Pulsed Electric Field Treatment Modulates Gene Expression and Stress Responses in Fusarium-Infected Malting Barley
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA20-14649S
Czech Science Foundation
RO0423
Czech Ministry of Agriculture
PubMed
40094521
PubMed Central
PMC11901457
DOI
10.3390/plants14050668
PII: plants14050668
Knihovny.cz E-zdroje
- Klíčová slova
- Fusarium infection, Hordeum vulgare, gene expression, malting, pulsed electric field, stress response, transcriptomics,
- Publikační typ
- časopisecké články MeSH
Malting is a critical step in barley (Hordeum vulgare) processing, transforming grain into a key raw material for brewing and food production. However, the process is often compromised by Fusarium spp., pathogens responsible for Fusarium Head Blight, which reduces grain quality and safety. Pulsed electric field (PEF) treatment, a promising non-thermal technology, has been studied for its potential to inactivate microbial pathogens and mitigate infection-related stress. In this study, we investigated transcriptional responses in barley infected with Fusarium spp. during malting, both with and without PEF treatment. RNA sequencing identified over 12,000 differentially expressed genes (DEGs) across four malting stages, with the third stage (24 h of germination) showing the highest transcriptional activity. DEGs were significantly enriched in pathways related to oxidative stress management and abscisic acid signaling, underscoring their importance in stress adaptation. Barley treated with PEF exhibited fewer DEGs in later malting stages compared to untreated samples, suggesting that PEF alleviates stress induced by both Fusarium infection and the malting process. Enrichment analysis further revealed that PEF treatment up-regulated stress-related pathways while down-regulating genes associated with photosynthesis and cell wall biogenesis. These findings provide novel insights into barley stress responses during malting and highlight the potential of PEF as a tool for enhancing malt quality under stress conditions.
Zobrazit více v PubMed
Food and Agriculture Organization of the United Nations . Barley Production. FAO; Rome, Italy: 2023.
Bahmani M., O’Lone C.E., Juhász A., Nye-Wood M., Dunn H., Edwards I.B., Colgrave M.L. Application of mass spectrometry-based proteomics to barley research. J. Agric. Food Chem. 2021;69:8591–8609. doi: 10.1021/acs.jafc.1c01871. PubMed DOI PMC
Jaeger A., Zannini E., Sahin A.W., Arendt E.K. Barley Protein Properties, Extraction and Applications, with a Focus on Brewers’ Spent Grain Protein. Foods. 2021;10:1389. doi: 10.3390/foods10061389. PubMed DOI PMC
Lin L., Tian S., Kaeppler S.M., Liu Z., An Y.-Q.C. Conserved Transcriptional Regulatory Programs Underlying Rice and Barley Germination. PLoS ONE. 2014;9:e87261. doi: 10.1371/journal.pone.0087261. PubMed DOI PMC
Huang Y., Cai S., Ye L., Hu H., Li C., Zhang G. The effects of GA and ABA treatments on metabolite profile of germinating barley. Food Chem. 2016;192:928–933. doi: 10.1016/j.foodchem.2015.07.090. PubMed DOI
Holdsworth M.J., Bentsink L., Soppe W.J. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol. 2008;179:33–54. doi: 10.1111/j.1469-8137.2008.02437.x. PubMed DOI
An Y.-Q., Lin L. Transcriptional Regulatory Programs Underlying Barley Germination and Regulatory Functions of Gibberellin and Abscisic Acid. BMC Plant Biol. 2011;11:105. doi: 10.1186/1471-2229-11-105. PubMed DOI PMC
Nielsen L.K., Cook D.J., Edwards S.G., Ray R.V. The prevalence and impact of Fusarium head blight pathogens and mycotoxins on malting barley quality in UK. Int. J. Food Microbiol. 2014;179:38–49. doi: 10.1016/j.ijfoodmicro.2014.03.023. PubMed DOI PMC
Pascari X., Ramos A.J., Marín S., Sanchís V. Mycotoxins and beer. Impact of beer production process on mycotoxin contamination. A review. Food Res. Int. 2018;103:121–129. doi: 10.1016/j.foodres.2017.07.038. PubMed DOI
Oliveira P., Mauch A., Jacob F., Arendt E.K. Impact of Fusarium Culmorum-Infected Barley Malt Grains on Brewing and Beer Quality. J. Am. Soc. Brew. Chem. 2012;70:186–194. doi: 10.1094/ASBCJ-2012-0713-01. DOI
Che J., Huang J., Ouyang Q., Tao N. Anisaldehyde Exerts Its Antifungal Activity Against Penicillium Digitatum and Penicillium Italicum by Disrupting the Cell Wall Integrity and Membrane Permeability. J. Microbiol. Biotechnol. 2020;30:878–884. doi: 10.4014/jmb.1911.11032. PubMed DOI PMC
Qin R., Li P., Du M., Ma L., Huang Y., Yin Z., Zhang Y., Chen D., Han-hong X.U., Wu X. Spatiotemporal Visualization of Insecticides and Fungicides Within Fruits and Vegetables Using Gold Nanoparticle-Immersed Paper Imprinting Mass Spectrometry Imaging. Nanomaterials. 2021;11:1327. doi: 10.3390/nano11051327. PubMed DOI PMC
Keter L., Too R., Mwikwabe N., Mutai C., Orwa J., Mwamburi L.A., Ndwigah S., Bii C., Korir R. Risk of Fungi Associated With Aflatoxin and Fumonisin in Medicinal Herbal Products in the Kenyan Market. Sci. World J. 2017;2017:1892972. doi: 10.1155/2017/1892972. PubMed DOI PMC
Postulkova M., Rezanina J., Fiala J., Růžička M.C., Dostálek P., Brányik T. Suppression of Fungal Contamination By Pythium Oligandrum during Malting of Barley. J. Inst. Brew. 2018;124:336–340. doi: 10.1002/jib.518. DOI
Tournas V. Heat-Resistant Fungi of Importance to the Food and Beverage Industry. Crit. Rev. Microbiol. 1994;20:243–263. doi: 10.3109/10408419409113558. PubMed DOI
González-García Y., Escobar-Hernández D.I., Benavides-Mendoza A., Morales-Díaz A.B., Olivares-Sáenz E., Juárez-Maldonado A. UV-A Radiation Stimulates Tolerance against Fusarium oxysporum f. sp. lycopersici in Tomato Plants. Horticulturae. 2023;9:499. doi: 10.3390/horticulturae9040499. DOI
Homa K., Barney W.P., Davis W.P., Guerrero D., Berger M.J., Lopez J.L., Wyenandt C.A., Simon J.E. Cold Plasma Treatment Strategies for the Control of Fusarium oxysporum f. sp. basilici in Sweet Basil. HortSci. Horts. 2021;56:42–51. doi: 10.21273/HORTSCI15338-20. DOI
Kalagatur N.K., Kamasani J.R., Mudili V., Krishna K., Chauhan O.P., Sreepathi M.H. Effect of high pressure processing on growth and mycotoxin production of Fusarium graminearum in maize. Food Biosci. 2018;21:53–59. doi: 10.1016/j.fbio.2017.11.005. DOI
Nordin S., Samsudin N.A., Effarizah M.E., Zakaria L., Selamat J., Rahman M.A.H., Mahror N. Prevalence, Identification and Mycotoxigenic Potential of Fungi in Common Spices Used in Local Malaysian Cuisines. Foods. 2022;11:2548. doi: 10.3390/foods11172548. PubMed DOI PMC
Li L., Yang R., Zhao W. The Effect of Pulsed Electric Fields (PEF) Combined With Temperature and Natural Preservatives on the Quality and Microbiological Shelf-Life of Cantaloupe Juice. Foods. 2021;10:2606. doi: 10.3390/foods10112606. PubMed DOI PMC
Ramaswamy R., Prabu R.R., Gowrisree V. Electric Field Analysis of Water Electrodes for Noninvasive Pulsed Electric Field Applications. Int. J. Innov. Technol. Explor. Eng. 2019;8:1210–1214. doi: 10.35940/ijitee.F3768.0881019. DOI
Evrendilek G.A. Where Does Pulsed Electric Field Processing Stand for Preservation of Nutrition Quality of Foods. J. Nutr. Food Sci. 2014;4:6. doi: 10.4172/2155-9600.1000e122. DOI
Saulis G. Electroporation of Cell Membranes: The Fundamental Effects of Pulsed Electric Fields in Food Processing. Food Eng. Rev. 2010;2:52–73. doi: 10.1007/s12393-010-9023-3. DOI
Yan Z., Li Y., Hao C., Liu K., Qiu J. Synergistic Effect of Pulsed Electric Fields and Temperature on the Inactivation of Microorganismsill. AMB Express. 2021;11:1–16. doi: 10.1186/s13568-021-01206-8. PubMed DOI PMC
Alirezalu K., Munekata P.E.S., Parniakov O., Barba F.J., Witt J., Toepfl S., Wiktor A., Lorenzo J.M. Pulsed electric field and mild heating for milk processing: A review on recent advances. J. Sci. Food Agric. 2020;100:16–24. doi: 10.1002/jsfa.9942. PubMed DOI
Stranska M., Prusova N., Behner A., Dzuman Z., Lazarek M., Tobolkova A., Chrpova J., Hajslova J. Influence of pulsed electric field treatment on the fate of Fusarium and Alternaria mycotoxins present in malting barley. Food Control. 2023;145:109440. doi: 10.1016/j.foodcont.2022.109440. DOI
Karabín M., Jelínek L., Průšová N., Ovesná J., Stránská M. Pulsed electric field treatment applied to barley before malting reduces Fusarium pathogens without compromising the quality of the final malt. LWT. 2024;206:116575. doi: 10.1016/j.lwt.2024.116575. DOI
Bonetta S., Bonetta S., Bellero M., Pizzichemi M., Carraro E. Inactivation of Escherichia coli and Staphylococcus aureus by Pulsed Electric Fields Increases With Higher Bacterial Population and With Agitation of Liquid Medium. J. Food Prot. 2014;77:1219–1223. doi: 10.4315/0362-028X.JFP-13-487. PubMed DOI
Pataro G., Senatore B., Donsì G., Ferrari G. Effect of Electric and Flow Parameters on PEF Treatment Efficiency. J. Food Eng. 2011;105:79–88. doi: 10.1016/j.jfoodeng.2011.02.007. DOI
Mohamad A., Nor Nadiah Abdul Karim S., Sulaiman A., Adzahan N.M., Aadil R.M. Pulsed Electric Field of Goat Milk: Impact on Escherichia coli ATCC 8739 and Vitamin Constituents. J. Food Process Eng. 2021;44:e13779. doi: 10.1111/jfpe.13779. DOI
Saldaña G., Puértolas E., Álvarez I., Meneses N., Knorr D., Raso J. Evaluation of a Static Treatment Chamber to Investigate Kinetics of Microbial Inactivation by Pulsed Electric Fields at Different Temperatures at Quasi-Isothermal Conditions. J. Food Eng. 2010;100:349–356. doi: 10.1016/j.jfoodeng.2010.04.021. DOI
Raso J., Frey W., Ferrari G., Pataro G., Knorr D., Teissié J., Miklavčič D. Recommendations Guidelines on the Key Information to Be Reported in Studies of Application of PEF Technology in Food and Biotechnological Processes. Innov. Food Sci. Emerg. Technol. 2016;37:312–321. doi: 10.1016/j.ifset.2016.08.003. DOI
Leišová-Svobodová L., Psota V., Stočes Š., Vácha P., Kučera L. Comparative de novo transcriptome analysis of barley varieties with different malting qualities. Funct. Integr. Genom. 2020;20:801–812. doi: 10.1007/s10142-020-00750-z. PubMed DOI PMC
Chrpová J., Šíp V., Matějová E., Sýkorová S. Resistance of winter wheat varieties registered in the Czech Republic to mycotoxin accumulation in grain following inoculation with Fusarium culmorum. Czech J. Genet. Plant Breed. 2007;43:44. doi: 10.17221/1910-CJGPB. DOI
Prusova N., Karabin M., Jelinek L., Chrpova J., Ovesna J., Svoboda P., Dolezalova T., Behner A., Hajslova J., Stranska M. Application of Pulsed Electric Field During Malting: Impact on Fusarium Species Growth and Mycotoxin Production. Toxins. 2024;16:537. doi: 10.3390/toxins16120537. PubMed DOI PMC
Ovesna J., Vacke J., Kucera L., Chrpová J., Novakova I., Jahoor A., Ip V.Š. Genetic analysis of resistance in barley to barley yellow dwarf virus. Plant Breed. 2000;119:481–486. doi: 10.1046/j.1439-0523.2000.00522.x. DOI
Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. [(accessed on 5 January 2025)]. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
Ewels P., Magnusson M., Lundin S., Käller M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–3048. doi: 10.1093/bioinformatics/btw354. PubMed DOI PMC
Kim D., Paggi J.M., Park C., Bennett C., Salzberg S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019;37:907–915. doi: 10.1038/s41587-019-0201-4. PubMed DOI PMC
Liao Y., Smyth G.K., Shi W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Wu T., Hu E., Xu S., Chen M., Guo P., Dai Z., Feng T., Zhou L., Tang W., Zhan L., et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation. 2021;2:100141. doi: 10.1016/j.xinn.2021.100141. PubMed DOI PMC
Craine E.B., Choi H., Schroeder K.L., Brueggeman R., Esser A.D., Murphy K.M. Spring Barley Malt Quality in Eastern Washington and Northern Idaho. Crop Sci. 2023;63:1148–1168. doi: 10.1002/csc2.20924. DOI
Daba S., Horsley R.D., Schwarz P., Chao S., Capettini F., Mohammadi M. Association and Genome Analyses to Propose Putative Candidate Genes for Malt Quality Traits. J. Sci. Food Agric. 2018;99:2775–2785. doi: 10.1002/jsfa.9485. PubMed DOI
Liu Z., Zhao L., Zhang Q., Huo N., Shi X., Li L., Lee J., Lu Y., Peng Y., Song Y. Proteomics-Based Mechanistic Investigation of Escherichia coli Inactivation by Pulsed Electric Field. Front. Microbiol. 2019;10:2644. doi: 10.3389/fmicb.2019.02644. PubMed DOI PMC
Yun O., Zeng X.A., Brennan C.S., Han Z. Effect of Pulsed Electric Field on Membrane Lipids and Oxidative Injury of Salmonella typhimurium. Int. J. Mol. Sci. 2016;17:1374. doi: 10.3390/ijms17081374. PubMed DOI PMC
Bahmani M. Proteome Changes Resulting From Malting in Hordein-Reduced Barley Lines. J. Agric. Food Chem. 2023;71:14079–14091. doi: 10.1021/acs.jafc.3c02292. PubMed DOI PMC
Kosová K., Vítámvás P., Prášil I.T. Wheat and Barley Dehydrins Under Cold, Drought, and Salinity—What Can LEA-II Proteins Tell Us About Plant Stress Response? Front. Plant Sci. 2014;5:343. doi: 10.3389/fpls.2014.00343. PubMed DOI PMC
Hoheneder F., Steidele C.E., Messerer M., Mayer K.F.X., Köhler N., Wurmser C., Heß M., Gigl M., Dawid C., Stam R., et al. Barley shows reduced Fusarium head blight under drought and modular expression of differentially expressed genes under combined stress. J. Exp. Bot. 2023;74:6820–6835. doi: 10.1093/jxb/erad348. PubMed DOI
Gietler M., Fidler J., Labudda M., Nykiel M. Abscisic Acid—Enemy or Savior in the Response of Cereals to Abiotic and Biotic Stresses? Int. J. Mol. Sci. 2020;21:4607. doi: 10.3390/ijms21134607. PubMed DOI PMC
Su Z., Gao S., Zheng Z., Stiller J., Hu S., McNeil M.D., Shabala S., Zhou M., Liu C. Transcriptomic insights into shared responses to Fusarium crown rot infection and drought stresses in bread wheat (Triticum aestivum L.) Theor. Appl. Genet. 2024;137:34. doi: 10.1007/s00122-023-04537-1. PubMed DOI PMC
Su Z.Y., Powell J.J., Gao S., Zhou M., Liu C. Comparing transcriptional responses to Fusarium crown rot in wheat and barley identified an important relationship between disease resistance and drought tolerance. BMC Plant Biol. 2021;21:73. doi: 10.1186/s12870-020-02818-1. PubMed DOI PMC
Akdemir Evrendilek G., Atmaca B., Bulut N., Uzuner S. Development of pulsed electric fields treatment unit to treat wheat grains: Improvement of seed vigour and stress tolerance. Comput. Electron. Agric. 2021;185:106129. doi: 10.1016/j.compag.2021.106129. DOI
Bagarinao N.C., King J., Leong S.Y., Agyei D., Sutton K., Oey I. Effect of Germination on Seed Protein Quality and Secondary Metabolites and Potential Modulation by Pulsed Electric Field Treatment. Foods. 2024;13:1598. doi: 10.3390/foods13111598. PubMed DOI PMC
Bretträger M., Becker T., Gastl M. Screening of Mycotoxigenic Fungi in Barley and Barley Malt (Hordeum vulgare L.) Using Real-Time PCR—A Comparison Between Molecular Diagnostic and Culture Technique. Foods. 2022;11:1149. doi: 10.3390/foods11081149. PubMed DOI PMC
Kreszies T., Shellakkutti N., Osthoff A., Yu P., Baldauf J.A., Zeisler-Diehl V., Ranathunge K., Hochholdinger F., Schreiber L. Osmotic Stress Enhances Suberization of Apoplastic Barriers in Barley Seminal Roots: Analysis of Chemical, Transcriptomic and Physiological Responses. New Phytol. 2018;221:180–194. doi: 10.1111/nph.15351. PubMed DOI PMC
Aubert M.K., Coventry S., Shirley N.J., Betts N.S., Würschum T., Burton R.A., Tucker M.R. Differences in Hydrolytic Enzyme Activity Accompany Natural Variation in Mature Aleurone Morphology in Barley (Hordeum vulgare L.) Sci. Rep. 2018;8:11025. doi: 10.1038/s41598-018-29068-4. PubMed DOI PMC
Cu S., March T.J., Degner S., Eglinton J. Identification of Novel Alleles From Wild Barley for the Improvement of Alpha-amylase and Related Malt Quality Traits. Plant Breed. 2016;135:663–670. doi: 10.1111/pbr.12417. DOI
Gashaw A. Review on Structure, Functional and Nutritional Composition of Barley (Hordeum vulgare) J. Nutr. Food Process. 2021;4:01–08. doi: 10.31579/2637-8914/046. DOI
Siller A., Darby H., Smychkovich A., Hashemi M. Winter Malting Barley Growth, Yield, and Quality Following Leguminous Cover Crops in the Northeast United States. Nitrogen. 2021;2:415–427. doi: 10.3390/nitrogen2040028. DOI
Leišová L., Kučera L., Chrpová J., Sýkorová S., Šíp V., Ovesná J. Quantification of Fusarium Culmorum in Wheat and Barley Tissues Using Real-Time Pcr in Comparison with Don Content. J. Phytopathol. 2006;154:603–611. doi: 10.1111/j.1439-0434.2006.01154.x. DOI
Yli-Mattila T., Paavanen-Huhtala S., Jestoi M., Parikka P., Hietaniemi V., Gagkaeva T., Sarlin T., Haikara A., Laaksonen S., Rizzo A. Real-time PCR detection and quantification of Fusarium poae, F. graminearum, F. sporotrichioides and F. langsethiae in cereal grains in Finland and Russia. Arch. Phytopathol. Plant Prot. 2008;41:243–260. doi: 10.1080/03235400600680659. DOI
Köhl J., Lombaers C., Moretti A., Bandyopadhyay R., Somma S., Kastelein P. Analysis of Microbial Taxonomical Groups Present in Maize Stalks Suppressive to Colonization by Toxigenic Fusarium spp.: A Strategy for the Identification of Potential Antagonists. Biol. Control. 2015;83:20–28. doi: 10.1016/j.biocontrol.2014.12.007. DOI
Bluhm B.H., Cousin M.A., Woloshuk C.P. Multiplex Real-Time Pcr Detection of Fumonisin-Producing and Trichothecene-Producing Groups of Fusarium Species. J. Food Prot. 2004;67:536–543. doi: 10.4315/0362-028X-67.3.536. PubMed DOI