Pulsed Electric Field Treatment Modulates Gene Expression and Stress Responses in Fusarium-Infected Malting Barley

. 2025 Feb 21 ; 14 (5) : . [epub] 20250221

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40094521

Grantová podpora
GA20-14649S Czech Science Foundation
RO0423 Czech Ministry of Agriculture

Malting is a critical step in barley (Hordeum vulgare) processing, transforming grain into a key raw material for brewing and food production. However, the process is often compromised by Fusarium spp., pathogens responsible for Fusarium Head Blight, which reduces grain quality and safety. Pulsed electric field (PEF) treatment, a promising non-thermal technology, has been studied for its potential to inactivate microbial pathogens and mitigate infection-related stress. In this study, we investigated transcriptional responses in barley infected with Fusarium spp. during malting, both with and without PEF treatment. RNA sequencing identified over 12,000 differentially expressed genes (DEGs) across four malting stages, with the third stage (24 h of germination) showing the highest transcriptional activity. DEGs were significantly enriched in pathways related to oxidative stress management and abscisic acid signaling, underscoring their importance in stress adaptation. Barley treated with PEF exhibited fewer DEGs in later malting stages compared to untreated samples, suggesting that PEF alleviates stress induced by both Fusarium infection and the malting process. Enrichment analysis further revealed that PEF treatment up-regulated stress-related pathways while down-regulating genes associated with photosynthesis and cell wall biogenesis. These findings provide novel insights into barley stress responses during malting and highlight the potential of PEF as a tool for enhancing malt quality under stress conditions.

Zobrazit více v PubMed

Food and Agriculture Organization of the United Nations . Barley Production. FAO; Rome, Italy: 2023.

Bahmani M., O’Lone C.E., Juhász A., Nye-Wood M., Dunn H., Edwards I.B., Colgrave M.L. Application of mass spectrometry-based proteomics to barley research. J. Agric. Food Chem. 2021;69:8591–8609. doi: 10.1021/acs.jafc.1c01871. PubMed DOI PMC

Jaeger A., Zannini E., Sahin A.W., Arendt E.K. Barley Protein Properties, Extraction and Applications, with a Focus on Brewers’ Spent Grain Protein. Foods. 2021;10:1389. doi: 10.3390/foods10061389. PubMed DOI PMC

Lin L., Tian S., Kaeppler S.M., Liu Z., An Y.-Q.C. Conserved Transcriptional Regulatory Programs Underlying Rice and Barley Germination. PLoS ONE. 2014;9:e87261. doi: 10.1371/journal.pone.0087261. PubMed DOI PMC

Huang Y., Cai S., Ye L., Hu H., Li C., Zhang G. The effects of GA and ABA treatments on metabolite profile of germinating barley. Food Chem. 2016;192:928–933. doi: 10.1016/j.foodchem.2015.07.090. PubMed DOI

Holdsworth M.J., Bentsink L., Soppe W.J. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol. 2008;179:33–54. doi: 10.1111/j.1469-8137.2008.02437.x. PubMed DOI

An Y.-Q., Lin L. Transcriptional Regulatory Programs Underlying Barley Germination and Regulatory Functions of Gibberellin and Abscisic Acid. BMC Plant Biol. 2011;11:105. doi: 10.1186/1471-2229-11-105. PubMed DOI PMC

Nielsen L.K., Cook D.J., Edwards S.G., Ray R.V. The prevalence and impact of Fusarium head blight pathogens and mycotoxins on malting barley quality in UK. Int. J. Food Microbiol. 2014;179:38–49. doi: 10.1016/j.ijfoodmicro.2014.03.023. PubMed DOI PMC

Pascari X., Ramos A.J., Marín S., Sanchís V. Mycotoxins and beer. Impact of beer production process on mycotoxin contamination. A review. Food Res. Int. 2018;103:121–129. doi: 10.1016/j.foodres.2017.07.038. PubMed DOI

Oliveira P., Mauch A., Jacob F., Arendt E.K. Impact of Fusarium Culmorum-Infected Barley Malt Grains on Brewing and Beer Quality. J. Am. Soc. Brew. Chem. 2012;70:186–194. doi: 10.1094/ASBCJ-2012-0713-01. DOI

Che J., Huang J., Ouyang Q., Tao N. Anisaldehyde Exerts Its Antifungal Activity Against Penicillium Digitatum and Penicillium Italicum by Disrupting the Cell Wall Integrity and Membrane Permeability. J. Microbiol. Biotechnol. 2020;30:878–884. doi: 10.4014/jmb.1911.11032. PubMed DOI PMC

Qin R., Li P., Du M., Ma L., Huang Y., Yin Z., Zhang Y., Chen D., Han-hong X.U., Wu X. Spatiotemporal Visualization of Insecticides and Fungicides Within Fruits and Vegetables Using Gold Nanoparticle-Immersed Paper Imprinting Mass Spectrometry Imaging. Nanomaterials. 2021;11:1327. doi: 10.3390/nano11051327. PubMed DOI PMC

Keter L., Too R., Mwikwabe N., Mutai C., Orwa J., Mwamburi L.A., Ndwigah S., Bii C., Korir R. Risk of Fungi Associated With Aflatoxin and Fumonisin in Medicinal Herbal Products in the Kenyan Market. Sci. World J. 2017;2017:1892972. doi: 10.1155/2017/1892972. PubMed DOI PMC

Postulkova M., Rezanina J., Fiala J., Růžička M.C., Dostálek P., Brányik T. Suppression of Fungal Contamination By Pythium Oligandrum during Malting of Barley. J. Inst. Brew. 2018;124:336–340. doi: 10.1002/jib.518. DOI

Tournas V. Heat-Resistant Fungi of Importance to the Food and Beverage Industry. Crit. Rev. Microbiol. 1994;20:243–263. doi: 10.3109/10408419409113558. PubMed DOI

González-García Y., Escobar-Hernández D.I., Benavides-Mendoza A., Morales-Díaz A.B., Olivares-Sáenz E., Juárez-Maldonado A. UV-A Radiation Stimulates Tolerance against Fusarium oxysporum f. sp. lycopersici in Tomato Plants. Horticulturae. 2023;9:499. doi: 10.3390/horticulturae9040499. DOI

Homa K., Barney W.P., Davis W.P., Guerrero D., Berger M.J., Lopez J.L., Wyenandt C.A., Simon J.E. Cold Plasma Treatment Strategies for the Control of Fusarium oxysporum f. sp. basilici in Sweet Basil. HortSci. Horts. 2021;56:42–51. doi: 10.21273/HORTSCI15338-20. DOI

Kalagatur N.K., Kamasani J.R., Mudili V., Krishna K., Chauhan O.P., Sreepathi M.H. Effect of high pressure processing on growth and mycotoxin production of Fusarium graminearum in maize. Food Biosci. 2018;21:53–59. doi: 10.1016/j.fbio.2017.11.005. DOI

Nordin S., Samsudin N.A., Effarizah M.E., Zakaria L., Selamat J., Rahman M.A.H., Mahror N. Prevalence, Identification and Mycotoxigenic Potential of Fungi in Common Spices Used in Local Malaysian Cuisines. Foods. 2022;11:2548. doi: 10.3390/foods11172548. PubMed DOI PMC

Li L., Yang R., Zhao W. The Effect of Pulsed Electric Fields (PEF) Combined With Temperature and Natural Preservatives on the Quality and Microbiological Shelf-Life of Cantaloupe Juice. Foods. 2021;10:2606. doi: 10.3390/foods10112606. PubMed DOI PMC

Ramaswamy R., Prabu R.R., Gowrisree V. Electric Field Analysis of Water Electrodes for Noninvasive Pulsed Electric Field Applications. Int. J. Innov. Technol. Explor. Eng. 2019;8:1210–1214. doi: 10.35940/ijitee.F3768.0881019. DOI

Evrendilek G.A. Where Does Pulsed Electric Field Processing Stand for Preservation of Nutrition Quality of Foods. J. Nutr. Food Sci. 2014;4:6. doi: 10.4172/2155-9600.1000e122. DOI

Saulis G. Electroporation of Cell Membranes: The Fundamental Effects of Pulsed Electric Fields in Food Processing. Food Eng. Rev. 2010;2:52–73. doi: 10.1007/s12393-010-9023-3. DOI

Yan Z., Li Y., Hao C., Liu K., Qiu J. Synergistic Effect of Pulsed Electric Fields and Temperature on the Inactivation of Microorganismsill. AMB Express. 2021;11:1–16. doi: 10.1186/s13568-021-01206-8. PubMed DOI PMC

Alirezalu K., Munekata P.E.S., Parniakov O., Barba F.J., Witt J., Toepfl S., Wiktor A., Lorenzo J.M. Pulsed electric field and mild heating for milk processing: A review on recent advances. J. Sci. Food Agric. 2020;100:16–24. doi: 10.1002/jsfa.9942. PubMed DOI

Stranska M., Prusova N., Behner A., Dzuman Z., Lazarek M., Tobolkova A., Chrpova J., Hajslova J. Influence of pulsed electric field treatment on the fate of Fusarium and Alternaria mycotoxins present in malting barley. Food Control. 2023;145:109440. doi: 10.1016/j.foodcont.2022.109440. DOI

Karabín M., Jelínek L., Průšová N., Ovesná J., Stránská M. Pulsed electric field treatment applied to barley before malting reduces Fusarium pathogens without compromising the quality of the final malt. LWT. 2024;206:116575. doi: 10.1016/j.lwt.2024.116575. DOI

Bonetta S., Bonetta S., Bellero M., Pizzichemi M., Carraro E. Inactivation of Escherichia coli and Staphylococcus aureus by Pulsed Electric Fields Increases With Higher Bacterial Population and With Agitation of Liquid Medium. J. Food Prot. 2014;77:1219–1223. doi: 10.4315/0362-028X.JFP-13-487. PubMed DOI

Pataro G., Senatore B., Donsì G., Ferrari G. Effect of Electric and Flow Parameters on PEF Treatment Efficiency. J. Food Eng. 2011;105:79–88. doi: 10.1016/j.jfoodeng.2011.02.007. DOI

Mohamad A., Nor Nadiah Abdul Karim S., Sulaiman A., Adzahan N.M., Aadil R.M. Pulsed Electric Field of Goat Milk: Impact on Escherichia coli ATCC 8739 and Vitamin Constituents. J. Food Process Eng. 2021;44:e13779. doi: 10.1111/jfpe.13779. DOI

Saldaña G., Puértolas E., Álvarez I., Meneses N., Knorr D., Raso J. Evaluation of a Static Treatment Chamber to Investigate Kinetics of Microbial Inactivation by Pulsed Electric Fields at Different Temperatures at Quasi-Isothermal Conditions. J. Food Eng. 2010;100:349–356. doi: 10.1016/j.jfoodeng.2010.04.021. DOI

Raso J., Frey W., Ferrari G., Pataro G., Knorr D., Teissié J., Miklavčič D. Recommendations Guidelines on the Key Information to Be Reported in Studies of Application of PEF Technology in Food and Biotechnological Processes. Innov. Food Sci. Emerg. Technol. 2016;37:312–321. doi: 10.1016/j.ifset.2016.08.003. DOI

Leišová-Svobodová L., Psota V., Stočes Š., Vácha P., Kučera L. Comparative de novo transcriptome analysis of barley varieties with different malting qualities. Funct. Integr. Genom. 2020;20:801–812. doi: 10.1007/s10142-020-00750-z. PubMed DOI PMC

Chrpová J., Šíp V., Matějová E., Sýkorová S. Resistance of winter wheat varieties registered in the Czech Republic to mycotoxin accumulation in grain following inoculation with Fusarium culmorum. Czech J. Genet. Plant Breed. 2007;43:44. doi: 10.17221/1910-CJGPB. DOI

Prusova N., Karabin M., Jelinek L., Chrpova J., Ovesna J., Svoboda P., Dolezalova T., Behner A., Hajslova J., Stranska M. Application of Pulsed Electric Field During Malting: Impact on Fusarium Species Growth and Mycotoxin Production. Toxins. 2024;16:537. doi: 10.3390/toxins16120537. PubMed DOI PMC

Ovesna J., Vacke J., Kucera L., Chrpová J., Novakova I., Jahoor A., Ip V.Š. Genetic analysis of resistance in barley to barley yellow dwarf virus. Plant Breed. 2000;119:481–486. doi: 10.1046/j.1439-0523.2000.00522.x. DOI

Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. [(accessed on 5 January 2025)]. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

Ewels P., Magnusson M., Lundin S., Käller M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–3048. doi: 10.1093/bioinformatics/btw354. PubMed DOI PMC

Kim D., Paggi J.M., Park C., Bennett C., Salzberg S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019;37:907–915. doi: 10.1038/s41587-019-0201-4. PubMed DOI PMC

Liao Y., Smyth G.K., Shi W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI

Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Wu T., Hu E., Xu S., Chen M., Guo P., Dai Z., Feng T., Zhou L., Tang W., Zhan L., et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation. 2021;2:100141. doi: 10.1016/j.xinn.2021.100141. PubMed DOI PMC

Craine E.B., Choi H., Schroeder K.L., Brueggeman R., Esser A.D., Murphy K.M. Spring Barley Malt Quality in Eastern Washington and Northern Idaho. Crop Sci. 2023;63:1148–1168. doi: 10.1002/csc2.20924. DOI

Daba S., Horsley R.D., Schwarz P., Chao S., Capettini F., Mohammadi M. Association and Genome Analyses to Propose Putative Candidate Genes for Malt Quality Traits. J. Sci. Food Agric. 2018;99:2775–2785. doi: 10.1002/jsfa.9485. PubMed DOI

Liu Z., Zhao L., Zhang Q., Huo N., Shi X., Li L., Lee J., Lu Y., Peng Y., Song Y. Proteomics-Based Mechanistic Investigation of Escherichia coli Inactivation by Pulsed Electric Field. Front. Microbiol. 2019;10:2644. doi: 10.3389/fmicb.2019.02644. PubMed DOI PMC

Yun O., Zeng X.A., Brennan C.S., Han Z. Effect of Pulsed Electric Field on Membrane Lipids and Oxidative Injury of Salmonella typhimurium. Int. J. Mol. Sci. 2016;17:1374. doi: 10.3390/ijms17081374. PubMed DOI PMC

Bahmani M. Proteome Changes Resulting From Malting in Hordein-Reduced Barley Lines. J. Agric. Food Chem. 2023;71:14079–14091. doi: 10.1021/acs.jafc.3c02292. PubMed DOI PMC

Kosová K., Vítámvás P., Prášil I.T. Wheat and Barley Dehydrins Under Cold, Drought, and Salinity—What Can LEA-II Proteins Tell Us About Plant Stress Response? Front. Plant Sci. 2014;5:343. doi: 10.3389/fpls.2014.00343. PubMed DOI PMC

Hoheneder F., Steidele C.E., Messerer M., Mayer K.F.X., Köhler N., Wurmser C., Heß M., Gigl M., Dawid C., Stam R., et al. Barley shows reduced Fusarium head blight under drought and modular expression of differentially expressed genes under combined stress. J. Exp. Bot. 2023;74:6820–6835. doi: 10.1093/jxb/erad348. PubMed DOI

Gietler M., Fidler J., Labudda M., Nykiel M. Abscisic Acid—Enemy or Savior in the Response of Cereals to Abiotic and Biotic Stresses? Int. J. Mol. Sci. 2020;21:4607. doi: 10.3390/ijms21134607. PubMed DOI PMC

Su Z., Gao S., Zheng Z., Stiller J., Hu S., McNeil M.D., Shabala S., Zhou M., Liu C. Transcriptomic insights into shared responses to Fusarium crown rot infection and drought stresses in bread wheat (Triticum aestivum L.) Theor. Appl. Genet. 2024;137:34. doi: 10.1007/s00122-023-04537-1. PubMed DOI PMC

Su Z.Y., Powell J.J., Gao S., Zhou M., Liu C. Comparing transcriptional responses to Fusarium crown rot in wheat and barley identified an important relationship between disease resistance and drought tolerance. BMC Plant Biol. 2021;21:73. doi: 10.1186/s12870-020-02818-1. PubMed DOI PMC

Akdemir Evrendilek G., Atmaca B., Bulut N., Uzuner S. Development of pulsed electric fields treatment unit to treat wheat grains: Improvement of seed vigour and stress tolerance. Comput. Electron. Agric. 2021;185:106129. doi: 10.1016/j.compag.2021.106129. DOI

Bagarinao N.C., King J., Leong S.Y., Agyei D., Sutton K., Oey I. Effect of Germination on Seed Protein Quality and Secondary Metabolites and Potential Modulation by Pulsed Electric Field Treatment. Foods. 2024;13:1598. doi: 10.3390/foods13111598. PubMed DOI PMC

Bretträger M., Becker T., Gastl M. Screening of Mycotoxigenic Fungi in Barley and Barley Malt (Hordeum vulgare L.) Using Real-Time PCR—A Comparison Between Molecular Diagnostic and Culture Technique. Foods. 2022;11:1149. doi: 10.3390/foods11081149. PubMed DOI PMC

Kreszies T., Shellakkutti N., Osthoff A., Yu P., Baldauf J.A., Zeisler-Diehl V., Ranathunge K., Hochholdinger F., Schreiber L. Osmotic Stress Enhances Suberization of Apoplastic Barriers in Barley Seminal Roots: Analysis of Chemical, Transcriptomic and Physiological Responses. New Phytol. 2018;221:180–194. doi: 10.1111/nph.15351. PubMed DOI PMC

Aubert M.K., Coventry S., Shirley N.J., Betts N.S., Würschum T., Burton R.A., Tucker M.R. Differences in Hydrolytic Enzyme Activity Accompany Natural Variation in Mature Aleurone Morphology in Barley (Hordeum vulgare L.) Sci. Rep. 2018;8:11025. doi: 10.1038/s41598-018-29068-4. PubMed DOI PMC

Cu S., March T.J., Degner S., Eglinton J. Identification of Novel Alleles From Wild Barley for the Improvement of Alpha-amylase and Related Malt Quality Traits. Plant Breed. 2016;135:663–670. doi: 10.1111/pbr.12417. DOI

Gashaw A. Review on Structure, Functional and Nutritional Composition of Barley (Hordeum vulgare) J. Nutr. Food Process. 2021;4:01–08. doi: 10.31579/2637-8914/046. DOI

Siller A., Darby H., Smychkovich A., Hashemi M. Winter Malting Barley Growth, Yield, and Quality Following Leguminous Cover Crops in the Northeast United States. Nitrogen. 2021;2:415–427. doi: 10.3390/nitrogen2040028. DOI

Leišová L., Kučera L., Chrpová J., Sýkorová S., Šíp V., Ovesná J. Quantification of Fusarium Culmorum in Wheat and Barley Tissues Using Real-Time Pcr in Comparison with Don Content. J. Phytopathol. 2006;154:603–611. doi: 10.1111/j.1439-0434.2006.01154.x. DOI

Yli-Mattila T., Paavanen-Huhtala S., Jestoi M., Parikka P., Hietaniemi V., Gagkaeva T., Sarlin T., Haikara A., Laaksonen S., Rizzo A. Real-time PCR detection and quantification of Fusarium poae, F. graminearum, F. sporotrichioides and F. langsethiae in cereal grains in Finland and Russia. Arch. Phytopathol. Plant Prot. 2008;41:243–260. doi: 10.1080/03235400600680659. DOI

Köhl J., Lombaers C., Moretti A., Bandyopadhyay R., Somma S., Kastelein P. Analysis of Microbial Taxonomical Groups Present in Maize Stalks Suppressive to Colonization by Toxigenic Fusarium spp.: A Strategy for the Identification of Potential Antagonists. Biol. Control. 2015;83:20–28. doi: 10.1016/j.biocontrol.2014.12.007. DOI

Bluhm B.H., Cousin M.A., Woloshuk C.P. Multiplex Real-Time Pcr Detection of Fumonisin-Producing and Trichothecene-Producing Groups of Fusarium Species. J. Food Prot. 2004;67:536–543. doi: 10.4315/0362-028X-67.3.536. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...