:343. doi: 10.3389/fpls.2014.00343. PubMed DOI PMC
Hannah M.A., Heyer A.G., Hincha D.K. A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet. 2005;1:e26. doi: 10.1371/journal.pgen.0010026. PubMed DOI PMC
Hu Y., Jiang Y., Han X., Wang H., Pan J., Yu D. Jasmonate regulates leaf senescence and tolerance to cold stress: Crosstalk with other phytohormones. J. Exp. Bot. 2017;68:1361–1369. doi: 10.1093/jxb/erx004. PubMed DOI
Hou X., Lee L.Y.C., Xia K., Yan Y., Yu H. DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev. Cell. 2010;19:884–894. doi: 10.1016/j.devcel.2010.10.024. PubMed DOI
Janda T., Szalai G., Tari I., Paldi E. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta. 1999;208:175–180. doi: 10.1007/s004250050547. DOI
Janda T., Gondor O.K., Yordanova R., Szalai G., Pál M. Salicylic acid and photosynthesis: Signalling and effects. Acta Physiol. Plant. 2014;36:2537–2546. doi: 10.1007/s11738-014-1620-y. DOI
Dong C.J., Li L., Shang Q.M., Liu X.Y., Zhang Z.G. Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings. Planta. 2014;240:687–700. doi: 10.1007/s00425-014-2115-1. PubMed DOI
Kim Y., Park S., Gilmour S.J., Thomashow M.F. Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant. J. 2013;75:364–376. doi: 10.1111/tpj.12205. PubMed DOI
Jeon J., Cho C., Lee M.R., Binh N.V., Kim J. CYTOKININ RESPONSE FACTOR2 (CRF2) and CRF3 regulate lateral root development in response to cold stress in Arabidopsis. Plant. Cell. 2016;28:1828–1843. doi: 10.1105/tpc.15.00909. PubMed DOI PMC
Zwack P.J., Compton M.A., Adams C.I., Rashotte A.M. Cytokinin response factor 4 (CRF4) is induced by cold and involved in freezing tolerance. Plant. Cell Rep. 2016;35:573–584. doi: 10.1007/s00299-015-1904-8. PubMed DOI
Jeon J., Kim J. Arabidopsis response regulator1 and arabidopsis histidine phosphotransfer protein2 (AHP2), AHP3, and AHP5 function in cold signaling. Plant. Physiol. 2013;161:408–424. doi: 10.1104/pp.112.207621. PubMed DOI PMC
Dobrá J., Černý M., Štorchová H., Dobrev P., Skalák J., Jedelský P.L., Lukšanová H., Gaudinová A., Pešek B., Malbeck J., et al. The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis. Plant. Sci. 2015;231:52–61. doi: 10.1016/j.plantsci.2014.11.005. PubMed DOI
Zhu J., Zhang K.X., Wang W.S., Gong W., Liu W.C., Chen H.G., Xu H.H., Lu Y.T. Low temperature inhibits root growth by reducing auxin accumulation via ARR1/12. Plant. Cell Physiol. 2015;56:727–736. doi: 10.1093/pcp/pcu217. PubMed DOI
Vandenbussche F., Habricot Y., Condiff A.S., Maldiney R., Straeten D.V.D., Ahmad M. HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana. Plant. J. 2007;49:428–441. doi: 10.1111/j.1365-313X.2006.02973.x. PubMed DOI
Van der Schoot C., Rinne P.L. Dormancy cycling at the shoot apical meristem: Transitioning between self-organization and self-arrest. Plant Sci. 2011;180:120–131. doi: 10.1016/j.plantsci.2010.08.009. PubMed DOI
Janda T., Szalai G., Kissimon J., Páldi E., Márton L., Szigeti Z. Role of irradiance in the chilling injury of young maize plants studied by chlorophyll fluorescence induction measurements. Photosynthetica. 1994;30:293–299.
Prášil I., Zámečník J. The use of a conductivity measurement method for assessing freezing injury. I. Influence of leakage time, segment number, size and shape in a sample on evaluation of the degree of injury. Environ. Exp. Bot. 1998;40:1–10. doi: 10.1016/S0098-8472(98)00010-0. DOI
Janáček J., Prášil I. Quantification of plant frost injury by nonlinear fitting of an s-shaped function. Cryo Lett. 1991;12:47–52.
Hodges D.M., DeLong J.M., Forney C.F., Prange R.K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 1999;207:604–611. doi: 10.1007/s004250050524. PubMed DOI
Landi M. Commentary to: “Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds” by Hodges et al., Planta (1999) 207: 604–611. Planta. 2017;245:1067. doi: 10.1007/s00425-017-2699-3. PubMed DOI
Genty B., Briantais J.M., Baker N.R. The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta. 1989;990:87–92. doi: 10.1016/S0304-4165(89)80016-9. DOI
Horton P., Ruban A.V. Regulation of photosystem-II. Photosynth. Res. 1992;34:375–385. doi: 10.1007/BF00029812. PubMed DOI
Hruz T., Laule O., Szabo G., Wessendorp F., Bleuler S., Oertle L., Widmayer P., Gruissem W., Zimmermann P. Genevestigator v3: A reference expression database for the meta-analysis of transcriptomes. Adv. Bioinform. 2008;2008:420747. doi: 10.1155/2008/420747. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
The humidity level matters during the desiccation of Norway spruce somatic embryos
Light Quality Modulates Plant Cold Response and Freezing Tolerance