Application of Pulsed Electric Field During Malting: Impact on Fusarium Species Growth and Mycotoxin Production
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
20-14649S
Czech Science Foundation (GACR)
LM2023064
METROFOOD-CZ
A1_FPBT_2024_006
Specific university research
PubMed
39728795
PubMed Central
PMC11679037
DOI
10.3390/toxins16120537
PII: toxins16120537
Knihovny.cz E-zdroje
- Klíčová slova
- Fusarium micromycetes, RT-PCR, U-HPLC-HRMS/MS, malting, mycotoxins, pulsed electric field,
- MeSH
- elektřina MeSH
- Fusarium * metabolismus genetika růst a vývoj MeSH
- ječmen (rod) * mikrobiologie MeSH
- jedlá semena * mikrobiologie MeSH
- kontaminace potravin prevence a kontrola MeSH
- manipulace s potravinami metody MeSH
- mykotoxiny * biosyntéza metabolismus MeSH
- potravinářská mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mykotoxiny * MeSH
The increasing contamination of cereals by micromycetes and mycotoxins during malting still poses an unresolved food safety problem. This study characterises the potential of the novel, rapidly developing food production technology of Pulsed Electric Field (PEF) to reduce the viability of Fusarium fungi and the production of mycotoxins during malting. Barley, artificially inoculated with four Fusarium species, was treated by PEF with two different intensities and then malted using a standard Pilsner-type technology. Concentrations of fungi were quantified by RT-PCR, expression of fungal growth-related genes was assessed using mRNA sequencing, and mycotoxin levels were analysed by U-HPLC-HRMS/MS. Despite the different trends for micromycetes and mycotoxins after application of variously intense PEF conditions, significant reductions were generally observed. The greatest decrease was for F. sporotrichioides and F. poae, where up to six fold lower levels were achieved for malts produced from the PEF-treated barley when compared to the control. For F. culmorum and F. graminearum, up to a two-fold reduction in the PEF-generated malts was observed. These reductions mostly correlated with a decrease in relevant mycotoxins, specifically type A trichothecenes.
Zobrazit více v PubMed
Alshannaq A., Yu J.-H. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. Int. J. Environ. Res. Public Health. 2017;14:632. doi: 10.3390/ijerph14060632. PubMed DOI PMC
Foroud N.A., Baines D., Gagkaeva T.Y., Thakor N., Badea A., Steiner B., Bürstmayr M., Bürstmayr H. Trichothecenes in Cereal Grains—An Update. Toxins. 2019;11:634. doi: 10.3390/toxins11110634. PubMed DOI PMC
Battilani P., Palumbo R., Giorni P., Dall’Asta C., Dellafiora L., Gkrillas A., Toscano P., Crisci A., Brera C., de Santis B., et al. Mycotoxin mixtures in food and feed: Holistic, innovative, flexible risk assessment modelling approach: MYCHIF. EFSA Support. Publ. 2020;17:1757E. doi: 10.2903/sp.efsa.2020.EN-1757. DOI
Munkvold G.P. Fusarium Species and Their Associated Mycotoxins. Methods Mol. Biol. 2017;1542:51–106. doi: 10.1007/978-1-4939-6707-0_4. PubMed DOI
Hu L., Gastl M., Linkmeyer A., Hess M., Rychlik M. Fate of enniatins and beauvericin during the malting and brewing process determined by stable isotope dilution assays. LWT Food Sci. Technol. 2014;56:469–477. doi: 10.1016/j.lwt.2013.11.004. DOI
Habler K., Hofer K., Geißinger C., Schüler J., Hückelhoven R., Hess M., Rychlik M. Fate of Fusarium Toxins during the Malting Process. J. Agric. Food Chem. 2016;64:1377–1384. doi: 10.1021/acs.jafc.5b05998. PubMed DOI
Prusova N., Dzuman Z., Jelinek L., Karabin M., Hajslova J., Rychlik M., Stranska M. Free and conjugated Alternaria and Fusarium mycotoxins during Pilsner malt production and double-mash brewing. Food Chem. 2022;369:130926. doi: 10.1016/j.foodchem.2021.130926. PubMed DOI
Vegi A., Schwarz P., Wolf-Hall C.E. Quantification of Tri5 gene, expression, and deoxynivalenol production during the malting of barley. Int. J. Food Microbiol. 2011;150:150–156. doi: 10.1016/j.ijfoodmicro.2011.07.032. PubMed DOI
Habler K., Geissinger C., Hofer K., Schüler J., Moghari S., Hess M., Rychlik M. Fate of Fusarium toxins during brewing. J. Agric. Food Chem. 2017;65:190–198. doi: 10.1021/acs.jafc.6b04182. PubMed DOI
Homa K., Barney W.P., Davis W.P., Guerrero D., Berger M.J., Lopez J.L., Wyenandt C.A., Simon J.E. Cold Plasma Treatment Strategies for the Control of Fusarium oxysporum f. sp. basilici in Sweet Basil. HortScience. 2021;56:42–51. doi: 10.21273/HORTSCI15338-20. DOI
Filho F.O., Silva E.O., Lopes M.M.A., Ribeiro P.R.V., Oster A.H., Guedes J.A.C., Zampieri D.S., Bordallo P.D.N., Zocolo G.J. Effect of pulsed light on postharvest disease control-related metabolomic variation in melon (Cucumis melo) artificially inoculated with Fusarium pallidoroseum. PLoS ONE. 2020;15:e0220097. doi: 10.1371/journal.pone.0220097. PubMed DOI PMC
Zuluaga-Calderón B., González H.H.L., Alzamora S.M., Coronel M.B. Multi-step ozone treatments of malting barley: Effect on the incidence of Fusarium graminearum and grain germination parameters. Innov. Food Sci. Emerg. Technol. 2023;83:103219. doi: 10.1016/j.ifset.2022.103219. DOI
Evrendilek G.A., Karatas B., Uzuner S., Tanasov I. Design and effectiveness of pulsed electric fields towards seed disinfection. J. Sci. Food Agric. 2019;99:3475–3480. doi: 10.1002/jsfa.9566. PubMed DOI
Zhong C., Guan X., Fan Z., Song W., Chen R., Wang Y., He S. Pulsed electric field disinfection treatment of Fusarium oxysporum in nutrient solution. Water Supply. 2019;19:2116–2122. doi: 10.2166/ws.2019.090. DOI
Chen R., Zhang D., Zhu N., Liu C., Novac B., Zhong C. Continuous Disinfection of Fusarium oxysporum in Nutrient Solution by Pulsed Electric Field; Proceedings of the 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE); Beijing, China. 6–10 September 2020; pp. 1–4. DOI
Palicova J., Chrpova J., Tobolkova A., Ovesna J., Stranska M. Effect of pulsed electric field on viability of Fusarium micromycetes. Cereal Res. Commun. :2024. doi: 10.1007/s42976-024-00561-z. DOI
Stranska M., Prusova N., Behner A., Dzuman Z., Lazarek M., Tobolkova A., Chrpova J., Hajslova J. Influence of pulsed electric field treatment on the fate of Fusarium and Alternaria mycotoxins present in malting barley. Food Control. 2023;145:109440. doi: 10.1016/j.foodcont.2022.109440. DOI
Karabin M., Jelinek L., Prusova N., Ovesna J., Stranska M. Pulsed electric field treatment applied to barley before malting reduces Fusarium pathogens without compromising the quality of the final malt. LWT-Food Sci. Technol. 2024;206:116575. doi: 10.1016/j.lwt.2024.116575. DOI
Karlsson I., Mellqvist E., Persson P. Temporal and spatial dynamics of Fusarium spp. and mycotoxins in Swedish cereals during 16 years. Mycotoxin Res. 2023;39:3–18. doi: 10.1007/s12550-022-00469-9. PubMed DOI PMC
Miedaner T., Reinbrecht C., Lauber U., Schollenberger M., Geiger H.H. Effects of genotype and genotype-environment interaction on deoxynivalenol accumulation and resistance to Fusarium head blight in rye, triticale and wheat. Plant Breed. 2001;120:97–105. doi: 10.1046/j.1439-0523.2001.00580.x. DOI
Xu X.M., Monger W., Ritieni A., Nicholson P. Effect of temperature and duration of wetness during initial infection periods on disease development, fungal biomass and mycotoxin concentrations on wheat inoculated with single, or combinations of, Fusarium species. Plant Pathol. 2007;56:943–956. doi: 10.1111/j.1365-3059.2007.01650.x. DOI
Gautam P., Dill-Macky R. Impact of moisture, host genetics and Fusarium graminearum isolates on Fusarium head blight development and trichothecene accumulation in spring wheat. Mycotoxin Res. 2012;28:45–58. doi: 10.1007/s12550-011-0115-6. PubMed DOI
Zhao W., Yang R., Zhang H.Q. Recent advances in the action of pulsed electric fields on enzymes and food component proteins. Trends Food Sci. Technol. 2012;27:83–96. doi: 10.1016/j.tifs.2012.05.007. DOI
Tibola C.S., Fernandes J.M.C., Guarienti E.M., Nicolau M. Distribution of Fusarium mycotoxins in wheat milling process. Food Control. 2015;53:91–95. doi: 10.1016/j.foodcont.2015.01.012. DOI
Edwards S.G., Dickin E.T., MacDonald S., Buttler D., Hazel C.M., Patel S., Scudamore K.A. Distribution of Fusarium mycotoxins in UK wheat mill fractions. Food Addit. Contam. A. 2011;28:1694–1704. doi: 10.1080/19440049.2011.605770. PubMed DOI
Chelkowski J. Mycotoxins in Agriculture and Food Safety. 1st ed. CRC Press; Boca Raton, FL, USA: 1998. Distribution of Fusarium Species and Their Mycotoxins in Cereal Grains. DOI
Lewandowski S.M., Bushnell W.R., Evans C.K. Distribution of mycelial colonies and lesions in field-grown barley inoculated with Fusarium graminearum. Phytopathology. 2007;96:567–581. doi: 10.1094/PHYTO-96-0567. PubMed DOI
Jin Z., Solanki S., Ameen G., Gross T., Poudel R.S., Borowicz P., Brueggeman R.S., Schwarz P. Expansion of Internal Hyphal Growth in Fusarium Head Blight-Infected Grains Contributes to the Elevated Mycotoxin Production During the Malting Process. Molec. Plant-Microbe Interact. 2021;34:793–802. doi: 10.1094/MPMI-01-21-0024-R. PubMed DOI
Munkvold G.P., Proctor R.H., Moretti A. Mycotoxin Production in Fusarium According to Contemporary Species Concepts. Annu. Rev. Phytopathol. 2021;59:373–402. doi: 10.1146/annurev-phyto-020620-102825. PubMed DOI
Xue A.G., Armstrong K.C., Voldeng H.D., Fedak G., Babcock C. Comparative aggressiveness of isolates of Fusarium spp. causing head blight on wheat in Canada. Can. J. Plant Pathol. 2004;26:81–88. doi: 10.1080/07060660409507117. DOI
Wagacha J.M., Oerke E.C., Dehne H.W., Steiner U. Interactions of Fusarium species during prepenetration development. Fungal Biol. 2012;116:836–847. doi: 10.1016/j.funbio.2012.05.001. PubMed DOI
Velluti A., Marín S., Bettucci L., Ramos A.J., Sanchis V. The effect of fungal competition on colonization of maize grain by Fusarium moniliforme, F. proliferatum and F. graminearum and on fumonisin B1 and zearalenone formation. Int. J. Food Microbiol. 2000;59:59–66. doi: 10.1016/S0168-1605(00)00289-0. PubMed DOI
Etcheverry M. Aflatoxin B1, zearalenone and deoxynivalenol production by Aspergillus parasiticus and Fusarium graminearum in interactive cultures on irradiated corn kernels. Mycopathologia. 1998;142:37–42. doi: 10.1023/A:1006972016955. PubMed DOI
Martins M.P., Silva L.G., Rossi A., Sanches P.R., Souza L.D.R., Martinez-Rossi N.M. Global analysis of cell wall genes revealed putative virulence factors in the dermatophyte Trichophyton rubrum. Front. Microbiol. 2019;10:2168. doi: 10.3389/fmicb.2019.02168. PubMed DOI PMC
Djordjevic J.T. Role of phospholipases in fungal fitness, pathogenicity, and drug development—Lessons from Cryptococcus neoformans. Front. Microbiol. 2010;1:125. doi: 10.3389/fmicb.2010.00125. PubMed DOI PMC
Westrick N.M., Park S.C., Keller N.P., Smith D.L., Kabbage M. A broadly conserved fungal alcohol oxidase (AOX) facilitates fungal invasion of plants. Molec. Plant Pathol. 2023;24:28–43. doi: 10.1111/mpp.13274. PubMed DOI PMC
Gai X., Li S., Jiang N., Sun Q., Xuan Y.H., Xia Z. Comparative transcriptome analysis reveals that ATP synthases regulate Fusarium oxysporum virulence by modulating sugar transporter gene expressions in tobacco. Front. Plant Sci. 2022;13:978951. doi: 10.3389/fpls.2022.978951. PubMed DOI PMC
Sella L., Gazzetti K., Faoro F., Odorizzi S., D’Ovidio R., Schäfer W., Favaron F. A Fusarium graminearum xylanase expressed during wheat infection is a necrotizing factor but is not essential for virulence. Plant Physiol. Biochem. 2013;64:1–10. doi: 10.1016/j.plaphy.2012.12.008. PubMed DOI
Chen W., Lee M.K., Jefcoate C., Kim S.C., Chen F., Yu J.H. Fungal cytochrome P450 monooxygenases: Their distribution, structure, functions, family expansion, and evolutionary origin. Genome Biol. Evol. 2014;6:1620–1634. doi: 10.1093/gbe/evu132. PubMed DOI PMC
Cui Y., Peng Y., Zhang Q., Xia S., Ruan B., Xu Q., Yu X., Zhou T., Liu H., Zeng D., et al. Disruption of EARLY LESION LEAF 1, encoding a cytochrome P450 monooxygenase, induces ROS accumulation and cell death in rice. Plant J. 2021;105:942–956. doi: 10.1111/tpj.15079. PubMed DOI
Laugé R., Joosten M.H.A.J., Van den Ackerveken G.F.J.M., Van den Broek H.W.J., De Wit P.J.G.M. The in planta-produced extracellular proteins ECP1 and ECP2 of Cladosporium fulvum are virulence factors. Mol. Plant-Microbe Interact. 1997;10:725–734. doi: 10.1094/MPMI.1997.10.6.725. DOI
Gozzi M., Blandino M., Bruni R., Capo L., Righetti L., Dall’Asta C. Mycotoxin occurrence in kernels and straws of wheat, barley, and tritordeum. Mycotoxin Res. 2024;40:203–210. doi: 10.1007/s12550-024-00521-w. PubMed DOI PMC
Peiris K., Pumphrey M., Dong Y., Dowell F. Fusarium Head Blight Symptoms and Mycotoxin Levels in Single Kernels of Infected Wheat Spikes. Cereal Chem. 2011;88:291–295. doi: 10.1094/CCHEM-08-10-0112. DOI
Janik E., Niemcewicz M., Podogrocki M., Ceremuga M., Stela M., Bijak M. T-2 Toxin-The Most Toxic Trichothecene Mycotoxin: Metabolism, Toxicity, and Decontamination Strategies. Molecules. 2021;26:6868. doi: 10.3390/molecules26226868. PubMed DOI PMC
Ohshima T., Tanino T., Hashimoto Y. Inactivation of a plant pathogenic fungus by pulsed electric field treatment. Int. J. Plasma Environ. Sci. Technol. 2020;14:e02007. doi: 10.34343/ijpest.2020.14.e02007. DOI
Chrpova J., Šíp V., Matejova E., Sýkorova S. Resistance of Winter Wheat Varieties Registered in the Czech Republic to Mycotoxin Accumulation in Grain Following Inoculation with Fusarium culmorum. Czech J. Genet. Plant Breed. 2007;43:44–52. doi: 10.17221/1910-CJGPB. DOI
Dzuman Z., Zachariasova M., Lacina O., Veprikova Z., Slavikova P., Hajslova J. A rugged high-throughput analytical approach for the determination and quantification of multiple mycotoxins in complex feed matrices. Talanta. 2014;121:263–272. doi: 10.1016/j.talanta.2013.12.064. PubMed DOI
Ovesna J., Vacke J., Kucera L., Chrpova J., Novakova I., Jahoor A., Šíp V. Genetic analysis of resistance in barley to barley yellow dwarf virus. Plant Breed. 2000;119:481–486. doi: 10.1046/j.1439-0523.2000.00522.x. DOI
Leišová L., Kučera L., Chrpová J., Sýkorová S., Šíp V., Ovesná J. Quantification of Fusarium culmorum in Wheat and Barley Tissues Using Real-Time PCR in Comparison with DON Content. J. Phytopathol. 2006;154:603–611. doi: 10.1111/j.1439-0434.2006.01154.x. DOI
Yli-Mattila T., Paavanen-Huhtala S., Jestoi M., Parikka P., Hietaniemi V., Gagkaeva T., Sarlin T., Haikara A., Laaksonen S., Rizzo A. Real-time PCR detection and quantification of Fusarium poae, F. graminearum, F. sporotrichioides and F. langsethiae in cereal grains in Finland and Russia. Arch. Phytopathol. Plant Protect. 2008;41:243–260. doi: 10.1080/03235400600680659. DOI
Köhl J., Lombaers C., Moretti A., Bandyopadhyay R., Somma S., Kastelein P. Analysis of microbial taxonomical groups present in maize stalks suppressive to colonization by toxigenic Fusarium spp.: A strategy for the identification of potential antagonists. Biol. Control. 2015;83:20–28. doi: 10.1016/j.biocontrol.2014.12.007. DOI
Bluhm B.H., Cousin M.A., Woloshuk C.P. Multiplex real-time PCR detection of fumonisin-producing and trichothecene-producing groups of Fusarium species. J. Food Prot. 2004;67:536–543. doi: 10.4315/0362-028X-67.3.536. PubMed DOI
European Brewing Convention Analytica EBC. Chapter: 4.12.2—Diastatic Power of Malt by Segmented Flow Analysis. [(accessed on 28 November 2023)]. Available online: https://brewup.eu/ebc-analytica/malt/diastatic-power-of-malt-by-segmented-flow-analysis/4.12.2.
Megazyme Ltd. α-Amylase Assay Kit (Ceralpha Method) [(accessed on 28 November 2023)]. Available online: https://www.megazyme.com/documents/Assay_Protocol/K-CERA_DATA.pdf.
Megazyme Ltd. β-Glucanase Assay Kit (Malt and Microbial) [(accessed on 28 November 2023)]. Available online: https://d1kkimny8vk5e2.cloudfront.net/documents/Assay_Protocol/K-MBGL_DATA.pdf.