Pulsed Electric Field Induces Significant Changes in the Metabolome of Fusarium Species and Decreases Their Viability and Toxigenicity

. 2025 Jan 11 ; 17 (1) : . [epub] 20250111

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39852986

Grantová podpora
20-14649S Czech Science Foundation
LM2023064 METROFOOD-CZ
A1_FPBT_2024_006 University of Chemistry and Technology

Fusarium fungi are widespread pathogens of food crops, primarily associated with the formation of mycotoxins. Therefore, effective mitigation strategies for these toxicogenic microorganisms are required. In this study, the potential of pulsed electric field (PEF) as an advanced technology of increasing use in the food processing industry was investigated to minimize the viability of Fusarium pathogens and to characterize the PEF-induced changes at the metabolomic level. Spores of four Fusarium species (Fusarium culmorum, Fusarium graminearum, Fusarium poae, and Fusarium sporotrichioides) were treated with PEF and cultured on potato dextrose agar (PDA) plates. The viability of the Fusarium species was assessed by counting the colony-forming units, and changes in the mycotoxin content and metabolomic fingerprints were evaluated by using UHPLC-HRMS/MS instrumental analysis. For metabolomic data processing and compound identification, the MS-DIAL (v. 4.80)-MS-CleanR-MS-Finder (v. 3.52) software platform was used. As we found out, both fungal viability and the ability to produce mycotoxins significantly decreased after the PEF treatment for all of the species tested. The metabolomes of the treated and untreated fungi showed statistically significant differences, and PEF-associated biomarkers from the classes oxidized fatty acid derivatives, cyclic hexapeptides, macrolides, pyranocoumarins, carbazoles, and guanidines were identified.

Zobrazit více v PubMed

Bakker M.G., Brown D.W., Kelly A.C., Kim H.S., Kurtzman C.P., McCormick S.P., O’Donnell K.L., Proctor R.H., Vaughan M.M., Ward T.J. Fusarium Mycotoxins: A Trans-Disciplinary Overview. Can. J. Plant Pathol. 2018;40:161–171. doi: 10.1080/07060661.2018.1433720. DOI

Inbaia S., Farooqi A., Ray R. V Aggressiveness and Mycotoxin Profile of Fusarium Avenaceum Isolates Causing Fusarium Seedling Blight and Fusarium Head Blight in UK Malting Barley. Front. Plant Sci. 2023;14:1121553. doi: 10.3389/fpls.2023.1121553. PubMed DOI PMC

Wang L.Y., Xie Y.S., Cui Y.Y., Xu J., He W., Chen H.G., Guo J.H. Conjunctively Screening of Biocontrol Agents (BCAs) against Fusarium Root Rot and Fusarium Head Blight Caused by Fusarium Graminearum. Microbiol. Res. 2015;177:34–42. doi: 10.1016/j.micres.2015.05.005. PubMed DOI

Moonjely S., Ebert M., Paton-Glassbrook D., Noel Z.A., Roze L., Shay R., Watkins T., Trail F. Update on the State of Research to Manage Fusarium Head Blight. Fungal Genet. Biol. 2023;169:103829. doi: 10.1016/j.fgb.2023.103829. PubMed DOI

Perincherry L., Lalak-Kanczugowska J., Stepien L. Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions. Toxins. 2019;11:664. doi: 10.3390/toxins11110664. PubMed DOI PMC

Torres A.M., Palacios S.A., Yerkovich N., Palazzini J.M., Battilani P., Leslie J.F., Logrieco A.F., Chulze S.N. Fusarium Head Blight and Mycotoxins in Wheat: Prevention and Control Strategies across the Food Chain. World Mycotoxin J. 2019;12:333–355. doi: 10.3920/WMJ2019.2438. DOI

Smaoui S., Agriopoulou S., D’Amore T., Tavares L., Mousavi Khaneghah A. The Control of Fusarium Growth and Decontamination of Produced Mycotoxins by Lactic Acid Bacteria. Crit. Rev. Food Sci. Nutr. 2022;63:11125–11152. doi: 10.1080/10408398.2022.2087594. PubMed DOI

Homa K., Barney W.P., Davis W.P., Guerrero D., Berger M.J., Lopez J.L., Wyenandt C.A., Simon J.E. Cold Plasma Treatment Strategies for the Control of Fusarium oxysporum f. sp. basilici in Sweet Basil. HortScience. 2021;56:42–51. doi: 10.21273/HORTSCI15338-20. DOI

Filho F.O., de Oliveira Silva E., de Almeida Lopes M.M., Ribeiro P.R.V., Oster A.H., Guedes J.A.C., de Souza Zampieri D., do Nascimento Bordallo P., Zocolo G.J. Effect of Pulsed Light on Postharvest Disease Control-Related Metabolomic Variation in Melon (Cucumis Melo) Artificially Inoculated with Fusarium Pallidoroseum. PLoS ONE. 2020;15:e0220097. doi: 10.1371/journal.pone.0220097. PubMed DOI PMC

Zuluaga-Calderón B., González H.H.L., Alzamora S.M., Coronel M.B. Multi-Step Ozone Treatments of Malting Barley: Effect on the Incidence of Fusarium Graminearum and Grain Germination Parameters. Innov. Food Sci. Emerg. Technol. 2023;83:103219. doi: 10.1016/j.ifset.2022.103219. DOI

Bevilacqua A., Sinigaglia M., Corbo M.R. Ultrasound and Antimicrobial Compounds: A Suitable Way to Control Fusarium Oxysporum in Juices. Food Bioprocess Technol. 2013;6:1153–1163. doi: 10.1007/s11947-012-0782-0. DOI

Evrendilek G.A., Karatas B., Uzuner S., Tanasov I. Design and Effectiveness of Pulsed Electric Fields towards Seed Disinfection. J. Sci. Food Agric. 2019;99:3475–3480. doi: 10.1002/jsfa.9566. PubMed DOI

Han Z., Zeng X.A., Zhang B.S., Yu S.J. Effects of Pulsed Electric Fields (PEF) Treatment on the Properties of Corn Starch. J. Food Eng. 2009;93:318–323. doi: 10.1016/j.jfoodeng.2009.01.040. DOI

García D., Gómez N., Mañas P., Raso J., Pagán R. Pulsed Electric Fields Cause Bacterial Envelopes Permeabilization Depending on the Treatment Intensity, the Treatment Medium PH and the Microorganism Investigated. Int. J. Food Microbiol. 2007;113:219–227. doi: 10.1016/j.ijfoodmicro.2006.07.007. PubMed DOI

Castro A.J., Barbosa-Cánovas G.V., Swanson B.G. Microbial Inactivation of Foods by Pulsed Electric Fields. J. Food Process. Preserv. 1993;17:47–73. doi: 10.1111/j.1745-4549.1993.tb00225.x. DOI

Barbosa-Cánovas G.V., Altunakar B. Pulsed Electric Fields Processing of Foods: An Overview. In: Raso J., Heinz V., editors. Pulsed Electric Fields Technology for the Food Industry. Springer; Boston, MA, USA: 2006. pp. 3–26.

Toepfl S., Heinz V., Knorr D. High Intensity Pulsed Electric Fields Applied for Food Preservation. Chem. Eng. Process. Process Intensif. 2007;46:537–546. doi: 10.1016/j.cep.2006.07.011. DOI

Zhong C., Guan X., Fan Z., Song W., Chen R., Wang Y., Sun X., He S. Pulsed Electric Field Disinfection Treatment of Fusarium Oxysporum in Nutrient Solution. Water Sci. Technol. Water Supply. 2019;19:2116–2122. doi: 10.2166/ws.2019.090. DOI

Palicova J., Chrpova J., Tobolkova A., Ovesna J., Stranska M. Effect of Pulsed Electric Field on Viability of Fusarium Micromycetes. Cereal Res. Commun. 2024 doi: 10.1007/s42976-024-00561-z. DOI

Stranska M., Prusova N., Behner A., Dzuman Z., Lazarek M., Tobolkova A., Chrpova J., Hajslova J. Influence of Pulsed Electric Field Treatment on the Fate of Fusarium and Alternaria Mycotoxins Present in Malting Barley. Food Control. 2023;145:109440. doi: 10.1016/j.foodcont.2022.109440. DOI

Triba M.N., Le Moyec L., Amathieu R., Goossens C., Bouchemal N., Nahon P., Rutledge D.N., Savarin P. PLS/OPLS Models in Metabolomics: The Impact of Permutation of Dataset Rows on the K-Fold Cross-Validation Quality Parameters. Mol. Biosyst. 2015;11:13–19. doi: 10.1039/C4MB00414K. PubMed DOI

Schmid R., Heuckeroth S., Korf A., Smirnov A., Myers O., Dyrlund T.S., Bushuiev R., Murray K.J., Hoffmann N., Lu M., et al. Integrative Analysis of Multimodal Mass Spectrometry Data in MZmine 3. Nat. Biotechnol. 2023;41:447–449. doi: 10.1038/s41587-023-01690-2. PubMed DOI PMC

Tsugawa H., Ikeda K., Takahashi M., Satoh A., Mori Y., Uchino H., Okahashi N., Yamada Y., Tada I., Bonini P., et al. A Lipidome Atlas in MS-DIAL 4. Nat. Biotechnol. 2020;38:1159–1163. doi: 10.1038/s41587-020-0531-2. PubMed DOI

Kvasnička A., Najdekr L., Dobešová D., Piskláková B., Ivanovová E., Friedecký D. Clinical Lipidomics in the Era of the Big Data. Clin. Chem. Lab. Med. 2023;61:587–598. doi: 10.1515/cclm-2022-1105. PubMed DOI

Castillo S., Gopalacharyulu P., Yetukuri L., Orešič M. Algorithms and Tools for the Preprocessing of LC-MS Metabolomics Data. Chemom. Intell. Lab. Syst. 2011;108:23–32. doi: 10.1016/j.chemolab.2011.03.010. DOI

Tsugawa H., Kind T., Nakabayashi R., Yukihira D., Tanaka W., Cajka T., Saito K., Fiehn O., Arita M. Hydrogen Rearrangement Rules: Computational MS/MS Fragmentation and Structure Elucidation Using MS-FINDER Software. Anal. Chem. 2016;88:7946–7958. doi: 10.1021/acs.analchem.6b00770. PubMed DOI PMC

Dührkop K., Fleischauer M., Ludwig M., Aksenov A.A., Melnik A.V., Meusel M., Dorrestein P.C., Rousu J., Böcker S. SIRIUS 4: A Rapid Tool for Turning Tandem Mass Spectra into Metabolite Structure Information. Nat. Methods. 2019;16:299–302. doi: 10.1038/s41592-019-0344-8. PubMed DOI

Fraisier-Vannier O., Chervin J., Cabanac G., Puech V., Fournier S., Durand V., Amiel A., André O., Benamar O.A., Dumas B., et al. MS-CleanR: A Feature-Filtering Workflow for Untargeted LC-MS Based Metabolomics. Anal. Chem. 2020;92:9971–9981. doi: 10.1021/acs.analchem.0c01594. PubMed DOI

Klåvus A., Kokla M., Noerman S., Koistinen V.M., Tuomainen M., Zarei I., Meuronen T., Häkkinen M.R., Rummukainen S., Babu A.F., et al. “Notame”: Workflow for Non-Targeted LC-MS Metabolic Profiling. Metabolites. 2020;10:135. doi: 10.3390/metabo10040135. PubMed DOI PMC

Yonemoto Y., Yamashita T., Muraji M., Tatebe W., Ooshima H., Kato J., Kimura A., Murata K. Resistance of Yeast and Bacterial Spores to High Voltage Electric Pulses. J. Ferment. Bioeng. 1993;75:99–102. doi: 10.1016/0922-338X(93)90217-V. DOI

Qiu X., Chang J., Jin Y., Wu W.J. Pulsed Electric Field Treatments with Nonlethal Field Strength Alter the Properties of Bacterial Spores. J. Food Prot. 2022;85:1053–1060. doi: 10.4315/JFP-21-447. PubMed DOI

Palmero Llamas D., De Cara Gonzalez M., Iglesias Gonzalez C., Ruíz Lopez G., Tello Marquina J.C. Effects of Water Potential on Spore Germination and Viability of Fusarium Species. J. Ind. Microbiol. Biotechnol. 2008;35:1411–1418. doi: 10.1007/s10295-008-0441-7. PubMed DOI

Song Y., Li Q., Liu X., Chen Y., Zhang Y., Sun A., Zhang W., Zhang J., Ju J. Cyclic Hexapeptides from the Deep South China Sea-Derived Streptomyces Scopuliridis SCSIO ZJ46 Active against Pathogenic Gram-Positive Bacteria. J. Nat. Prod. 2014;77:1937–1941. doi: 10.1021/np500399v. PubMed DOI

Volchegursky Y., Hu Z., Katz L., McDaniel R. Biosynthesis of the Antiparasitic Agent Megalomicin: Transformation of Erythromycin to Megalomicin in Saccharopolyspora Erythraea. Mol. Microbiol. 2000;37:752–762. doi: 10.1046/j.1365-2958.2000.02059.x. PubMed DOI

Smedsgaard J., Nielsen J. Metabolite Profiling of Fungi and Yeast: From Phenotype to Metabolome by MS and Informatics. J. Exp. Bot. 2005;56:273–286. doi: 10.1093/jxb/eri068. PubMed DOI

Šíp V., Stuchlíková E. Evaluation of the Response of Selected Winter Wheat Cultivars to Artificial Infection with Fusarium Culmorum in Field Conditions. Czech J. Genet. Plant Breed. 2000;36:49–58.

Prusova N., Karabin M., Jelinek L., Chrpova J., Ovesna J., Svoboda P., Dolezalova T., Behner A., Hajslova J., Stranska M. Application of Pulsed Electric Field During Malting: Impact on Fusarium Species Growth and Mycotoxin Production. Toxins. 2024;16:537. doi: 10.3390/toxins16120537. PubMed DOI PMC

Stranska M., Uttl L., Bechynska K., Hurkova K., Behner A., Hajslova J. Metabolomic Fingerprinting as a Tool for Authentication of Grapevine (Vitis vinifera L.) Biomass Used in Food Production. Food Chem. 2021;361:130166. doi: 10.1016/j.foodchem.2021.130166. PubMed DOI

Dzuman Z., Zachariasova M., Lacina O., Veprikova Z., Slavikova P., Hajslova J. A Rugged High-Throughput Analytical Approach for the Determination and Quantification of Multiple Mycotoxins in Complex Feed Matrices. Talanta. 2014;121:263–272. doi: 10.1016/j.talanta.2013.12.064. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...