Comparative de novo transcriptome analysis of barley varieties with different malting qualities

. 2020 Nov ; 20 (6) : 801-812. [epub] 20200918

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32948934

Grantová podpora
QJ1910197 Národní Agentura pro Zemědělský Výzkum
RO0418 Ministerstvo Zemědělství

Odkazy

PubMed 32948934
PubMed Central PMC7585565
DOI 10.1007/s10142-020-00750-z
PII: 10.1007/s10142-020-00750-z
Knihovny.cz E-zdroje

Barley is one of the most important crops in the world. Barley is used as both food and feed and is important for malt production. Demands for malting quality differ among countries and customs. Malting quality is a complex characteristic involving barley genetics, the environmental conditions during barley growth, and the technological parameters of the malting process. In this study, the hypothesis was that there were no differences between two groups of barley varieties with different but defined malting qualities, which was tested using RNA sequencing during selected stages of malting. In total, 919 differentially transcribed genes between the two barley groups were identified and annotated. Differentially expressed genes (DEGs) were primarily assigned to gene ontology (GO) terms of oxidation-reduction process - oxidoreductase activity, response to stress, carbohydrate metabolic process, and proteolysis - hydrolase activity, and metal ion binding. Genes connected with the plasma membrane and its integral components also play important roles in malting quality. DEG profiles of selected genes in the three malting stages indicate a complex character of malting quality. Many single-nucleotide polymorphisms (SNPs) and insertions and deletions (indels) were identified. SNPs and indels with the best quality were used for primer design. After optimization and validation, five molecular markers were developed for use in barley breeding.

Erratum v

PubMed

Zobrazit více v PubMed

Aubert MK, Coventry S, Shirley NJ, Bettes NS, Würschum T, Burton RA, Tucker MR. Differences in hydrolytic enzyme activity accompany natural variation in mature aleurone morphology in barley (Hordeum vulgare L.) Sci Rep. 2018;8:11025. doi: 10.1038/s41598-018-29068-4. PubMed DOI PMC

Betts NS, Wilkinson LG, Khor SF, Shirley NJ, Lok F, Skadhauge B, Burton RA, Fincher GB, Collins HM. Morphology, carbohydrate distribution, gene expression and enzymatic activities related to cell wall hydrolysis in four barley varieties during simulated malting. Front Plant Sci. 2017;8:1872. doi: 10.3389/fpls.2017.01872. PubMed DOI PMC

Bolger A, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinfo. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Chen K, An YC. Transcriptional responses to gibberellin and abscisic acid in barley aleurone. J Integr Biol. 2006;48:591–612. doi: 10.1111/j.1744-7909.2006.00270.x. DOI

Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2go: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–3676. doi: 10.1093/bioinformatics/bti610. PubMed DOI

Daneri-Castro S, Svensson B, Roberts TH. Barley germination: spatio-temporal considerations for designing and interpreting ´omics´experiments. J Cereal Sci. 2016;70:29–37. doi: 10.1016/j.jcs.2016.05.012. DOI

Duan R, Xiong H, Wang A, Chen G. Molecular mechanisms underlying hull-caryopsis adhesion/separation revealed by comparative transcriptomic analysis of covered/naked barley (Hordeum vulgare L.) Int J Mol Sci. 2015;16:14181–14193. doi: 10.3390/ijms160614181. PubMed DOI PMC

El-Maarouf-Bouteau H, Bailly C. Oxidative signalling in seed germination and dormancy. Plant Signal Behav. 2008;3:175–182. doi: 10.4161/psb.3.3.5539. PubMed DOI PMC

European Commission Publication of an application pursuant to Article 6(2) of Council Regulation (EC) No 510/2006 on the protection of geographical indications and designations of origin for agricultural products and foodstuffs. Off J C. 2008;16:14–22.

Ewels P, Magnusson M, Lundin S, Kaller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinfo. 2016;32:3047–3048. doi: 10.1093/bioinformatics/btw354. PubMed DOI PMC

Fincher GB, Stone BA. Cell wall and their components in cereal grain technology. Adv Cereal Sci Technol. 1986;8:207–295.

Finnie C, Svensson B. Barley seed proteomics from spots to structures. J Proteomics. 2009;72:315–324. doi: 10.1016/j.jprot.2008.12.001. PubMed DOI

Finnie C, Melchior S, Roepstorff P, Svensson B. Proteome analysis of grain filling and seed maturation in barley. Plant Physiol. 2002;129:1308–1319. doi: 10.1104/pp.003681. PubMed DOI PMC

Fox GP, Panozzo JF, Li CD, Lance RCM, Inkerman PA, Henry RJ. Molecular basis of barley quality. Aus J Agri Res. 2003;54:1081–1101. doi: 10.1071/AR02237. DOI

Gomes MP, Garcia QS. Reactive oxygen species and seed germination. Biologia. 2013;68:351–357. doi: 10.2478/s11756-013-0161-y. DOI

Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinfo. 2013;29(8):1072–1075. doi: 10.1093/bioinformatics/btt086. PubMed DOI PMC

Gutierrez C, Sanchez-Monge R, Gomez L, Ruiz-Tapiador M, Castanera P, Salcedo G. Alpha-amylase activities of agricultural insect pests are specifically affected by different inhibitor preparations from wheat and barley endosperm. Plant Sci. 1990;72:37–44. doi: 10.1016/0168-9452(90)90184-P. DOI

Gutierrez-Gonzales JJ, Tu ZJ, Garvin DF. Analysis and annotation of the hexaploid oat seed transcriptome. BMC Genomics. 2013;14:471. doi: 10.1186/1471-2164-14-471. PubMed DOI PMC

Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccless D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A. De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nat Protoc. 2013;8:1494–1512. doi: 10.1038/nprot.2013.084. PubMed DOI PMC

Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake TK, Franckowiak G, Rasmusson D, Sorrells M, Ullrich SE, Wesenberg D, Kleinhofs A. Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor Appl Genet. 1993;87:392–401. doi: 10.1007/BF01184929. PubMed DOI

Ishibashi Y, Tawaratsumida T, Kondo K, Kasa S, Sakamoto M, Aoki N, Zheng S, Yuasa T, Iwaya-Inoue M. Reactive Oxygen Species Are Involved in Gibberellin/Abscisic Acid Signaling in Barley Aleurone Cells. Plant Physiol. 2012;158:1705–1714. doi: 10.1104/pp.111.192740. PubMed DOI PMC

Job C, Rajjou L, Lovigny Y, Belghazi M, Job D. Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol. 2005;138:790–802. doi: 10.1104/pp.105.062778. PubMed DOI PMC

Jones BL. The endogenous endoprotease inhibitors of barley and malt and their roles in malting and brewing. J Cereal Sci. 2005;42:271–280. doi: 10.1016/j.jcs.2005.06.002. DOI

Jung J, Won SY, Suh SC, Kim H, Wing R, Jeong Y, Hwang I, Kim M. The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis. Planta. 2007;225:575–588. doi: 10.1007/s00425-006-0373-2. PubMed DOI

Kosař K, Psota V, Mikyška A. Barley varieties suitable for production of the Czech-type beer. Czech J Genet Plant Breed. 2004;40:137–139. doi: 10.17221/3712-CJGPB. DOI

Langmead B, Trapnell C, Pop T, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25. doi: 10.1186/gb-2009-10-3-r25. PubMed DOI PMC

Lapitan NLV, Hess A, Cooper B, Botha AM, Badillo D, Iyer H, Menert J, Close T, Wright L, Hanningh G, Tahir M, Lawrence C. Differentially expressed genes during malting and correlation with malting quality phenotypes in barley (Hordeum vulgare L.) Theor Appl Genet. 2009;118:937–952. doi: 10.1007/s00122-008-0951-8. PubMed DOI

Laugesen S, Bak-Jensen KS, Hägglund P, Henriksen A, Finnie C, Roepstorff P, Svensson B. Barley peroxidase isozymes. Expression and post-translational modification in mature seeds as identified by two-dimensional gel electrophoresis and mass spectrometry. Int J Mass Spectrom. 2007;268:244–253. doi: 10.1016/j.ijms.2007.06.003. DOI

Leišová-Svobodová L, Tomková L, Sedláček T, Psota V, Kučera L. The application of microsatellite analysis in barley malting quality breeding programmes. Czech J Genet Plant Breed. 2014;50:268–277. doi: 10.17221/72/2014-CJGPB. DOI

Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–2993. doi: 10.1093/bioinformatics/btr509. PubMed DOI PMC

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Mahalingam R. Shotgun proteomics of the barley seed proteome. BMC Genomics. 2017;18:44. doi: 10.1186/s12864-016-3408-5. PubMed DOI PMC

Mahalingam R. Temporal analyses of barley malting stages using shotgun proteomics. Proteomics. 2018;18:1800025. doi: 10.1002/pmic.201800025. PubMed DOI

Mascher M, Gundlach H, Himmetbach A et al (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433 PubMed

Mayer KFX, Waugh R, Langridge P, et al. A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012;491:711–717. doi: 10.1038/nature11543. PubMed DOI

MEBAK . Collection of brewing analysis methods of the Mitteleuropäische Brautechnische Analysenkommission. Freising-Weihenstephan, Germany: MEBAK; 2011.

Molina-Cano JL, Francesch M, Perez AM, Ramo T, Voltas J, Brufau J. Genetic and environmental variation in malting and feed quality of barley. J Cereal Sci. 1997;25:37–47. doi: 10.1006/jcrs.1996.0067. DOI

Munoz-Amatriain M, Xiong Y, Schmitt MR, Bilgic H, Budde AD, Chao S, Smith KP, Muehlbauer GJ. Transcriptome analysis of a barley breeding program examines gene expression diversity and reveals target genes for malting quality improvement. BMC Genomics. 2010;11:653. doi: 10.1186/1471-2164-11-653. PubMed DOI PMC

Perrocheau L, Rogniaux H, Boivin P, Marion D. Probing heat-stable water-soluble proteins from barley to malt and beer. Proteomics. 2005;5:2849–2858. doi: 10.1002/pmic.200401153. PubMed DOI

Potokina E, Prasad M, Malysheva L, Röder MS, Graner A. Expression genetics and haplotype analysis reveal cis regulation of serine carboxypeptidase I (Cxp1), a candidate gene for malting quality in barley (Hordeum vulgare L.) Funct Integr Genomics. 2006;6:25–35. doi: 10.1007/s10142-005-0008-x. PubMed DOI

Psota V, Kosař K. Malting quality index. Kvasny Prum. 2002;48:142–148. doi: 10.18832/kp2002011. DOI

Rho M, Tang H, Ye Y. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res. 2010;38:e191. doi: 10.1093/nar/gkq747. PubMed DOI PMC

Robinson MD, McCarthy DJ, Smyth GK. EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC

Schmidt M, Kollers S, Maasberg-Prelle A, Groβer J, Schinkel B, Tomerius A, Graner A, Korzun V. Prediction of malting quality traits in barley based on genome-wide marker data to assess the potential of genomic selection. Theor Appl Genet. 2016;129:203–213. doi: 10.1007/s00122-015-2639-1. PubMed DOI

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinfo. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI

Stanley D, Rejzek M, Naested H, Smedley M, Otero S, Fahy B, Thorpe F, Nash RJ, Harwood W, Svensson B, Denyer K, Field RA, Smith AM. The role of α-glucosidase in germinating barley grains. Plant Physiol. 2011;155:932–943. doi: 10.1104/pp.110.168328. PubMed DOI PMC

Taiz L, Honigman WA. Production of cell wall hydrolysing enzymes by barley aleurone layers in response to gibberellic acid. Plant Physiol. 1976;58:380–386. doi: 10.1104/pp.58.3.380. PubMed DOI PMC

Walker CK, Ford R, Amatrian MM, Panozzo JF. The detection of QTLs in barley associated with endosperm hardness, grain density, grain size and malting quality using rapid phenotyping tools. Theor Appl Genet. 2013;126:2533–2551. doi: 10.1007/s00122-013-2153-2. PubMed DOI

Wang J, Li Y, Lo SW, Hillmer S, Sun SS, Robinson DG, Jiang L. Protein mobilization in germinating mung bean seeds involves vacuolar sorting receptors and multivesicular bodies. Plant Physiol. 2007;143:1628–1639. doi: 10.1104/pp.107.096263. PubMed DOI PMC

Yong-Qiang A, Li L. Transcriptional regulatory programs underlying barley germination and regulatory functions of gibberellin and abscisic acid. BMC Plant Biol. 2011;11:105. doi: 10.1186/1471-2229-11-105. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...