Pulsed Electric Field Induces Significant Changes in the Metabolome of Fusarium Species and Decreases Their Viability and Toxigenicity
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-14649S
Czech Science Foundation
LM2023064
METROFOOD-CZ
A1_FPBT_2024_006
University of Chemistry and Technology
PubMed
39852986
PubMed Central
PMC11769547
DOI
10.3390/toxins17010033
PII: toxins17010033
Knihovny.cz E-zdroje
- Klíčová slova
- Fusarium, UHPLC-HRMS/MS, biomarkers, food pathogens, metabolomic fingerprinting, mycotoxins, pulsed electric field, spore viability,
- MeSH
- elektřina MeSH
- Fusarium * metabolismus MeSH
- metabolom * MeSH
- metabolomika MeSH
- mikrobiální viabilita účinky léků MeSH
- mykotoxiny * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mykotoxiny * MeSH
Fusarium fungi are widespread pathogens of food crops, primarily associated with the formation of mycotoxins. Therefore, effective mitigation strategies for these toxicogenic microorganisms are required. In this study, the potential of pulsed electric field (PEF) as an advanced technology of increasing use in the food processing industry was investigated to minimize the viability of Fusarium pathogens and to characterize the PEF-induced changes at the metabolomic level. Spores of four Fusarium species (Fusarium culmorum, Fusarium graminearum, Fusarium poae, and Fusarium sporotrichioides) were treated with PEF and cultured on potato dextrose agar (PDA) plates. The viability of the Fusarium species was assessed by counting the colony-forming units, and changes in the mycotoxin content and metabolomic fingerprints were evaluated by using UHPLC-HRMS/MS instrumental analysis. For metabolomic data processing and compound identification, the MS-DIAL (v. 4.80)-MS-CleanR-MS-Finder (v. 3.52) software platform was used. As we found out, both fungal viability and the ability to produce mycotoxins significantly decreased after the PEF treatment for all of the species tested. The metabolomes of the treated and untreated fungi showed statistically significant differences, and PEF-associated biomarkers from the classes oxidized fatty acid derivatives, cyclic hexapeptides, macrolides, pyranocoumarins, carbazoles, and guanidines were identified.
Zobrazit více v PubMed
Bakker M.G., Brown D.W., Kelly A.C., Kim H.S., Kurtzman C.P., McCormick S.P., O’Donnell K.L., Proctor R.H., Vaughan M.M., Ward T.J. Fusarium Mycotoxins: A Trans-Disciplinary Overview. Can. J. Plant Pathol. 2018;40:161–171. doi: 10.1080/07060661.2018.1433720. DOI
Inbaia S., Farooqi A., Ray R. V Aggressiveness and Mycotoxin Profile of Fusarium Avenaceum Isolates Causing Fusarium Seedling Blight and Fusarium Head Blight in UK Malting Barley. Front. Plant Sci. 2023;14:1121553. doi: 10.3389/fpls.2023.1121553. PubMed DOI PMC
Wang L.Y., Xie Y.S., Cui Y.Y., Xu J., He W., Chen H.G., Guo J.H. Conjunctively Screening of Biocontrol Agents (BCAs) against Fusarium Root Rot and Fusarium Head Blight Caused by Fusarium Graminearum. Microbiol. Res. 2015;177:34–42. doi: 10.1016/j.micres.2015.05.005. PubMed DOI
Moonjely S., Ebert M., Paton-Glassbrook D., Noel Z.A., Roze L., Shay R., Watkins T., Trail F. Update on the State of Research to Manage Fusarium Head Blight. Fungal Genet. Biol. 2023;169:103829. doi: 10.1016/j.fgb.2023.103829. PubMed DOI
Perincherry L., Lalak-Kanczugowska J., Stepien L. Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions. Toxins. 2019;11:664. doi: 10.3390/toxins11110664. PubMed DOI PMC
Torres A.M., Palacios S.A., Yerkovich N., Palazzini J.M., Battilani P., Leslie J.F., Logrieco A.F., Chulze S.N. Fusarium Head Blight and Mycotoxins in Wheat: Prevention and Control Strategies across the Food Chain. World Mycotoxin J. 2019;12:333–355. doi: 10.3920/WMJ2019.2438. DOI
Smaoui S., Agriopoulou S., D’Amore T., Tavares L., Mousavi Khaneghah A. The Control of Fusarium Growth and Decontamination of Produced Mycotoxins by Lactic Acid Bacteria. Crit. Rev. Food Sci. Nutr. 2022;63:11125–11152. doi: 10.1080/10408398.2022.2087594. PubMed DOI
Homa K., Barney W.P., Davis W.P., Guerrero D., Berger M.J., Lopez J.L., Wyenandt C.A., Simon J.E. Cold Plasma Treatment Strategies for the Control of Fusarium oxysporum f. sp. basilici in Sweet Basil. HortScience. 2021;56:42–51. doi: 10.21273/HORTSCI15338-20. DOI
Filho F.O., de Oliveira Silva E., de Almeida Lopes M.M., Ribeiro P.R.V., Oster A.H., Guedes J.A.C., de Souza Zampieri D., do Nascimento Bordallo P., Zocolo G.J. Effect of Pulsed Light on Postharvest Disease Control-Related Metabolomic Variation in Melon (Cucumis Melo) Artificially Inoculated with Fusarium Pallidoroseum. PLoS ONE. 2020;15:e0220097. doi: 10.1371/journal.pone.0220097. PubMed DOI PMC
Zuluaga-Calderón B., González H.H.L., Alzamora S.M., Coronel M.B. Multi-Step Ozone Treatments of Malting Barley: Effect on the Incidence of Fusarium Graminearum and Grain Germination Parameters. Innov. Food Sci. Emerg. Technol. 2023;83:103219. doi: 10.1016/j.ifset.2022.103219. DOI
Bevilacqua A., Sinigaglia M., Corbo M.R. Ultrasound and Antimicrobial Compounds: A Suitable Way to Control Fusarium Oxysporum in Juices. Food Bioprocess Technol. 2013;6:1153–1163. doi: 10.1007/s11947-012-0782-0. DOI
Evrendilek G.A., Karatas B., Uzuner S., Tanasov I. Design and Effectiveness of Pulsed Electric Fields towards Seed Disinfection. J. Sci. Food Agric. 2019;99:3475–3480. doi: 10.1002/jsfa.9566. PubMed DOI
Han Z., Zeng X.A., Zhang B.S., Yu S.J. Effects of Pulsed Electric Fields (PEF) Treatment on the Properties of Corn Starch. J. Food Eng. 2009;93:318–323. doi: 10.1016/j.jfoodeng.2009.01.040. DOI
García D., Gómez N., Mañas P., Raso J., Pagán R. Pulsed Electric Fields Cause Bacterial Envelopes Permeabilization Depending on the Treatment Intensity, the Treatment Medium PH and the Microorganism Investigated. Int. J. Food Microbiol. 2007;113:219–227. doi: 10.1016/j.ijfoodmicro.2006.07.007. PubMed DOI
Castro A.J., Barbosa-Cánovas G.V., Swanson B.G. Microbial Inactivation of Foods by Pulsed Electric Fields. J. Food Process. Preserv. 1993;17:47–73. doi: 10.1111/j.1745-4549.1993.tb00225.x. DOI
Barbosa-Cánovas G.V., Altunakar B. Pulsed Electric Fields Processing of Foods: An Overview. In: Raso J., Heinz V., editors. Pulsed Electric Fields Technology for the Food Industry. Springer; Boston, MA, USA: 2006. pp. 3–26.
Toepfl S., Heinz V., Knorr D. High Intensity Pulsed Electric Fields Applied for Food Preservation. Chem. Eng. Process. Process Intensif. 2007;46:537–546. doi: 10.1016/j.cep.2006.07.011. DOI
Zhong C., Guan X., Fan Z., Song W., Chen R., Wang Y., Sun X., He S. Pulsed Electric Field Disinfection Treatment of Fusarium Oxysporum in Nutrient Solution. Water Sci. Technol. Water Supply. 2019;19:2116–2122. doi: 10.2166/ws.2019.090. DOI
Palicova J., Chrpova J., Tobolkova A., Ovesna J., Stranska M. Effect of Pulsed Electric Field on Viability of Fusarium Micromycetes. Cereal Res. Commun. 2024 doi: 10.1007/s42976-024-00561-z. DOI
Stranska M., Prusova N., Behner A., Dzuman Z., Lazarek M., Tobolkova A., Chrpova J., Hajslova J. Influence of Pulsed Electric Field Treatment on the Fate of Fusarium and Alternaria Mycotoxins Present in Malting Barley. Food Control. 2023;145:109440. doi: 10.1016/j.foodcont.2022.109440. DOI
Triba M.N., Le Moyec L., Amathieu R., Goossens C., Bouchemal N., Nahon P., Rutledge D.N., Savarin P. PLS/OPLS Models in Metabolomics: The Impact of Permutation of Dataset Rows on the K-Fold Cross-Validation Quality Parameters. Mol. Biosyst. 2015;11:13–19. doi: 10.1039/C4MB00414K. PubMed DOI
Schmid R., Heuckeroth S., Korf A., Smirnov A., Myers O., Dyrlund T.S., Bushuiev R., Murray K.J., Hoffmann N., Lu M., et al. Integrative Analysis of Multimodal Mass Spectrometry Data in MZmine 3. Nat. Biotechnol. 2023;41:447–449. doi: 10.1038/s41587-023-01690-2. PubMed DOI PMC
Tsugawa H., Ikeda K., Takahashi M., Satoh A., Mori Y., Uchino H., Okahashi N., Yamada Y., Tada I., Bonini P., et al. A Lipidome Atlas in MS-DIAL 4. Nat. Biotechnol. 2020;38:1159–1163. doi: 10.1038/s41587-020-0531-2. PubMed DOI
Kvasnička A., Najdekr L., Dobešová D., Piskláková B., Ivanovová E., Friedecký D. Clinical Lipidomics in the Era of the Big Data. Clin. Chem. Lab. Med. 2023;61:587–598. doi: 10.1515/cclm-2022-1105. PubMed DOI
Castillo S., Gopalacharyulu P., Yetukuri L., Orešič M. Algorithms and Tools for the Preprocessing of LC-MS Metabolomics Data. Chemom. Intell. Lab. Syst. 2011;108:23–32. doi: 10.1016/j.chemolab.2011.03.010. DOI
Tsugawa H., Kind T., Nakabayashi R., Yukihira D., Tanaka W., Cajka T., Saito K., Fiehn O., Arita M. Hydrogen Rearrangement Rules: Computational MS/MS Fragmentation and Structure Elucidation Using MS-FINDER Software. Anal. Chem. 2016;88:7946–7958. doi: 10.1021/acs.analchem.6b00770. PubMed DOI PMC
Dührkop K., Fleischauer M., Ludwig M., Aksenov A.A., Melnik A.V., Meusel M., Dorrestein P.C., Rousu J., Böcker S. SIRIUS 4: A Rapid Tool for Turning Tandem Mass Spectra into Metabolite Structure Information. Nat. Methods. 2019;16:299–302. doi: 10.1038/s41592-019-0344-8. PubMed DOI
Fraisier-Vannier O., Chervin J., Cabanac G., Puech V., Fournier S., Durand V., Amiel A., André O., Benamar O.A., Dumas B., et al. MS-CleanR: A Feature-Filtering Workflow for Untargeted LC-MS Based Metabolomics. Anal. Chem. 2020;92:9971–9981. doi: 10.1021/acs.analchem.0c01594. PubMed DOI
Klåvus A., Kokla M., Noerman S., Koistinen V.M., Tuomainen M., Zarei I., Meuronen T., Häkkinen M.R., Rummukainen S., Babu A.F., et al. “Notame”: Workflow for Non-Targeted LC-MS Metabolic Profiling. Metabolites. 2020;10:135. doi: 10.3390/metabo10040135. PubMed DOI PMC
Yonemoto Y., Yamashita T., Muraji M., Tatebe W., Ooshima H., Kato J., Kimura A., Murata K. Resistance of Yeast and Bacterial Spores to High Voltage Electric Pulses. J. Ferment. Bioeng. 1993;75:99–102. doi: 10.1016/0922-338X(93)90217-V. DOI
Qiu X., Chang J., Jin Y., Wu W.J. Pulsed Electric Field Treatments with Nonlethal Field Strength Alter the Properties of Bacterial Spores. J. Food Prot. 2022;85:1053–1060. doi: 10.4315/JFP-21-447. PubMed DOI
Palmero Llamas D., De Cara Gonzalez M., Iglesias Gonzalez C., Ruíz Lopez G., Tello Marquina J.C. Effects of Water Potential on Spore Germination and Viability of Fusarium Species. J. Ind. Microbiol. Biotechnol. 2008;35:1411–1418. doi: 10.1007/s10295-008-0441-7. PubMed DOI
Song Y., Li Q., Liu X., Chen Y., Zhang Y., Sun A., Zhang W., Zhang J., Ju J. Cyclic Hexapeptides from the Deep South China Sea-Derived Streptomyces Scopuliridis SCSIO ZJ46 Active against Pathogenic Gram-Positive Bacteria. J. Nat. Prod. 2014;77:1937–1941. doi: 10.1021/np500399v. PubMed DOI
Volchegursky Y., Hu Z., Katz L., McDaniel R. Biosynthesis of the Antiparasitic Agent Megalomicin: Transformation of Erythromycin to Megalomicin in Saccharopolyspora Erythraea. Mol. Microbiol. 2000;37:752–762. doi: 10.1046/j.1365-2958.2000.02059.x. PubMed DOI
Smedsgaard J., Nielsen J. Metabolite Profiling of Fungi and Yeast: From Phenotype to Metabolome by MS and Informatics. J. Exp. Bot. 2005;56:273–286. doi: 10.1093/jxb/eri068. PubMed DOI
Šíp V., Stuchlíková E. Evaluation of the Response of Selected Winter Wheat Cultivars to Artificial Infection with Fusarium Culmorum in Field Conditions. Czech J. Genet. Plant Breed. 2000;36:49–58.
Prusova N., Karabin M., Jelinek L., Chrpova J., Ovesna J., Svoboda P., Dolezalova T., Behner A., Hajslova J., Stranska M. Application of Pulsed Electric Field During Malting: Impact on Fusarium Species Growth and Mycotoxin Production. Toxins. 2024;16:537. doi: 10.3390/toxins16120537. PubMed DOI PMC
Stranska M., Uttl L., Bechynska K., Hurkova K., Behner A., Hajslova J. Metabolomic Fingerprinting as a Tool for Authentication of Grapevine (Vitis vinifera L.) Biomass Used in Food Production. Food Chem. 2021;361:130166. doi: 10.1016/j.foodchem.2021.130166. PubMed DOI
Dzuman Z., Zachariasova M., Lacina O., Veprikova Z., Slavikova P., Hajslova J. A Rugged High-Throughput Analytical Approach for the Determination and Quantification of Multiple Mycotoxins in Complex Feed Matrices. Talanta. 2014;121:263–272. doi: 10.1016/j.talanta.2013.12.064. PubMed DOI