A lipidome atlas in MS-DIAL 4
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32541957
DOI
10.1038/s41587-020-0531-2
PII: 10.1038/s41587-020-0531-2
Knihovny.cz E-zdroje
- MeSH
- analýza dat * MeSH
- chromatografie kapalinová MeSH
- lipidomika metody MeSH
- lipidy chemie genetika MeSH
- tandemová hmotnostní spektrometrie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lipidy MeSH
We present Mass Spectrometry-Data Independent Analysis software version 4 (MS-DIAL 4), a comprehensive lipidome atlas with retention time, collision cross-section and tandem mass spectrometry information. We formulated mass spectral fragmentations of lipids across 117 lipid subclasses and included ion mobility tandem mass spectrometry. Using human, murine, algal and plant biological samples, we annotated and semiquantified 8,051 lipids using MS-DIAL 4 with a 1-2% estimated false discovery rate. MS-DIAL 4 helps standardize lipidomics data and discover lipid pathways.
Department of Applied Genomics Kazusa DNA Research Institute Chiba Japan
Department of Environmental Health Sciences Yale School of Public Health New Haven CT USA
Department of Genetics The Graduate University for Advanced Studies SOKENDAI Miura Japan
Department of Pathology University of Florida Gainsville FL USA
Graduate School of Bioresources Mie University Tsu Japan
Graduate School of Information Science and Technology Osaka University Osaka Japan
Graduate School of Medical Life Science Yokohama City University Yokohama Japan
Graduate School of Pharmaceutical Sciences Chiba University Chiba Japan
Graduate School of Pharmaceutical Sciences Keio University Tokyo Japan
Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
National Institute of Genetics Mishima Japan
RIKEN Center for Integrative Medical Sciences Yokohama Japan
RIKEN Center for Sustainable Resource Science Yokohama Japan
Zobrazit více v PubMed
Harayama, T. & Riezman, H. Nat. Rev. Mol. Cell Biol. 19, 281–296 (2018). PubMed
Kind, T. et al. Mass Spectrom. Rev. 37, 513–532 (2018). PubMed
Tsugawa, H., Ikeda, K. & Arita, M. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 1862, 762–765 (2017). PubMed
Liebisch, G. et al. Nat. Metab. 1, 745–747 (2019).
Hoffmann, N. et al. Anal. Chem. 91, 3302–3310 (2019). PubMed PMC
Tsugawa, H. et al. Nat. Methods 16, 295–298 (2019). PubMed
Kind, T. et al. Nat. Methods 10, 755–758 (2013). PubMed PMC
Pauling, J. K. et al. PLoS ONE 12, e0188394 (2017). PubMed PMC
Fahy, E. et al. J. Lipid Res. 50(Suppl.), S9–S14 (2009). PubMed PMC
Liebisch, G. et al. J. Lipid Res. 54, 1523–1530 (2013). PubMed PMC
Bowden, J. A. et al. J. Lipid Res. 58, 2275–2288 (2017). PubMed PMC
Burla, B. et al. J. Lipid Res. 59, 2001–2017 (2018). PubMed PMC
Ulmer, C. Z. et al. Anal. Chem. 89, 13069–13073 (2017). PubMed
Vasilopoulou, C. G. et al. Nat. Commun. 11, 1–11 (2020).
Lintonen, T. P. I. et al. Anal. Chem. 86, 9662–9669 (2014). PubMed
Gorusupudi, A., Liu, A., Hageman, G. S. & Bernstein, P. S. J. Lipid Res. 57, 499–508 (2016). PubMed PMC
Cohen, L. J. et al. Nature 549, 48–53 (2017). PubMed PMC
Masukawa, Y. et al. J. Lipid Res. 49, 1466–1476 (2008). PubMed
Schleyer, G. et al. Nat. Microbiol. 4, 527–538 (2019). PubMed PMC
Naoe, S., Tsugawa, H., Takahashi, M., Ikeda, K. & Arita, M. Metabolites 9, 241 (2019). PMC
Tsugawa, H. et al. Nat. Methods 12, 523–526 (2015). PubMed PMC
Yap, C. W. J. Comput. Chem. 32, 1466–1474 (2011). PubMed
Tsugawa, H. et al. J. Cheminform. 9, 1–12 (2017).
Kessner, D., Chambers, M., Burke, R., Agus, D. & Mallick, P. Bioinformatics 24, 2534–2536 (2008). PubMed PMC
Lai, Z. et al. Nat. Methods 15, 53–56 (2017). PubMed PMC
Hartler, J. et al. Nat. Methods 14, 1171–1174 (2017). PubMed PMC
Nakanishi, H., Iida, Y., Shimizu, T. & Taguchi, R. J. Biochem. 147, 245–256 (2010). PubMed
Tsugawa, H. et al. Anal. Chem. 88, 7946–7958 (2016). PubMed PMC
Ni, Z., Angelidou, G., Hoffmann, R. & Fedorova, M. Sci. Rep. 7, 1–14 (2017).
Haimi, P., Uphoff, A., Hermansson, M. & Somerharju, P. Anal. Chem. 78, 8324–8331 (2006). PubMed
Song, H., Hsu, F. F., Ladenson, J. & Turk, J. J. Am. Soc. Mass Spectrom. 18, 1848–1858 (2007). PubMed PMC
Alcoriza-Balaguer, M. I. et al. Anal. Chem. 91, 836–845 (2019). PubMed
Hutchins, P. D., Russell, J. D. & Coon, J. J. Cell Syst. 6, 621–625 (2018). PubMed PMC
Koelmel, J. P. et al. BMC Bioinformatics 18, 1–11 (2017).
Kyle, J. E. et al. Bioinformatics 33, 1744–1746 (2017). PubMed PMC
Ni, Z., Angelidou, G., Lange, M., Hoffmann, R. & Fedorova, M. Anal. Chem. 89, 8800–8807 (2017). PubMed
Kochen, M. A. et al. Anal. Chem. 88, 5733–5741 (2016). PubMed PMC
Pluskal, T., Castillo, S., Villar-Briones, A. & Oresic, M. BMC Bioinformatics 11, 395 (2010). PubMed PMC
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z. J. Anal. Chem. 89, 9559–9566 (2017). PubMed
Plante, P. L. et al. Anal. Chem. 91, 5191–5199 (2019). PubMed PMC
Colby, S. M., Nuñez, J. R., Hodas, N. O., Corley, C. D. & Renslow, R. R. Anal. Chem. 92, 1720–1729 (2020). PubMed
Colby, S. M. et al. Anal. Chem. 91, 4346–4356 (2019). PubMed PMC
MS-DIAL 5 multimodal mass spectrometry data mining unveils lipidome complexities
Haplotype variability in mitochondrial rRNA predisposes to metabolic syndrome
Two mitochondrial DNA polymorphisms modulate cardiolipin binding and lead to synthetic lethality
Omega-3 PUFAs prevent bone impairment and bone marrow adiposity in mouse model of obesity
Human bone marrow stromal cells: the impact of anticoagulants on stem cell properties
Ozone-enabled fatty acid discovery reveals unexpected diversity in the human lipidome
Short-Term Stability of Serum and Liver Extracts for Untargeted Metabolomics and Lipidomics
Integrative analysis of multimodal mass spectrometry data in MZmine 3
Guiding the choice of informatics software and tools for lipidomics research applications
Optimization of Mobile Phase Modifiers for Fast LC-MS-Based Untargeted Metabolomics and Lipidomics
Software and Computational Tools for LC-MS-Based Epilipidomics: Challenges and Solutions