Wheat and barley dehydrins under cold, drought, and salinity - what can LEA-II proteins tell us about plant stress response?

. 2014 ; 5 () : 343. [epub] 20140709

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid25071816

Dehydrins as a group of late embryogenesis abundant II proteins represent important dehydration-inducible proteins whose accumulation is induced by developmental processes (embryo maturation) as well as by several abiotic stress factors (low temperatures, drought, salinity). In the review, an overview of studies aimed at investigation of dehydrin accumulation patterns at transcript and protein levels as well as their possible functions in common wheat (Triticum aestivum), durum wheat (T. durum), and barley (Hordeum vulgare) plants exposed to various abiotic stress factors (cold, frost, drought, salinity) is provided. Possible roles of dehydrin proteins in an acquisition and maintenance of an enhanced frost tolerance are analyzed in the context of plant developmental processes (vernalization). Quantitative and qualitative differences as well as post-translational modifications in accumulated dehydrin proteins between barley cultivars revealing differential tolerance to drought and salinity are also discussed. Current knowledge on dehydrin role in wheat and barley response to major dehydrative stresses is summarized and the major challenges in dehydrin research are outlined.

Zobrazit více v PubMed

Battaglia M., Olvera-Carillo Y., Garciarrubio A., Campos F., Covarrubias A. A. (2008). The enigmatic LEA proteins and other hydrophilins. Plant Physiol. 148 6–24 10.1104/pp.108.120725 PubMed DOI PMC

Bravo L. A., Close T. J., Corcuera L. J., Guy C. L. (1999). Characterization of an 80-kDa dehydrin-like protein in barley responsive to cold acclimation. Physiol. Plant. 106 177–183 10.1034/j.1399-3054.1999.106205.x DOI

Bravo L. A., Gallardo J., Navarrete A., Olave N., Martínez J., Alberdi M., et al. (2003). Cryoprotective activity of a cold-induced dehydrin purified from barley. Physiol. Plant. 118 262–269 10.1034/j.1399-3054.2003.00060.x DOI

Brini F., Hanin M., Lumbreras V., Irar S., Pagès M., Masmoudi K. (2007a). Functional characterisation of DHN-5 a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat (Triticum durum Desf.) varieties with marked differences in salt and drought tolerance. Plant Sci. 172 20–28 10.1016/j.plantsci.2006.07.011 DOI

Brini F., Hanin M., Lumbreras V., Amara I., Khoudi H., Hassairi A., et al. (2007b). Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep. 26 2017–2026 10.1007/s00299-007-0412-x PubMed DOI

Brini F., Saibi W., Amara I., Gargouri A., Masmoudi K., Hanin M. (2010). Wheat dehydrin DHN-5 exerts a heat-protective effect on β-glucosidase and glucose oxidase activities. Biosci. Biotechnol. Biochem. 74 1050–1054 10.1271/bbb.90949 PubMed DOI

Brini F., Yamamoto A., Jlaiel L., Takeda S., Hobo T., Dinh H. Q., et al. (2011). Pleiotropic effects of the wheat dehydrin DHN-5 on stress responses in Arabidopsis. Plant Cell Physiol. 52 676–688 10.1093/pcp/pcr030 PubMed DOI

Choi D. W., Close T. J. (2000). A newly identified barley gene, Dhn12, encoding a YSK2 DHN, is located on chromosome 6H and has embryo-specific expression. Theor. Appl. Genet. 100 1274–1278 10.1007/s001220051434 DOI

Choi D. W., Zhu B., Close T. J. (1999). The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo. Theor. Appl. Genet. 98 1234–1247 10.1007/s001220051189 DOI

Close T. J. (1997). Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol. Plant. 100 291–296 10.1111/j.1399-3054.1997.tb04785.x DOI

Close T. J., Meyer N. C., Radik J. (1995). Nucleotide sequence of a gene encoding a 58.5-kilodalton barley dehydrin that lacks a serine tract. Plant Physiol. 107 289–290 10.1104/pp.107.1.289 PubMed DOI PMC

Colmer T. D., Flowers T. J., Munns R. (2006). Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 57 1059–1078 10.1093/jxb/erj124 PubMed DOI

Danyluk J., Houde M., Rassart É., Sarhan F. (1994). Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerant gramineae species. FEBS Lett. 344 20–24 10.1016/0014-5793(94)00353-X PubMed DOI

Danyluk J., Perron A., Houde M., Limin A., Fowler B., Benhamou N., et al. (1998). Accumulation of an acidic dehydrin in the vicinity of plasma membrane during cold acclimation of wheat. Plant Cell 10 623–638 10.1105/tpc.10.4.623 PubMed DOI PMC

Dhillon T., Pearce S. P., Stockinger E. J., Distelfeld A., Li C., Knox A. K., et al. (2010). Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. Plant Physiol. 153 1846–1858 10.1104/pp.110.159079 PubMed DOI PMC

Drira M., Saibi W., Brini F., Gargouri A., Masmoudi K., Hanin M. (2013). The K-segments of the wheat dehydrin DHN-5 are essential for the protection of lactate dehydrogenase and β-glucosidase activities in vitro. Mol. Biotechnol. 54 643–650 10.1007/s12033-012-9606-8 PubMed DOI

Ganeshan S., Vítámvás P., Fowler D. B., Chibbar R. N. (2008). Quantitative expression analysis of selected COR genes reveals their differential expression in leaf and crown tissues of wheat (Triticum aestivum L.) during an extended low temperature acclimation regimen. J. Exp. Bot. 59 2393–2402 10.1093/jxb/ern112 PubMed DOI PMC

Holková L., Mikulková P., Hrstková P., Prášil I. T., Bradáčová M., Prášilová P., et al. (2010). Allelic variations at Dhn4 and Dhn7 are associated with frost tolerance in barley. Czech J. Genet. Plant Breed. 46 149–158

Holková L., Prášil I. T., Bradáčová M., Vítámvás P., Chloupek O. (2009). Screening for frost tolerance in wheat using the expression of dehydrin genes Wcs120 and Wdhn13 at 17∘C. Plant Breed. 128 420–422 10.1111/j.1439-0523.01606.x DOI

Houde M., Dallaire S., N’Dong D., Sarhan F. (2004). Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol. J. 2 381–387 10.1111/j.1467-7652.2004.00082.x PubMed DOI

Houde M., Daniel C., Lachapelle M., Allard F., Laliberté S., Sarhan F. (1995). Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J. 8 583–593 10.1046/j.1365-313X.1995.8040583.x PubMed DOI

Houde M., Danyluk J., Laliberté J. F., Rassart E., Dhindsa R. S., Sarhan F. (1992). Cloning, characterization, and an expression of a cDNA encoding a 50-kilodalton protein specifically induced by cold acclimation in wheat. Plant Physiol. 99 1381–1387 10.1104/pp.99.4.1381 PubMed DOI PMC

Iturriaga G., Schneider K., Salamini F., Bartels D. (1992). Expression od desiccation-related proteins from the resurrection plant Craterostigma plantagineum in transgenic tobacco. Plant Mol. Biol. 20 555–558 10.1007/BF00040614 PubMed DOI

Karami A., Shahbazi M., Niknam V., Shobbar Z. S., Tafreshi R. S., Abedini R., et al. (2013). Expression analysis of dehydrin multigene family across tolerant and susceptible barley (Hordeum vulgare L.) genotypes in response to terminal drought stress. Acta Physiol. Plant. 35 2289–2297 10.1007/s11738-013-1266-1 DOI

Kosová K., Prášil I. T., Vítámvás P. (2008a). The relationship between vernalization- and photoperiodically-regulated genes and the development of frost tolerance in wheat and barley. Biol. Plant. 52 601–615 10.1007/s10535-008-0120-6 DOI

Kosová K., Holková L., Prášil I. T., Prášilová P., Bradáčová M., Vítámvás P., et al. (2008b). Expression of dehydrin 5 during the development of frost tolerance in barley (Hordeum vulgare). J. Plant Physiol. 165 1142–1151 10.1016/j.jplph.2007.10.009 PubMed DOI

Kosová K., Prášil I. T., Vítámvás P. (2010). “Role of dehydrins in plant stress response,” in Handbook of Plant and Crop Stress, 3rd Edn ed. Pessarakli M. (Boca Raton, FL: CRC Press; ), 239–285

Kosová K., Vítámvás P., Vlasáková E., Prášil I. T. (2013a). “The response of barley (Hordeum vulgare) cv. Amulet and cv. Tadmor to salinity stress,” in The Effect of Abiotic and Biotic Stress Factors on Plants, eds Bláha L., Hnilička F. (Conference Proceedings. Czech University of Life Sciences and Crop Research Institute, Prague, Czech Republic; ), 99–104 [In Czech with an English summary]

Kosová K., Vítámvás P., Prášilová P., Prášil I. T. (2013b). Accumulation of WCS120 and DHN5 proteins in differently frost-tolerant wheat and barley cultivars grown under a broad temperature scale. Biol. Plant. 57 105–112 10.1007/s10535-012-0237-5 DOI

Ohno R., Takumi S., Nakamura C. (2003). Kinetics of transcript and protein accumulation of a low-molecular-weight wheat LEA-D11 dehydrin in response to low temperature. J. Plant Physiol. 160 193–200 10.1078/0176-1617-00925 PubMed DOI

Prášil I.T., Holková L., Kosová K., Vítámvás P., Urban M. O., Musilová J., et al. (2014). “Quantitative expression of cold-regulated genes – a diagnostic marker for determination of frost tolerance in wheat,” in The effect of Abiotic and Biotic Stress Factors on Plants, eds Ditmarová L., Hnilička F. (Conference Proceedings. Czech University of Life Sciences, Prague, Czech Republic and Institute of Forest Ecology Slovak Academy of Sciences, Zvolen, Slovak Republic; ), 1–4 [In Czech with an English summary].

Rodriguez E. M., Svensson J. T., Malatrasi M., Choi D. W., Close T. J. (2005). Barley Dhn13 encodes a KS-type dehydrin with constitutive and stress responsive expression. Theor. Appl. Genet. 110 852–858 10.1007/s00122-004-1877-4 PubMed DOI

Rorat T. (2006). Plant dehydrins – tissue location, structure and function. Cell. Mol. Biol. Lett. 11 536–556 10.2478/s11658-006-0044-0 PubMed DOI PMC

Sarhan F., Ouellet F., Vazquez-Tello A. (1997). The wheat Wcs120 gene family. A useful model to understand the genetics of freezing tolerance in cereals. Physiol. Plant. 101 439–445 10.1111/j.1399-3054.1997.tb01019.x DOI

Seo E., Lee H., Jeon J., Park H., Kim J., Noh Y. S., et al. (2009). Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. Plant Cell 21 3185–3197 10.1105/tpc.108.063883 PubMed DOI PMC

Shitsukawa N., Ikari C., Mitsuya T., Sakiyama T., Ishikawa A., Takumi S., et al. (2007). Wheat SOC1 functions independently of WAP1/VRN1, an integrator of vernalization and photoperiod flowering promotion pathways. Physiol. Plant. 130 627–636 10.1111/j.1399-3054.2007.00827.x DOI

Škodáček Z., Prášil I. T. (2011). New possibilities for research of barley (Hordeum vulgare L.) drought resistance. Úroda 8 24–29 [In Czech with an English summary].

Sun X., Xi D. H., Feng H., Du J. B., Lei T., Liang H. G., et al. (2009). The dual effects of salicylic acid on dehydrin accumulation in water-stressed barley seedlings. Russ. J. Plant Physiol. 56 348–354 10.1134/S1021443709030078 DOI

Suprunova T., Krugman T., Fahima T., Chen G., Shams I., Korol A., et al. (2004). Differential expression of dehydrin genes in wild barley, Hordeum spontaneum, associated with resistance to water deficit. Plant Cell Environ. 27 1297–1308 10.1111/j.1365-3040.2004.01237.x DOI

The International Barley Genome Sequencing Consortium. (2012). A physical, genetic and functional sequence assembly of the barley genome. Nature 491 711–717 10.1038/nature11543 PubMed DOI

Tommasini L., Svensson J. T., Rodriguez E. M., Wahid A., Malatrasi M., Kato K., et al. (2008). Dehydrin gene expression provides an indicator of low temperature and drought stress: transcriptome-based analysis of barley (Hordeum vulgare L.). Funct. Integr. Genomics 8 387–405 10.1007/s10142-008-0081-z PubMed DOI

Vítámvás P., Kosová K., Prášilová P., Prášil I. T. (2010). Accumulation of WCS120 protein in wheat cultivars grown at 9∘C or 17∘C in relation to their winter survival. Plant Breed. 129 611–616 10.1111/j.1439-0523.2010.01783.x DOI

Vítámvás P., Prášil I. T. (2008). WCS120 protein family and frost tolerance during cold acclimation, deacclimation and reacclimation of winter wheat. Plant Physiol. Biochem. 46 970–976 10.1016/j.plaphy.2008.06.006 PubMed DOI

Vítámvás P., Saalbach G., Prášil I. T., Čapková V., Opatrná J., Jahoor A. (2007). WCS120 protein family and proteins soluble upon boiling in cold-acclimated winter wheat. J. Plant Physiol. 164 1197–1207 10.1016/j.jplph.2006.06.011 PubMed DOI

Wang Y., Xu H., Zhu H., Tao Y., Zhang G., Zhang L., et al. (2014). Classification and expression diversification of wheat dehydrin genes. Plant Sci. 214 113–120 10.1016/j.plantsci.2013.10.005 PubMed DOI

Wisniewski M., Webb R., Balsamo R., Close T. J., Yu X. M., Griffith M. (1999). Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach (Prunus persica). Physiol. Plant. 105 600–608 10.1034/j.1399-3054.1999.105402.x DOI

Zhu B., Choi D. W., Fenton R., Close T. J. (2000). Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol. Gen. Genet. 264 145–153 10.1007/s004380000299 PubMed DOI

Zhu W., Zhang D., Lu X., Zhang L., Yu Z., Lv H., et al. (2014). Characterisation of an SKn-type dehydrin promoter from wheat and its responsiveness to various abiotic and biotic stresses. Plant Mol. Biol. Rep. 32 664–678 10.1007/s11105-013-0681-1 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...