What Happens Inside the Germinating Grain After Microbial Decontamination by Pulsed Electric Field? Data-Driven Multi-Omics Helps Find the Answer
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
grant number 20-14649S
Czech Science Foundation (GACR)
PubMed
40005235
PubMed Central
PMC11858265
DOI
10.3390/molecules30040924
PII: molecules30040924
Knihovny.cz E-zdroje
- Klíčová slova
- Fusarium micromycetes, abiotic stress, barley, metabolomics, multi-omics, pulsed electric field, transcriptomics,
- MeSH
- dekontaminace metody MeSH
- elektřina MeSH
- Fusarium * metabolismus MeSH
- ječmen (rod) * mikrobiologie genetika metabolismus MeSH
- jedlá semena mikrobiologie metabolismus MeSH
- klíčení MeSH
- metabolomika metody MeSH
- multiomika MeSH
- nemoci rostlin mikrobiologie genetika prevence a kontrola MeSH
- regulace genové exprese u rostlin MeSH
- stanovení celkové genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
Pulsed electric field (PEF) has previously been recognized as a method of gentle food processing, and its use has been shown to be helpful in reducing the levels of toxigenic Fusarium micromycetes developed during malting. The aim of this study was to describe the effects of PEF on gene expression and metabolite production at the pre-finishing stage of barley malting by using a novel multi-omics data-driven approach. The study helps to uncover the processes occurring in the germinated grain and discusses the up-/downregulation of genes and metabolites in relation to fungal infection and/or PEF-induced abiotic stress. Among the factors upregulated by PEF and previously described as supportive against Fusarium diseases, we identified the increased expression of genes encoding vegetative gp1-like protein, which positively correlated with flavonoids, (methylsulfanyl)prop-2-enoates, triterpenoid glycosides, and indole alkaloids. On the other hand, some genes associated with barley resistance to fungal infection were also overexpressed in the untreated control (in particular, genes encoding ethylene response factor 3-like, putrescine hydroxycinnamoyltransferase 3-like, and dirigent protein 21-like). This study provides the first 'data-driven' basic research results that contribute to the understanding of the role of PEF as an effective fungal decontamination strategy and allows the formulation of new hypotheses related to Fusarium pathogen crosstalk.
Zobrazit více v PubMed
Kanehisa Laboratories KEGG: Kyoto Encyclopedia of Genes and Genomes. [(accessed on 10 February 2025)]. Available online: https://www.genome.jp/kegg/
Ramirez-Gaona M., Marcu A., Pon A., Guo A.C., Sajed T., Wishart N.A., Karu N., Djoumbou Feunang Y., Arndt D., Wishart D.S. YMDB 2.0: A Significantly Expanded Version of the Yeast Metabolome Database. Nucleic Acids Res. 2017;45:D440–D445. doi: 10.1093/nar/gkw1058. PubMed DOI PMC
Plant Metabolic Network PlantCyc. [(accessed on 10 February 2025)]. Available online: https://plantcyc.org/
SRI International MetaCyc. [(accessed on 10 February 2025)]. Available online: https://metacyc.org/
Wang M., Carver J.J., Phelan V.V., Sanchez L.M., Garg N., Peng Y., Nguyen D.D., Watrous J., Kapono C.A., Luzzatto-Knaan T., et al. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016;34:828–837. doi: 10.1038/nbt.3597. PubMed DOI PMC
Cytoscape Consortium Cytoscape. [(accessed on 10 February 2025)]. Available online: https://cytoscape.org/
Patel M.K., Pandey S., Kumar M., Haque M.I., Pal S., Yadav N.S. Plants Metabolome Study: Emerging Tools and Techniques. Plants. 2021;10:2409. doi: 10.3390/plants10112409. PubMed DOI PMC
Vinay C.M., Udayamanoharan S.K., Prabhu Basrur N., Paul B., Rai P.S. Current Analytical Technologies and Bioinformatic Resources for Plant Metabolomics Data. Plant Biotechnol. Rep. 2021;15:561–572. doi: 10.1007/s11816-021-00703-3. DOI
Dixon R.A., Strack D. Phytochemistry Meets Genome Analysis, and Beyond. Phytochemistry. 2003;62:815–816. doi: 10.1016/S0031-9422(02)00712-4. PubMed DOI
Liu Y., Liu H.-Z., Chen D.-K., Zeng H.-Y., Chen Y.-L., Yao N. PlantMetSuite: A User-Friendly Web-Based Tool for Metabolomics Analysis and Visualisation. Plants. 2023;12:2880. doi: 10.3390/plants12152880. PubMed DOI PMC
Stranska M., Uttl L., Bechynska K., Hurkova K., Behner A., Hajslova J. Metabolomic Fingerprinting as a Tool for Authentication of Grapevine (Vitis vinifera L.) Biomass Used in Food Production. Food Chem. 2021;361:130166. doi: 10.1016/j.foodchem.2021.130166. PubMed DOI
Lancova K., Hajslova J., Poustka J., Krplova A., Zachariasova M., Dostalek P., Sachambula L. Transfer of Fusarium Mycotoxins and ‘Masked’ Deoxynivalenol (Deoxynivalenol-3-Glucoside) from Field Barley through Malt to Beer. Food Addit. Contam. Part A. 2008;25:732–744. doi: 10.1080/02652030701779625. PubMed DOI
Prusova N., Dzuman Z., Jelinek L., Karabin M., Hajslova J., Rychlik M., Stranska M. Free and Conjugated Alternaria and Fusarium Mycotoxins during Pilsner Malt Production and Double-Mash Brewing. Food Chem. 2022;369:130926. doi: 10.1016/j.foodchem.2021.130926. PubMed DOI
Scheibenzuber S., Dick F., Bretträger M., Gastl M., Asam S., Rychlik M. Development of Analytical Methods to Study the Effect of Malting on Levels of Free and Modified Forms of Alternaria Mycotoxins in Barley. Mycotoxin Res. 2022;38:137–146. doi: 10.1007/s12550-022-00455-1. PubMed DOI PMC
Behner A., Palicova J., Hirt-Tobolkova A., Prusova N., Stranska M. Pulsed Electric Field Induces Significant Changes in the Metabolome of Fusarium Species and Decreases Their Viability and Toxigenicity. Toxins. 2025;17:33. doi: 10.3390/toxins17010033. PubMed DOI PMC
Palicova J., Chrpova J., Tobolkova A., Ovesna J., Stranska M. Effect of Pulsed Electric Field on Viability of Fusarium Micromycetes. Cereal Res. Commun. 2024:1–17. doi: 10.1007/s42976-024-00561-z. DOI
Karabín M., Jelínek L., Průšová N., Ovesná J., Stránská M. Pulsed Electric Field Treatment Applied to Barley before Malting Reduces Fusarium Pathogens without Compromising the Quality of the Final Malt. LWT-Food Sci. Technol. 2024;206:116575. doi: 10.1016/j.lwt.2024.116575. DOI
Bollina V., Kumaraswamy G.K., Kushalappa A.C., Choo T.M., Dion Y., Rioux S., Faubert D., Hamzehzarghani H. Mass Spectrometry-Based Metabolomics Application to Identify Quantitative Resistance-Related Metabolites in Barley against Fusarium Head Blight. Mol. Plant Pathol. 2010;11:769–782. doi: 10.1111/j.1364-3703.2010.00643.x. PubMed DOI PMC
Karre S., Kumar A., Dhokane D., Kushalappa A.C. Metabolo-Transcriptome Profiling of Barley Reveals Induction of Chitin Elicitor Receptor Kinase Gene (HvCERK1) Conferring Resistance against Fusarium graminearum. Plant Mol. Biol. 2017;93:247–267. doi: 10.1007/s11103-016-0559-3. PubMed DOI
Chamarthi S.K., Kumar K., Gunnaiah R., Kushalappa A.C., Dion Y., Choo T.M. Identification of Fusarium Head Blight Resistance Related Metabolites Specific to Doubled-Haploid Lines in Barley. Eur. J. Plant Pathol. 2014;138:67–78. doi: 10.1007/s10658-013-0302-8. DOI
Wu F., Zhou Y., Shen Y., Sun Z., Li L., Li T. Linking Multi-Omics to Wheat Resistance Types to Fusarium Head Blight to Reveal the Underlying Mechanisms. Int. J. Mol. Sci. 2022;23:2280. doi: 10.3390/ijms23042280. PubMed DOI PMC
Anzano A., Bonanomi G., Mazzoleni S., Lanzotti V. Plant Metabolomics in Biotic and Abiotic Stress: A Critical Overview. Phytochem. Rev. 2022;21:503–524. doi: 10.1007/s11101-021-09786-w. DOI
Nawaz M., Sun J., Shabbir S., Khattak W.A., Ren G., Nie X., Bo Y., Javed Q., Du D., Sonne C. A Review of Plants Strategies to Resist Biotic and Abiotic Environmental Stressors. Sci. Total Environ. 2023;900:165832. doi: 10.1016/j.scitotenv.2023.165832. PubMed DOI
Prusova N., Karabin M., Jelinek L., Chrpova J., Ovesna J., Svoboda P., Dolezalova T., Behner A., Hajslova J., Stranska M. Pulsed Electric Field Reduces Fusarium Micromycetes and Mycotoxins during Malting. Toxins. 2024 accepted for publication . PubMed PMC
Ewald J.D., Zhou G., Lu Y., Kolic J., Ellis C., Johnson J.D., Macdonald P.E., Xia J. Web-Based Multi-Omics Integration Using the Analyst Software Suite. Nat. Protoc. 2024;19:1467–1497. doi: 10.1038/s41596-023-00950-4. PubMed DOI
Castro Aviles A., Alan Harrison S., Joseph Arceneaux K., Brown-Guidera G., Esten Mason R., Baisakh N. Identification of QTLs for Resistance to Fusarium Head Blight Using a Doubled Haploid Population Derived from Southeastern United States Soft Red Winter Wheat Varieties AGS 2060 and AGS 2035. Genes. 2020;11:699. doi: 10.3390/genes11060699. PubMed DOI PMC
Treutter D. Significance of Flavonoids in Plant Resistance and Enhancement of Their Biosynthesis. Plant Biol. 2005;7:581–591. doi: 10.1055/s-2005-873009. PubMed DOI
Zhang D., Fu Y., Yang J., Li X.-N., San M.M., Oo T.N., Wang Y., Yang X. Triterpenoids and Their Glycosides from Glinus oppositifolius with Antifungal Activities against Microsporum gypseum and Trichophyton rubrum. Molecules. 2019;24:2206. doi: 10.3390/molecules24122206. PubMed DOI PMC
Wiart C., Kathirvalu G., Raju C.S., Nissapatorn V., Rahmatullah M., Paul A.K., Rajagopal M., Sathiya Seelan J.S., Rusdi N.A., Lanting S., et al. Antibacterial and Antifungal Terpenes from the Medicinal Angiosperms of Asia and the Pacific: Haystacks and Gold Needles. Molecules. 2023;28:3873. doi: 10.3390/molecules28093873. PubMed DOI PMC
Ghannoum M., Arendrup M.C., Chaturvedi V.P., Lockhart S.R., McCormick T.S., Chaturvedi S., Berkow E.L., Juneja D., Tarai B., Azie N., et al. Ibrexafungerp: A Novel Oral Triterpenoid Antifungal in Development for the Treatment of Candida auris Infections. Antibiotics. 2020;9:539. doi: 10.3390/antibiotics9090539. PubMed DOI PMC
Sobiyi O.K., Sadgrove N.J., Magee A.R., Van Wyk B.-E. The Ethnobotany and Major Essential Oil Compounds of Anise Root (Annesorhiza Species, Apiaceae) S. Afr. J. Bot. 2019;126:309–316. doi: 10.1016/j.sajb.2019.07.014. DOI
Labbé C., Faini F., Villagrán C., Coll J., Rycroft D.S. Antifungal and Insect Antifeedant 2-Phenylethanol Esters from the Liverwort Balantiopsis cancellata from Chile. J. Agric. Food Chem. 2005;53:247–249. doi: 10.1021/jf048935c. PubMed DOI
Lu P., Magwanga R.O., Guo X., Kirungu J.N., Lu H., Cai X., Zhou Z., Wei Y., Wang X., Zhang Z., et al. Genome-Wide Analysis of Multidrug and Toxic Compound Extrusion (MATE) Family in Gossypium raimondii and Gossypium arboreum and Its Expression Analysis Under Salt, Cadmium, and Drought Stress. G3 Genes Genomes Genet. 2018;8:2483–2500. doi: 10.1534/g3.118.200232. PubMed DOI PMC
Lim J., Lim C.W., Lee S.C. The Pepper Late Embryogenesis Abundant Protein, CaDIL1, Positively Regulates Drought Tolerance and ABA Signaling. Front. Plant Sci. 2018;9:1301. doi: 10.3389/fpls.2018.01301. PubMed DOI PMC
Zhao D., Zhang X., Wang R., Liu D., Sun J., Tao J. Herbaceous Peony Tryptophan Decarboxylase Confers Drought and Salt Stresses Tolerance. Environ. Exp. Bot. 2019;162:345–356. doi: 10.1016/j.envexpbot.2019.03.013. DOI
Candat A., Paszkiewicz G., Neveu M., Gautier R., Logan D.C., Avelange-Macherel M.-H., Macherel D. The Ubiquitous Distribution of Late Embryogenesis Abundant Proteins across Cell Compartments in Arabidopsis Offers Tailored Protection against Abiotic Stress. Plant Cell. 2014;26:3148–3166. doi: 10.1105/tpc.114.127316. PubMed DOI PMC
Hubbard K.E., Nishimura N., Hitomi K., Getzoff E.D., Schroeder J.I. Early Abscisic Acid Signal Transduction Mechanisms: Newly Discovered Components and Newly Emerging Questions. Genes Dev. 2010;24:1695–1708. doi: 10.1101/gad.1953910. PubMed DOI PMC
Lee S.C., Luan S. ABA Signal Transduction at the Crossroad of Biotic and Abiotic Stress Responses. Plant. Cell Environ. 2012;35:53–60. doi: 10.1111/j.1365-3040.2011.02426.x. PubMed DOI
Ng L.M., Melcher K., Teh B.T., Xu H.E. Abscisic Acid Perception and Signaling: Structural Mechanisms and Applications. Acta Pharmacol. Sin. 2014;35:567–584. doi: 10.1038/aps.2014.5. PubMed DOI PMC
Gomes A.R., Varela C.L., Pires A.S., Tavares-da-Silva E.J., Roleira F.M.F. Synthetic and Natural Guanidine Derivatives as Antitumor and Antimicrobial Agents: A Review. Bioorg. Chem. 2023;138:106600. doi: 10.1016/j.bioorg.2023.106600. PubMed DOI
Gill S.S., Tuteja N. Polyamines and Abiotic Stress Tolerance in Plants. Plant Signal. Behav. 2010;5:26–33. doi: 10.4161/psb.5.1.10291. PubMed DOI PMC
Wang Y., Deng L., Meng J., Niu L., Pan L., Lu Z., Cui G., Wang Z., Zeng W. Transcriptomic and Metabolic Analyses Reveal the Mechanism of Ethylene Production in Stony Hard Peach Fruit during Cold Storage. Int. J. Mol. Sci. 2021;22:11308. doi: 10.3390/ijms222111308. PubMed DOI PMC
Ahammed G.J., Mao Q., Yan Y., Wu M., Wang Y., Ren J., Guo P., Liu A., Chen S. Role of Melatonin in Arbuscular Mycorrhizal Fungi-Induced Resistance to Fusarium Wilt in Cucumber. Phytopathology. 2020;110:999–1009. doi: 10.1094/PHYTO-11-19-0435-R. PubMed DOI
Berrocal-Lobo M., Molina A. Ethylene Response Factor 1 Mediates Arabidopsis Resistance to the Soilborne Fungus Fusarium oxysporum. Mol. Plant-Microbe Interact. 2004;17:763–770. doi: 10.1094/MPMI.2004.17.7.763. PubMed DOI
Jiang L., Li R., Yang J., Yao Z., Cao S. Ethylene Response Factor ERF022 Is Involved in Regulating Arabidopsis Root Growth. Plant Mol. Biol. 2023;113:1–17. doi: 10.1007/s11103-023-01373-1. PubMed DOI
Pilate G., Dejardin A., Leple J.-C. Chapter 1—Field Trials with Lignin-Modified Transgenic Trees. Lignins. 2012;61:1–36. doi: 10.1016/B978-0-12-416023-1.00001-X. DOI
Shadle G., Chen F., Srinivasa Reddy M.S., Jackson L., Nakashima J., Dixon R.A. Down-Regulation of Hydroxycinnamoyl CoA: Shikimate Hydroxycinnamoyl Transferase in Transgenic Alfalfa Affects Lignification, Development and Forage Quality. Phytochemistry. 2007;68:1521–1529. doi: 10.1016/j.phytochem.2007.03.022. PubMed DOI
Paniagua C., Bilkova A., Jackson P., Dabravolski S., Riber W., Didi V., Houser J., Gigli-Bisceglia N., Wimmerova M., Budínská E., et al. Dirigent Proteins in Plants: Modulating Cell Wall Metabolism during Abiotic and Biotic Stress Exposure. J. Exp. Bot. 2017;68:3287–3301. doi: 10.1093/jxb/erx141. PubMed DOI
Gasper R., Effenberger I., Kolesinski P., Terlecka B., Hofmann E., Schaller A. Dirigent Protein Mode of Action Revealed by the Crystal Structure of AtDIR6. Plant Physiol. 2016;172:2165–2175. doi: 10.1104/pp.16.01281. PubMed DOI PMC
Naguib D.M. Comparative Lipid Profiling for Studying Resistance Mechanism against Fusarium Wilt. Physiol. Mol. Plant Pathol. 2019;108:101421. doi: 10.1016/j.pmpp.2019.101421. DOI
Reyna M., Peppino Margutti M., Villasuso A.L. Lipid Profiling of Barley Root in Interaction with Fusarium Macroconidia. Environ. Exp. Bot. 2019;166:103788. doi: 10.1016/j.envexpbot.2019.06.001. DOI
Kuźniak E., Gajewska E. Lipids and Lipid-Mediated Signaling in Plant–Pathogen Interactions. Int. J. Mol. Sci. 2024;25:7255. doi: 10.3390/ijms25137255. PubMed DOI PMC
Stranska M., Lovecka P., Vrchotova B., Uttl L., Bechynska K., Behner A., Hajslova J. Bacterial Endophytes from Vitis vinifera L.—Metabolomics Characterization of Plant-Endophyte Crosstalk. Chem. Biodivers. 2021;18:e2100516. doi: 10.1002/cbdv.202100516. PubMed DOI
Leišová L., Kučera L., Chrpová J., Sýkorová S., Šíp V., Ovesná J. Quantification of Fusarium culmorum in Wheat and Barley Tissues Using Real-Time PCR in Comparison with DON Content. J. Phytopathol. 2006;154:603–611. doi: 10.1111/j.1439-0434.2006.01154.x. DOI
Yli-Mattila T., Paavanen-Huhtala S., Jestoi M., Parikka P., Hietaniemi V., Gagkaeva T., Sarlin T., Haikara A., Laaksonen S., Rizzo A. Real-time PCR detection and quantification of Fusarium poae, F. graminearum, F. sporotrichioides and F. langsethiae in cereal grains in Finland and Russia. Arch. Phytopathol. Plant Prot. 2008;41:243–260. doi: 10.1080/03235400600680659. DOI
Köhl J., Lombaers C., Moretti A., Bandyopadhyay R., Somma S., Kastelein P. Analysis of microbial taxonomical groups present in maize stalks suppressive to colonization by toxigenic Fusarium spp.: A strategy for the identification of potential antagonists. Biol. Control. 2015;83:20–28. doi: 10.1016/j.biocontrol.2014.12.007. DOI
Bluhm B.H., Cousin M.A., Woloshuk C.P. Multiplex real-time PCR 436 detection of fumonisin producing and trichothecene-producing groups of Fusarium species. J. Food Prot. 2004;67:536–543. doi: 10.4315/0362-028X-67.3.536. PubMed DOI