Light Quality and Intensity Modulate Cold Acclimation in Arabidopsis

. 2021 Mar 08 ; 22 (5) : . [epub] 20210308

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33800491

Grantová podpora
17-04607S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000738 Ministerstvo Školství, Mládeže a Tělovýchovy

Plant survival in temperate zones requires efficient cold acclimation, which is strongly affected by light and temperature signal crosstalk, which converge in modulation of hormonal responses. Cold under low light conditions affected Arabidopsis responses predominantly in apices, possibly because energy supplies were too limited for requirements of these meristematic tissues, despite a relatively high steady-state quantum yield. Comparing cold responses at optimal light intensity and low light, we found activation of similar defence mechanisms-apart from CBF1-3 and CRF3-4 pathways, also transient stimulation of cytokinin type-A response regulators, accompanied by fast transient increase of trans-zeatin in roots. Upregulated expression of components of strigolactone (and karrikin) signalling pathway indicated involvement of these phytohormones in cold responses. Impaired response of phyA, phyB, cry1 and cry2 mutants reflected participation of these photoreceptors in acquiring freezing tolerance (especially cryptochrome CRY1 at optimal light intensity and phytochrome PHYA at low light). Efficient cold acclimation at optimal light was associated with upregulation of trans-zeatin in leaves and roots, while at low light, cytokinin (except cis-zeatin) content remained diminished. Cold stresses induced elevation of jasmonic acid and salicylic acid (in roots). Low light at optimal conditions resulted in strong suppression of cytokinins, jasmonic and salicylic acid.

Zobrazit více v PubMed

Lau O.S., Deng X.W. Plant hormone signaling lightens up: Integrators of light and hormones. Curr. Opin. Plant Biol. 2010;13:571–577. doi: 10.1016/j.pbi.2010.07.001. PubMed DOI

Franklin K.A. Light and temperature signal crosstalk in plant development. Curr. Opin. Plant Biol. 2009;12:63–68. doi: 10.1016/j.pbi.2008.09.007. PubMed DOI

Huner N.P.A., Öquistm G., Sarhan F. Energy balance and acclimation to light and cold. Trends Plant Sci. 1998;3:224–230. doi: 10.1016/S1360-1385(98)01248-5. DOI

Janda T., Majlath I., Szalai G. Interaction of temperature and light in the development of freezing tolerance in plants. J. Plant Growth Regul. 2014;33:460–469. doi: 10.1007/s00344-013-9381-1. DOI

Szalai G., Pap M., Janda T. Light-induced frost tolerance differs in winter and spring wheat plants. J. Plant Physiol. 2009;166:1826–1831. doi: 10.1016/j.jplph.2009.04.016. PubMed DOI

Ballaré C.L., Pierik R. The shade-avoidance syndrome: Multiple signals and ecological consequences. Plant Cell Environ. 2017;40:2530–2543. doi: 10.1111/pce.12914. PubMed DOI

Debrieux D., Fankhauser C. Light-induced degradation of phyA is promoted by transfer of the photoreceptor into the nucleus. Plant Mol. Biol. 2010;73:687–695. doi: 10.1007/s11103-010-9649-9. PubMed DOI

Shinomura T., Nagatani A., Hanzawa H., Kubota M., Watanabe M., Furuya M. Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 1996;93:8129–8133. doi: 10.1073/pnas.93.15.8129. PubMed DOI PMC

Franklin K.A., Quail P.H. Phytochrome functions in Arabidopsis development. J. Exp. Bot. 2010;61:11–24. doi: 10.1093/jxb/erp304. PubMed DOI PMC

Wang F., Zhang L., Chen X., Wu X., Xiang X., Zhou J., Xia X., Shi K., Yu J., Foyer C.H., et al. SlHY5 integrates temperature, light, and hormone signaling to balance plant growth and cold tolerance. Plant Physiol. 2019;179:749–760. doi: 10.1104/pp.18.01140. PubMed DOI PMC

Wang F., Guo Z., Li H., Wang M., Onac E., Zhou J., Xia X., Shi K., Yu J., Zhou Y. Phytochrome A and B function antagonistically to regulate cold tolerance via abscisic acid-dependent jasmonate signaling. Plant Physiol. 2016;170:459–471. doi: 10.1104/pp.15.01171. PubMed DOI PMC

Jiang B., Shi Y., Peng Y., Jia Y., Yan Y., Dong X., Li J., Gong Z., Thomashow M.F., Yang S. Cold-induced CBF-PIF3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in Arabidopsis. Mol. Plant. 2020;13:894–906. doi: 10.1016/j.molp.2020.04.006. PubMed DOI

Sharabi-Schwager M., Samach A., Porat R. Overexpression of the CBF2 transcriptional activator in Arabidopsis counteracts hormone activation of leaf senescence. Plant Signal. Behav. 2010;5:296–299. doi: 10.4161/psb.5.3.10739. PubMed DOI PMC

Wang F., Chen X., Dong S., Jiang X., Wang L., Yu J., Zhou Y. Crosstalk of PIF4 and DELLA modulates CBF transcript and hormone homeostasis in cold response in tomato. Plant Biotechnol. J. 2020;18:1041–1055. doi: 10.1111/pbi.13272. PubMed DOI PMC

Li J., Li G., Gao S., Martinez C., He G., Zhou Z., Huang X., Lee J.H., Zhang H., Shen Y., et al. Arabidopsis transcription factor ELONGATED HYPOCOTYL5 plays a role in the feedback regulation of phytochrome A signaling. Plant Cell. 2010;22:3634–3649. doi: 10.1105/tpc.110.075788. PubMed DOI PMC

Hu Y., Jiang L., Wang F., Yu D. Jasmonate regulates the inducer of CBF expression–c-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell. 2013;25:2907–2924. doi: 10.1105/tpc.113.112631. PubMed DOI PMC

Vlot A.C., Dempsey D.M.A., Klessig D.F. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 2009;47:177–206. doi: 10.1146/annurev.phyto.050908.135202. PubMed DOI

Pluhařová K., Leontovyčová H., Stoudková V., Pospíchalová R., Maršík P., Klouček P., Starodubtseva A., Iakovenko O., Krčková Z., Valentová O., et al. “Salicylic Acid Mutant Collection” as a tool to explore the role of salicylic acid in regulation of plant growth under a changing environment. Int. J. Mol. Sci. 2019;20:6365. doi: 10.3390/ijms20246365. PubMed DOI PMC

Pál M., Janda T., Majláth I., Szalai G. Involvement of salicylic acid and other phenolic compounds in light-dependent cold acclimation in maize. Int. J. Mol. Sci. 2020;21:1942. doi: 10.3390/ijms21061942. PubMed DOI PMC

Tajti J., Hamow K.Á., Majláth I., Gierczik K., Németh E., Janda T., Pál M. Polyamine-induced hormonal changes in eds5 and sid2 mutant Arabidopsis plants. Int. J. Mol. Sci. 2019;20:5746. doi: 10.3390/ijms20225746. PubMed DOI PMC

Tao Y., Ferrer J.L., Ljung K., Pojer F., Hong F., Long J.A., Li L., Moreno J.E., Bowman M.E., Ivans L.J., et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell. 2008;133:164–176. doi: 10.1016/j.cell.2008.01.049. PubMed DOI PMC

Gray W.M., Östin A., Sandberg G., Romano C.P., Estelle M. High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc. Natl. Acad. Sci. USA. 1998;95:7197–7202. doi: 10.1073/pnas.95.12.7197. PubMed DOI PMC

Fankhauser C. Light perception in plants: Cytokinins and red light join forces to keep phytochrome B active. Trends Plant Sci. 2002;7:143–145. doi: 10.1016/S1360-1385(02)02228-8. PubMed DOI

Jeon J., Kim N.Y., Kim S., Kang N.Y., Novák O., Ku S.J., Cho C., Lee D.J., Lee E.J., Strnad M., et al. A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J. Biol. Chem. 2010;285:23371–23386. doi: 10.1074/jbc.M109.096644. PubMed DOI PMC

Kosová K., Prášil I.T., Vítámvás P., Dobrev P., Motyka V., Floková K., Novák O., Turečková V., Rolčik J., Pešek B., et al. Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J. Plant Physiol. 2012;169:567–576. doi: 10.1016/j.jplph.2011.12.013. PubMed DOI

Prerostova S., Černý M., Dobrev P.I., Motyka V., Hluskova L., Zupkova B., Gaudinova A., Knirsch V., Janda T., Brzobohatý B., et al. Light regulates the cytokinin-dependent cold stress responses in Arabidopsis. Front. Plant Sci. 2021;11:608711. doi: 10.3389/fpls.2020.608711. PubMed DOI PMC

Cortleven A., Leuendorf J.E., Frank M., Pezzetta D., Bolt S., Schmülling T. Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ. 2019;42:998–1018. doi: 10.1111/pce.13494. PubMed DOI

Achard P., Gong F., Cheminant S., Alioua M., Hedden P., Genschik P. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell. 2008;20:2117–2129. doi: 10.1105/tpc.108.058941. PubMed DOI PMC

Ha C.V., Leyva-González M.A., Osakabe Y., Tran U.T., Nishiyama R., Watanabe Y., Tanaka M., Seki M., Yamaguchi S., Van Dong N., et al. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc. Natl. Acad. Sci. USA. 2014;111:851–856. doi: 10.1073/pnas.1322135111. PubMed DOI PMC

Ballaré C.L. Light regulation of plant defense. Annu. Rev. Plant Biol. 2014;65:335–363. doi: 10.1146/annurev-arplant-050213-040145. PubMed DOI

De Wit M., Spoel S.H., Sanchez-Perez G.F., Gommers C.M., Pieterse C.M., Voesenek L.A., Pierik R. Perception of low red:far-red ratio compromises both salicylic acid-and jasmonic acid-dependent pathogen defences in Arabidopsis. Plant J. 2013;75:90–103. doi: 10.1111/tpj.12203. PubMed DOI

Lee K.W., Rahman M.A., Song Y., Ji H.C., Choi G.J., Kim K.Y., Lee S.H. Cold stress-induced regulation of differentially expressed genes in barley (Hordeum vulgare L.) leaves. J. Anim. Plant Sci. 2019;29:1673–1679.

Franklin K.A., Whitelam G.C. Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Nat. Genet. 2007;39:1410–1413. doi: 10.1038/ng.2007.3. PubMed DOI

Wang F., Wu N., Zhang L., Ahammed G.J., Chen X., Xiang X., Zhou J., Xia X., Shi K., Yu J., et al. Light signaling-dependent regulation of photoinhibition and photoprotection in tomato. Plant Physiol. 2018;176:1311–1326. doi: 10.1104/pp.17.01143. PubMed DOI PMC

Imai H., Kawamura Y., Nagatani A., Uemura M. Effects of the blue light–cryptochrome system on the early process of cold acclimation of Arabidopsis thaliana. Environ. Exp. Bot. 2020;183:104340. doi: 10.1016/j.envexpbot.2020.104340. DOI

Kim H.J., Kim Y.K., Park J.Y., Kim J. Light signalling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. Plant J. 2002;29:693–704. doi: 10.1046/j.1365-313X.2002.01249.x. PubMed DOI

Jiang B.C., Shi Y.T., Zhang X.Y., Xin X.Y., Qi L.J., Guo H.W., Li J.G., Yang S.H. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2017;114:E6695–E6702. doi: 10.1073/pnas.1706226114. PubMed DOI PMC

Lin L., Liu X., Yin R. PIF3 integrates light and low temperature signaling. Trends Plant Sci. 2018;23:93–95. doi: 10.1016/j.tplants.2017.12.003. PubMed DOI

Hahm J., Kim K., Qiu Y., Chen M. Increasing ambient temperature progressively disassembles Arabidopsis phytochrome B from individual photobodies with distinct thermostabilities. Nat. Commun. 2020;11:1660. doi: 10.1038/s41467-020-15526-z. PubMed DOI PMC

Thomashow M.F. Molecular basis of plant cold acclimation: Insights gained from studying the CBF cold response pathway. Plant Physiol. 2010;154:571–577. doi: 10.1104/pp.110.161794. PubMed DOI PMC

Kosová K., Vítámvás P., Prášil I.T. Wheat and barley dehydrins under cold, drought and salinity - what can LEA-II proteins tell us about plant stress response? Front. Plant Sci. 2014;5:343. doi: 10.3389/fpls.2014.00343. PubMed DOI PMC

Hannah M.A., Heyer A.G., Hincha D.K. A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet. 2005;1:e26. doi: 10.1371/journal.pgen.0010026. PubMed DOI PMC

Hu Y., Jiang Y., Han X., Wang H., Pan J., Yu D. Jasmonate regulates leaf senescence and tolerance to cold stress: Crosstalk with other phytohormones. J. Exp. Bot. 2017;68:1361–1369. doi: 10.1093/jxb/erx004. PubMed DOI

Hou X., Lee L.Y.C., Xia K., Yan Y., Yu H. DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev. Cell. 2010;19:884–894. doi: 10.1016/j.devcel.2010.10.024. PubMed DOI

Janda T., Szalai G., Tari I., Paldi E. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta. 1999;208:175–180. doi: 10.1007/s004250050547. DOI

Janda T., Gondor O.K., Yordanova R., Szalai G., Pál M. Salicylic acid and photosynthesis: Signalling and effects. Acta Physiol. Plant. 2014;36:2537–2546. doi: 10.1007/s11738-014-1620-y. DOI

Dong C.J., Li L., Shang Q.M., Liu X.Y., Zhang Z.G. Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings. Planta. 2014;240:687–700. doi: 10.1007/s00425-014-2115-1. PubMed DOI

Kim Y., Park S., Gilmour S.J., Thomashow M.F. Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant. J. 2013;75:364–376. doi: 10.1111/tpj.12205. PubMed DOI

Jeon J., Cho C., Lee M.R., Binh N.V., Kim J. CYTOKININ RESPONSE FACTOR2 (CRF2) and CRF3 regulate lateral root development in response to cold stress in Arabidopsis. Plant. Cell. 2016;28:1828–1843. doi: 10.1105/tpc.15.00909. PubMed DOI PMC

Zwack P.J., Compton M.A., Adams C.I., Rashotte A.M. Cytokinin response factor 4 (CRF4) is induced by cold and involved in freezing tolerance. Plant. Cell Rep. 2016;35:573–584. doi: 10.1007/s00299-015-1904-8. PubMed DOI

Jeon J., Kim J. Arabidopsis response regulator1 and arabidopsis histidine phosphotransfer protein2 (AHP2), AHP3, and AHP5 function in cold signaling. Plant. Physiol. 2013;161:408–424. doi: 10.1104/pp.112.207621. PubMed DOI PMC

Dobrá J., Černý M., Štorchová H., Dobrev P., Skalák J., Jedelský P.L., Lukšanová H., Gaudinová A., Pešek B., Malbeck J., et al. The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis. Plant. Sci. 2015;231:52–61. doi: 10.1016/j.plantsci.2014.11.005. PubMed DOI

Zhu J., Zhang K.X., Wang W.S., Gong W., Liu W.C., Chen H.G., Xu H.H., Lu Y.T. Low temperature inhibits root growth by reducing auxin accumulation via ARR1/12. Plant. Cell Physiol. 2015;56:727–736. doi: 10.1093/pcp/pcu217. PubMed DOI

Vandenbussche F., Habricot Y., Condiff A.S., Maldiney R., Straeten D.V.D., Ahmad M. HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana. Plant. J. 2007;49:428–441. doi: 10.1111/j.1365-313X.2006.02973.x. PubMed DOI

Van der Schoot C., Rinne P.L. Dormancy cycling at the shoot apical meristem: Transitioning between self-organization and self-arrest. Plant Sci. 2011;180:120–131. doi: 10.1016/j.plantsci.2010.08.009. PubMed DOI

Janda T., Szalai G., Kissimon J., Páldi E., Márton L., Szigeti Z. Role of irradiance in the chilling injury of young maize plants studied by chlorophyll fluorescence induction measurements. Photosynthetica. 1994;30:293–299.

Prášil I., Zámečník J. The use of a conductivity measurement method for assessing freezing injury. I. Influence of leakage time, segment number, size and shape in a sample on evaluation of the degree of injury. Environ. Exp. Bot. 1998;40:1–10. doi: 10.1016/S0098-8472(98)00010-0. DOI

Janáček J., Prášil I. Quantification of plant frost injury by nonlinear fitting of an s-shaped function. Cryo Lett. 1991;12:47–52.

Hodges D.M., DeLong J.M., Forney C.F., Prange R.K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 1999;207:604–611. doi: 10.1007/s004250050524. PubMed DOI

Landi M. Commentary to: “Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds” by Hodges et al., Planta (1999) 207: 604–611. Planta. 2017;245:1067. doi: 10.1007/s00425-017-2699-3. PubMed DOI

Genty B., Briantais J.M., Baker N.R. The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta. 1989;990:87–92. doi: 10.1016/S0304-4165(89)80016-9. DOI

Horton P., Ruban A.V. Regulation of photosystem-II. Photosynth. Res. 1992;34:375–385. doi: 10.1007/BF00029812. PubMed DOI

Hruz T., Laule O., Szabo G., Wessendorp F., Bleuler S., Oertle L., Widmayer P., Gruissem W., Zimmermann P. Genevestigator v3: A reference expression database for the meta-analysis of transcriptomes. Adv. Bioinform. 2008;2008:420747. doi: 10.1155/2008/420747. PubMed DOI PMC

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Phytohormone and Amino Acid Changes in Cherry Radish as Metabolic Adaptive Response to Arsenic Single and Multi-Contamination

. 2025 Mar 08 ; 15 (3) : . [epub] 20250308

Blue or far-red light supplementation induced pre-hardening in the leaves of the Rht12 wheat dwarfing line: hormonal changes and freezing tolerance

. 2025 Mar-Apr ; 177 (2) : e70112.

Dynamic changes of endogenous phytohormones and carbohydrates during spontaneous morphogenesis of Centaurium erythraea Rafn

. 2024 ; 15 () : 1487897. [epub] 20241106

Uncovering the Interrelation between Metabolite Profiles and Bioactivity of In Vitro- and Wild-Grown Catmint (Nepeta nuda L.)

. 2023 Oct 20 ; 13 (10) : . [epub] 20231020

Influence of a phyA Mutation on Polyamine Metabolism in Arabidopsis Depends on Light Spectral Conditions

. 2023 Apr 18 ; 12 (8) : . [epub] 20230418

Accumulation of Toxic Arsenic by Cherry Radish Tuber (Raphanus sativus var. sativus Pers.) and Its Physiological, Metabolic and Anatomical Stress Responses

. 2023 Mar 10 ; 12 (6) : . [epub] 20230310

The humidity level matters during the desiccation of Norway spruce somatic embryos

. 2022 ; 13 () : 968982. [epub] 20220729

Light Quality Modulates Plant Cold Response and Freezing Tolerance

. 2022 ; 13 () : 887103. [epub] 20220609

An Arabidopsis mutant deficient in phosphatidylinositol-4-phosphate kinases ß1 and ß2 displays altered auxin-related responses in roots

. 2022 Apr 28 ; 12 (1) : 6947. [epub] 20220428

Hormonomic Changes Driving the Negative Impact of Broomrape on Plant Host Interactions with Arbuscular Mycorrhizal Fungi

. 2021 Dec 20 ; 22 (24) : . [epub] 20211220

Crosstalk between Light- and Temperature-Mediated Processes under Cold and Heat Stress Conditions in Plants

. 2021 Aug 10 ; 22 (16) : . [epub] 20210810

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace