Comparative de novo transcriptome analysis of barley varieties with different malting qualities
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
QJ1910197
Národní Agentura pro Zemědělský Výzkum
RO0418
Ministerstvo Zemědělství
PubMed
32948934
PubMed Central
PMC7585565
DOI
10.1007/s10142-020-00750-z
PII: 10.1007/s10142-020-00750-z
Knihovny.cz E-zdroje
- Klíčová slova
- Differential expression, Hordeum vulgare, Malting quality, Molecular markers, Polymorphism,
- MeSH
- fenotyp MeSH
- ječmen (rod) genetika metabolismus MeSH
- jedlá semena genetika růst a vývoj MeSH
- lokus kvantitativního znaku genetika MeSH
- mapování chromozomů MeSH
- semenáček genetika růst a vývoj MeSH
- šlechtění rostlin MeSH
- stanovení celkové genové exprese * MeSH
- transkriptom genetika MeSH
- zemědělské plodiny MeSH
- Publikační typ
- časopisecké články MeSH
Barley is one of the most important crops in the world. Barley is used as both food and feed and is important for malt production. Demands for malting quality differ among countries and customs. Malting quality is a complex characteristic involving barley genetics, the environmental conditions during barley growth, and the technological parameters of the malting process. In this study, the hypothesis was that there were no differences between two groups of barley varieties with different but defined malting qualities, which was tested using RNA sequencing during selected stages of malting. In total, 919 differentially transcribed genes between the two barley groups were identified and annotated. Differentially expressed genes (DEGs) were primarily assigned to gene ontology (GO) terms of oxidation-reduction process - oxidoreductase activity, response to stress, carbohydrate metabolic process, and proteolysis - hydrolase activity, and metal ion binding. Genes connected with the plasma membrane and its integral components also play important roles in malting quality. DEG profiles of selected genes in the three malting stages indicate a complex character of malting quality. Many single-nucleotide polymorphisms (SNPs) and insertions and deletions (indels) were identified. SNPs and indels with the best quality were used for primer design. After optimization and validation, five molecular markers were developed for use in barley breeding.
Zobrazit více v PubMed
Aubert MK, Coventry S, Shirley NJ, Bettes NS, Würschum T, Burton RA, Tucker MR. Differences in hydrolytic enzyme activity accompany natural variation in mature aleurone morphology in barley (Hordeum vulgare L.) Sci Rep. 2018;8:11025. doi: 10.1038/s41598-018-29068-4. PubMed DOI PMC
Betts NS, Wilkinson LG, Khor SF, Shirley NJ, Lok F, Skadhauge B, Burton RA, Fincher GB, Collins HM. Morphology, carbohydrate distribution, gene expression and enzymatic activities related to cell wall hydrolysis in four barley varieties during simulated malting. Front Plant Sci. 2017;8:1872. doi: 10.3389/fpls.2017.01872. PubMed DOI PMC
Bolger A, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinfo. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Chen K, An YC. Transcriptional responses to gibberellin and abscisic acid in barley aleurone. J Integr Biol. 2006;48:591–612. doi: 10.1111/j.1744-7909.2006.00270.x. DOI
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2go: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–3676. doi: 10.1093/bioinformatics/bti610. PubMed DOI
Daneri-Castro S, Svensson B, Roberts TH. Barley germination: spatio-temporal considerations for designing and interpreting ´omics´experiments. J Cereal Sci. 2016;70:29–37. doi: 10.1016/j.jcs.2016.05.012. DOI
Duan R, Xiong H, Wang A, Chen G. Molecular mechanisms underlying hull-caryopsis adhesion/separation revealed by comparative transcriptomic analysis of covered/naked barley (Hordeum vulgare L.) Int J Mol Sci. 2015;16:14181–14193. doi: 10.3390/ijms160614181. PubMed DOI PMC
El-Maarouf-Bouteau H, Bailly C. Oxidative signalling in seed germination and dormancy. Plant Signal Behav. 2008;3:175–182. doi: 10.4161/psb.3.3.5539. PubMed DOI PMC
European Commission Publication of an application pursuant to Article 6(2) of Council Regulation (EC) No 510/2006 on the protection of geographical indications and designations of origin for agricultural products and foodstuffs. Off J C. 2008;16:14–22.
Ewels P, Magnusson M, Lundin S, Kaller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinfo. 2016;32:3047–3048. doi: 10.1093/bioinformatics/btw354. PubMed DOI PMC
Fincher GB, Stone BA. Cell wall and their components in cereal grain technology. Adv Cereal Sci Technol. 1986;8:207–295.
Finnie C, Svensson B. Barley seed proteomics from spots to structures. J Proteomics. 2009;72:315–324. doi: 10.1016/j.jprot.2008.12.001. PubMed DOI
Finnie C, Melchior S, Roepstorff P, Svensson B. Proteome analysis of grain filling and seed maturation in barley. Plant Physiol. 2002;129:1308–1319. doi: 10.1104/pp.003681. PubMed DOI PMC
Fox GP, Panozzo JF, Li CD, Lance RCM, Inkerman PA, Henry RJ. Molecular basis of barley quality. Aus J Agri Res. 2003;54:1081–1101. doi: 10.1071/AR02237. DOI
Gomes MP, Garcia QS. Reactive oxygen species and seed germination. Biologia. 2013;68:351–357. doi: 10.2478/s11756-013-0161-y. DOI
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinfo. 2013;29(8):1072–1075. doi: 10.1093/bioinformatics/btt086. PubMed DOI PMC
Gutierrez C, Sanchez-Monge R, Gomez L, Ruiz-Tapiador M, Castanera P, Salcedo G. Alpha-amylase activities of agricultural insect pests are specifically affected by different inhibitor preparations from wheat and barley endosperm. Plant Sci. 1990;72:37–44. doi: 10.1016/0168-9452(90)90184-P. DOI
Gutierrez-Gonzales JJ, Tu ZJ, Garvin DF. Analysis and annotation of the hexaploid oat seed transcriptome. BMC Genomics. 2013;14:471. doi: 10.1186/1471-2164-14-471. PubMed DOI PMC
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccless D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A. De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nat Protoc. 2013;8:1494–1512. doi: 10.1038/nprot.2013.084. PubMed DOI PMC
Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake TK, Franckowiak G, Rasmusson D, Sorrells M, Ullrich SE, Wesenberg D, Kleinhofs A. Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor Appl Genet. 1993;87:392–401. doi: 10.1007/BF01184929. PubMed DOI
Ishibashi Y, Tawaratsumida T, Kondo K, Kasa S, Sakamoto M, Aoki N, Zheng S, Yuasa T, Iwaya-Inoue M. Reactive Oxygen Species Are Involved in Gibberellin/Abscisic Acid Signaling in Barley Aleurone Cells. Plant Physiol. 2012;158:1705–1714. doi: 10.1104/pp.111.192740. PubMed DOI PMC
Job C, Rajjou L, Lovigny Y, Belghazi M, Job D. Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol. 2005;138:790–802. doi: 10.1104/pp.105.062778. PubMed DOI PMC
Jones BL. The endogenous endoprotease inhibitors of barley and malt and their roles in malting and brewing. J Cereal Sci. 2005;42:271–280. doi: 10.1016/j.jcs.2005.06.002. DOI
Jung J, Won SY, Suh SC, Kim H, Wing R, Jeong Y, Hwang I, Kim M. The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis. Planta. 2007;225:575–588. doi: 10.1007/s00425-006-0373-2. PubMed DOI
Kosař K, Psota V, Mikyška A. Barley varieties suitable for production of the Czech-type beer. Czech J Genet Plant Breed. 2004;40:137–139. doi: 10.17221/3712-CJGPB. DOI
Langmead B, Trapnell C, Pop T, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25. doi: 10.1186/gb-2009-10-3-r25. PubMed DOI PMC
Lapitan NLV, Hess A, Cooper B, Botha AM, Badillo D, Iyer H, Menert J, Close T, Wright L, Hanningh G, Tahir M, Lawrence C. Differentially expressed genes during malting and correlation with malting quality phenotypes in barley (Hordeum vulgare L.) Theor Appl Genet. 2009;118:937–952. doi: 10.1007/s00122-008-0951-8. PubMed DOI
Laugesen S, Bak-Jensen KS, Hägglund P, Henriksen A, Finnie C, Roepstorff P, Svensson B. Barley peroxidase isozymes. Expression and post-translational modification in mature seeds as identified by two-dimensional gel electrophoresis and mass spectrometry. Int J Mass Spectrom. 2007;268:244–253. doi: 10.1016/j.ijms.2007.06.003. DOI
Leišová-Svobodová L, Tomková L, Sedláček T, Psota V, Kučera L. The application of microsatellite analysis in barley malting quality breeding programmes. Czech J Genet Plant Breed. 2014;50:268–277. doi: 10.17221/72/2014-CJGPB. DOI
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–2993. doi: 10.1093/bioinformatics/btr509. PubMed DOI PMC
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Mahalingam R. Shotgun proteomics of the barley seed proteome. BMC Genomics. 2017;18:44. doi: 10.1186/s12864-016-3408-5. PubMed DOI PMC
Mahalingam R. Temporal analyses of barley malting stages using shotgun proteomics. Proteomics. 2018;18:1800025. doi: 10.1002/pmic.201800025. PubMed DOI
Mascher M, Gundlach H, Himmetbach A et al (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433 PubMed
Mayer KFX, Waugh R, Langridge P, et al. A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012;491:711–717. doi: 10.1038/nature11543. PubMed DOI
MEBAK . Collection of brewing analysis methods of the Mitteleuropäische Brautechnische Analysenkommission. Freising-Weihenstephan, Germany: MEBAK; 2011.
Molina-Cano JL, Francesch M, Perez AM, Ramo T, Voltas J, Brufau J. Genetic and environmental variation in malting and feed quality of barley. J Cereal Sci. 1997;25:37–47. doi: 10.1006/jcrs.1996.0067. DOI
Munoz-Amatriain M, Xiong Y, Schmitt MR, Bilgic H, Budde AD, Chao S, Smith KP, Muehlbauer GJ. Transcriptome analysis of a barley breeding program examines gene expression diversity and reveals target genes for malting quality improvement. BMC Genomics. 2010;11:653. doi: 10.1186/1471-2164-11-653. PubMed DOI PMC
Perrocheau L, Rogniaux H, Boivin P, Marion D. Probing heat-stable water-soluble proteins from barley to malt and beer. Proteomics. 2005;5:2849–2858. doi: 10.1002/pmic.200401153. PubMed DOI
Potokina E, Prasad M, Malysheva L, Röder MS, Graner A. Expression genetics and haplotype analysis reveal cis regulation of serine carboxypeptidase I (Cxp1), a candidate gene for malting quality in barley (Hordeum vulgare L.) Funct Integr Genomics. 2006;6:25–35. doi: 10.1007/s10142-005-0008-x. PubMed DOI
Psota V, Kosař K. Malting quality index. Kvasny Prum. 2002;48:142–148. doi: 10.18832/kp2002011. DOI
Rho M, Tang H, Ye Y. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res. 2010;38:e191. doi: 10.1093/nar/gkq747. PubMed DOI PMC
Robinson MD, McCarthy DJ, Smyth GK. EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC
Schmidt M, Kollers S, Maasberg-Prelle A, Groβer J, Schinkel B, Tomerius A, Graner A, Korzun V. Prediction of malting quality traits in barley based on genome-wide marker data to assess the potential of genomic selection. Theor Appl Genet. 2016;129:203–213. doi: 10.1007/s00122-015-2639-1. PubMed DOI
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinfo. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI
Stanley D, Rejzek M, Naested H, Smedley M, Otero S, Fahy B, Thorpe F, Nash RJ, Harwood W, Svensson B, Denyer K, Field RA, Smith AM. The role of α-glucosidase in germinating barley grains. Plant Physiol. 2011;155:932–943. doi: 10.1104/pp.110.168328. PubMed DOI PMC
Taiz L, Honigman WA. Production of cell wall hydrolysing enzymes by barley aleurone layers in response to gibberellic acid. Plant Physiol. 1976;58:380–386. doi: 10.1104/pp.58.3.380. PubMed DOI PMC
Walker CK, Ford R, Amatrian MM, Panozzo JF. The detection of QTLs in barley associated with endosperm hardness, grain density, grain size and malting quality using rapid phenotyping tools. Theor Appl Genet. 2013;126:2533–2551. doi: 10.1007/s00122-013-2153-2. PubMed DOI
Wang J, Li Y, Lo SW, Hillmer S, Sun SS, Robinson DG, Jiang L. Protein mobilization in germinating mung bean seeds involves vacuolar sorting receptors and multivesicular bodies. Plant Physiol. 2007;143:1628–1639. doi: 10.1104/pp.107.096263. PubMed DOI PMC
Yong-Qiang A, Li L. Transcriptional regulatory programs underlying barley germination and regulatory functions of gibberellin and abscisic acid. BMC Plant Biol. 2011;11:105. doi: 10.1186/1471-2229-11-105. PubMed DOI PMC