Ozone-enabled fatty acid discovery reveals unexpected diversity in the human lipidome
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37402773
PubMed Central
PMC10319862
DOI
10.1038/s41467-023-39617-9
PII: 10.1038/s41467-023-39617-9
Knihovny.cz E-zdroje
- MeSH
- hmotnostní spektrometrie metody MeSH
- lidé MeSH
- lipidomika MeSH
- mastné kyseliny * chemie MeSH
- nenasycené mastné kyseliny chemie MeSH
- ozon * chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mastné kyseliny * MeSH
- nenasycené mastné kyseliny MeSH
- ozon * MeSH
Fatty acid isomers are responsible for an under-reported lipidome diversity across all kingdoms of life. Isomers of unsaturated fatty acids are often masked in contemporary analysis by incomplete separation and the absence of sufficiently diagnostic methods for structure elucidation. Here, we introduce a comprehensive workflow, to discover unsaturated fatty acids through coupling liquid chromatography and mass spectrometry with gas-phase ozonolysis of double bonds. The workflow encompasses semi-automated data analysis and enables de novo identification in complex media including human plasma, cancer cell lines and vernix caseosa. The targeted analysis including ozonolysis enables structural assignment over a dynamic range of five orders of magnitude, even in instances of incomplete chromatographic separation. Thereby we expand the number of identified plasma fatty acids two-fold, including non-methylene-interrupted fatty acids. Detection, without prior knowledge, allows discovery of non-canonical double bond positions. Changes in relative isomer abundances reflect underlying perturbations in lipid metabolism.
Centre for Data Science Queensland University of Technology Brisbane QLD 4000 Australia
Centre for Materials Science Queensland University of Technology Brisbane QLD 4000 Australia
Department of Analytical Chemistry Faculty of Science Charles University Prague 2 Czech Republic
Institute of Clinical Chemistry Inselspital Bern University Hospital 3010 Bern Switzerland
School of Chemistry and Physics Queensland University of Technology Brisbane QLD 4000 Australia
South Australian Health and Medical Research Institute Adelaide SA Australia
Zobrazit více v PubMed
Perez de Souza L, Alseekh S, Scossa F, Fernie AR. Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research. Nat. Methods. 2021;18:733–746. doi: 10.1038/s41592-021-01116-4. PubMed DOI
Gault J, et al. Combining native and ‘omics’ mass spectrometry to identify endogenous ligands bound to membrane proteins. Nat. Methods. 2020;17:505–508. doi: 10.1038/s41592-020-0821-0. PubMed DOI PMC
Rustam YH, Reid GE. Analytical challenges and recent advances in mass spectrometry based lipidomics. Anal. Chem. 2018;90:374–397. doi: 10.1021/acs.analchem.7b04836. PubMed DOI
Slatter DA, et al. Mapping the human platelet lipidome reveals cytosolic phospholipase A2 as a regulator of mitochondrial bioenergetics during activation. Cell Metab. 2016;23:930–944. doi: 10.1016/j.cmet.2016.04.001. PubMed DOI PMC
Harayama T, Riezman H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 2018;19:281–296. doi: 10.1038/nrm.2017.138. PubMed DOI
Feng G, et al. Dual-resolving of positional and geometric isomers of C=C bonds via bifunctional photocycloaddition-photoisomerization reaction system. Nat. Commun. 2022;13:2652. doi: 10.1038/s41467-022-30249-z. PubMed DOI PMC
Quehenberger O, Armando AM, Dennis EA. High sensitivity quantitative lipidomics analysis of fatty acids in biological samples by gas chromatography–mass spectrometry. Biochim. Biophys. Acta. 2011;1811:648–656. doi: 10.1016/j.bbalip.2011.07.006. PubMed DOI PMC
Mitchell TW, Pham H, Thomas MC, Blanksby SJ. Identification of double bond position in lipids: from GC to OzID. J. Chromatogr. B. 2009;877:2722–2735. doi: 10.1016/j.jchromb.2009.01.017. PubMed DOI
Zehethofer N, Pinto DM. Recent developments in tandem mass spectrometry for lipidomic analysis. Anal. Chim. Acta. 2008;627:62–70. doi: 10.1016/j.aca.2008.06.045. PubMed DOI
Brenna JT. Fatty acid analysis by high resolution gas chromatography and mass spectrometry for clinical and experimental applications. Curr. Opin. Clin. Nutr. Metab. Care. 2013;16:548–554. doi: 10.1097/MCO.0b013e328363bc0a. PubMed DOI
Christie WW. Gas chromatography-mass spectrometry methods for structural analysis of fatty acids. Lipids. 1998;33:343–353. doi: 10.1007/s11745-998-0214-x. PubMed DOI
Campbell JL, Baba T. Near-complete structural characterization of phosphatidylcholines using electron impact excitation of ions from organics. Anal. Chem. 2015;87:5837–5845. doi: 10.1021/acs.analchem.5b01460. PubMed DOI
Baba T, et al. Dissociation of biomolecules by an intense low-energy electron beam in a high sensitivity time-of-flight mass spectrometer. J. Am. Soc. Mass. Spectrom. 2021;32:1964–1975. doi: 10.1021/jasms.0c00425. PubMed DOI
Bollinger JG, et al. Improved sensitivity mass spectrometric detection of eicosanoids by charge reversal derivatization. Anal. Chem. 2010;82:6790–6796. doi: 10.1021/ac100720p. PubMed DOI PMC
Pham HT, Ly T, Trevitt AJ, Mitchell TW, Blanksby SJ. Differentiation of complex lipid isomers by radical-directed dissociation mass spectrometry. Anal. Chem. 2012;84:7525–7532. doi: 10.1021/ac301652a. PubMed DOI
Astudillo AM, et al. Occurrence and biological activity of palmitoleic acid isomers in phagocytic cells. J. Lipid Res. 2018;59:237–249. doi: 10.1194/jlr.M079145. PubMed DOI PMC
Lawrence P, Brenna JT. Acetonitrile covalent adduct chemical ionization mass spectrometry for double bond localization in non-methylene-interrupted polyene fatty acid methyl esters. Anal. Chem. 2006;78:1312–1317. doi: 10.1021/ac0516584. PubMed DOI
Wang DH, et al. Unusual polymethylene-interrupted, Δ5 monounsaturated and omega-3 fatty acids in sea urchin (Arbacia punctulata) from the Gulf of Mexico identified by solvent mediated covalent adduct chemical ionization mass spectrometry. Food Chem. 2022;371:131131. doi: 10.1016/j.foodchem.2021.131131. PubMed DOI
Zhang W, et al. Online photochemical derivatization enables comprehensive mass spectrometric analysis of unsaturated phospholipid isomers. Nat. Commun. 2019;10:79. doi: 10.1038/s41467-018-07963-8. PubMed DOI PMC
Zhao J, Fang M, Xia Y. A liquid chromatography-mass spectrometry workflow for in-depth quantitation of fatty acid double bond location isomers. J. Lipid Res. 2021;62:100110. doi: 10.1016/j.jlr.2021.100110. PubMed DOI PMC
Vrkoslav V, Háková M, Pecková K, Urbanová K, Cvačka J. Localization of double bonds in wax esters by high-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry utilizing the fragmentation of acetonitrile-related adducts. Anal. Chem. 2011;83:2978–2986. doi: 10.1021/ac1030682. PubMed DOI
Horká P, Vrkoslav V, Kindl J, Schwarzová-Pecková K, Cvačka J. Structural characterization of unusual fatty acid methyl esters with double and triple bonds using HPLC/APCI-MS2 with acetonitrile in-source derivatization. Molecules. 2021;26:6468. doi: 10.3390/molecules26216468. PubMed DOI PMC
Macias LA, Garza KY, Feider CL, Eberlin LS, Brodbelt JS. Relative quantitation of unsaturated phosphatidylcholines using 193 nm ultraviolet photodissociation parallel reaction monitoring mass spectrometry. J. Am. Chem. Soc. 2021;143:14622–14634. doi: 10.1021/jacs.1c05295. PubMed DOI PMC
Thomas MC, Mitchell TW, Blanksby SJ. Ozonolysis of phospholipid double bonds during electrospray ionization: a new tool for structure determination. J. Am. Chem. Soc. 2006;128:58–59. doi: 10.1021/ja056797h. PubMed DOI
Thomas MC, et al. Ozone-induced dissociation: elucidation of double bond position within mass-selected lipid ions. Anal. Chem. 2008;80:303–311. doi: 10.1021/ac7017684. PubMed DOI
Poad BLJ, et al. Ozone-induced dissociation on a modified tandem linear ion-trap: Observations of different reactivity for isomeric lipids. J. Am. Soc. Mass. Spectrom. 2010;21:1989–1999. doi: 10.1016/j.jasms.2010.08.011. PubMed DOI
Poad BLJ, et al. High-pressure ozone-induced dissociation for lipid structure elucidation on fast chromatographic timescales. Anal. Chem. 2017;89:4223–4229. doi: 10.1021/acs.analchem.7b00268. PubMed DOI
Marshall DL, et al. Mapping unsaturation in human plasma lipids by data-independent ozone-induced dissociation. J. Am. Soc. Mass. Spectrom. 2019;30:1621–1630. doi: 10.1007/s13361-019-02261-z. PubMed DOI
Claes BSR, et al. Mass spectrometry imaging of lipids with isomer resolution using high-pressure ozone-induced dissociation. Anal. Chem. 2021;93:9826–9834. doi: 10.1021/acs.analchem.1c01377. PubMed DOI PMC
Liu X, et al. Development of a miniature mass spectrometry system for point-of-care analysis of lipid isomers based on ozone-induced dissociation. Anal. Chem. 2022;94:13944–13950. doi: 10.1021/acs.analchem.2c03112. PubMed DOI
Young RSE, et al. Apocryphal FADS2 activity promotes fatty acid diversification in cancer. Cell Rep. 2021;34:108738. doi: 10.1016/j.celrep.2021.108738. PubMed DOI
Young RSE, et al. Identification of carbon-carbon double bond stereochemistry in unsaturated fatty acids by charge-remote fragmentation of fixed-charge derivatives. Anal. Chem. 2022;94:16180–16188. doi: 10.1021/acs.analchem.2c03625. PubMed DOI
Kind T, et al. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat. Methods. 2013;10:755–758. doi: 10.1038/nmeth.2551. PubMed DOI PMC
Tsugawa H, et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 2020;38:1159–1163. doi: 10.1038/s41587-020-0531-2. PubMed DOI
Wolrab D, et al. LipidQuant 1.0: automated data processing in lipid class separation–mass spectrometry quantitative workflows. Bioinformatics. 2021;37:4591–4592. doi: 10.1093/bioinformatics/btab644. PubMed DOI
Husen P, et al. Analysis of lipid experiments (ALEX): a software framework for analysis of high-resolution shotgun lipidomics data. PLoS ONE. 2013;8:e79736. doi: 10.1371/journal.pone.0079736. PubMed DOI PMC
Pauling JK, et al. Proposal for a common nomenclature for fragment ions in mass spectra of lipids. PLoS ONE. 2017;12:e0188394. doi: 10.1371/journal.pone.0188394. PubMed DOI PMC
Herzog R, et al. A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language. Genome Biol. 2011;12:R8. doi: 10.1186/gb-2011-12-1-r8. PubMed DOI PMC
Herzog R, Schwudke D, Shevchenko A. LipidXplorer: software for quantitative shotgun lipidomics compatible with multiple mass spectrometry platforms. Curr. Protoc. Bioinform. 2013;43:14.12. 11–14.12. 30. doi: 10.1002/0471250953.bi1412s43. PubMed DOI
Hellhake S, et al. Non-targeted and targeted analysis of oxylipins in combination with charge-switch derivatization by ion mobility high-resolution mass spectrometry. Anal. Bioanal. Chem. 2020;412:5743–5757. doi: 10.1007/s00216-020-02795-2. PubMed DOI PMC
Chen L, et al. Metabolite discovery through global annotation of untargeted metabolomics data. Nat. Methods. 2021;18:1377–1385. doi: 10.1038/s41592-021-01303-3. PubMed DOI PMC
Koelmel JP, Ulmer CZ, Jones CM, Yost RA, Bowden JA. Common cases of improper lipid annotation using high-resolution tandem mass spectrometry data and corresponding limitations in biological interpretation. Biochim Biophys. Acta Mol. Cell Biol. Lipids. 2017;1862:766–770. doi: 10.1016/j.bbalip.2017.02.016. PubMed DOI PMC
Kirkwood KI, et al. Utilizing Skyline to analyze lipidomics data containing liquid chromatography, ion mobility spectrometry and mass spectrometry dimensions. Nat. Protoc. 2022;17:2415–2430. doi: 10.1038/s41596-022-00714-6. PubMed DOI PMC
MacLean B, et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010;26:966–968. doi: 10.1093/bioinformatics/btq054. PubMed DOI PMC
Pino LK, et al. The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. 2020;39:229–244. doi: 10.1002/mas.21540. PubMed DOI PMC
Adams KJ, et al. Skyline for small molecules: a unifying software package for quantitative metabolomics. J. Proteome Res. 2020;19:1447–1458. doi: 10.1021/acs.jproteome.9b00640. PubMed DOI PMC
Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 2008;49:1137–1146. doi: 10.1194/jlr.D700041-JLR200. PubMed DOI PMC
Quehenberger O, Dennis EA. The human plasma lipidome. N. Engl. J. Med. 2011;365:1812–1823. doi: 10.1056/NEJMra1104901. PubMed DOI PMC
Phinney KW, et al. Development of a standard reference material for metabolomics research. Anal. Chem. 2013;85:11732–11738. doi: 10.1021/ac402689t. PubMed DOI PMC
Micalizzi G, et al. Rapid and miniaturized qualitative and quantitative gas chromatography profiling of human blood total fatty acids. Anal. Bioanal. Chem. 2020;412:2327–2337. doi: 10.1007/s00216-020-02424-y. PubMed DOI
Benner Jr, B. A. & Murray, J. A. NIST Fatty Acid Quality Assurance Program 2017 Final Report, (National Institute of Standards and Technology, Gaithersburg, MD, 2019).
Schantz, M. M., Powers, C. D. & Schleicher, R. L. Interlaboratory Analytical Comparison Study of Total Fatty Acid Concentrations in Human Serum: Results for Exercise 01: QA12FASER01 (US Department of Commerce, National Institute of Standards and Technology, 2013).
White JB, et al. Equivalent carbon number and interclass retention time conversion enhance lipid identification in untargeted clinical lipidomics. Anal. Chem. 2022;94:3476–3484. doi: 10.1021/acs.analchem.1c03770. PubMed DOI
Phillips GB, Dodge JT. Composition of phospholipids and of phospholipid fatty acids of human plasma. J. Lipid Res. 1967;8:676–681. doi: 10.1016/S0022-2275(20)38891-X. PubMed DOI
Christinat N, Morin-Rivron D, Masoodi M. High-throughput quantitative lipidomics analysis of nonesterified fatty acids in human plasma. J. Proteome Res. 2016;15:2228–2235. doi: 10.1021/acs.jproteome.6b00198. PubMed DOI
Pédrono F, et al. Sciadonic acid derived from pine nuts as a food component to reduce plasma triglycerides by inhibiting the rat hepatic Δ9-desaturase. Sci. Rep. 2020;10:6223. doi: 10.1038/s41598-020-63301-3. PubMed DOI PMC
Shibahara A, Yamamoto K, Shinkai K, Nakayama T, Kajimoto G. cis-9,cis-15-Octadecadienoic acid: a novel fatty acid found in higher plants. Biochim. Biophys. Acta Lipids Lipid Metab. 1993;1170:245–252. doi: 10.1016/0005-2760(93)90006-U. PubMed DOI
Paradis M, Ackman RG. Potential for employing the distribution of anomalous non-methylene-interrupted dienoic fatty acids in several marine invertebrates as part of food web studies. Lipids. 1977;12:170–176. doi: 10.1007/BF02533289. PubMed DOI
Wang DH, Wang Z, Chen R, Brenna JT. Characterization and semiquantitative analysis of novel ultratrace C10–24 monounsaturated fatty acid in bovine milkfat by solvent-mediated covalent adduct chemical ionization (CACI) MS/MS. J. Agric. Food Chem. 2020;68:7482–7489. doi: 10.1021/acs.jafc.0c03031. PubMed DOI
Murawski U, Egge H, György P, Zilliken F. Identification of non-methylene-interrupted cis, cis-octadecadienoic acids in human milk. FEBS Lett. 1971;18:290–292. doi: 10.1016/0014-5793(71)80468-4. PubMed DOI
Hauff S, Vetter W. Exploring the fatty acids of vernix caseosa in form of their methyl esters by off-line coupling of non-aqueous reversed phase high performance liquid chromatography and gas chromatography coupled to mass spectrometry. J. Chromatogr. A. 2010;1217:8270–8278. doi: 10.1016/j.chroma.2010.10.088. PubMed DOI
Míková R, et al. Newborn boys and girls differ in the lipid composition of vernix caseosa. PLoS ONE. 2014;9:e99173. doi: 10.1371/journal.pone.0099173. PubMed DOI PMC
Narreddula VR, et al. Introduction of a fixed-charge, photolabile derivative for enhanced structural elucidation of fatty acids. Anal. Chem. 2019;91:9901–9909. doi: 10.1021/acs.analchem.9b01566. PubMed DOI
Takigawa H, Nakagawa H, Kuzukawa M, Mori H, Imokawa G. Deficient production of hexadecenoic acid in the skin is associated in part with the vulnerability of atopic dermatitis patients to colonization by Staphylococcus aureus. Dermatology. 2005;211:240–248. doi: 10.1159/000087018. PubMed DOI
Funkhouser LJ, Bordenstein SR. Mom knows best: the universality of maternal microbial transmission. PLoS Biol. 2013;11:e1001631. doi: 10.1371/journal.pbio.1001631. PubMed DOI PMC
Wolrab D, et al. Lipidomic profiling of human serum enables detection of pancreatic cancer. Nat. Commun. 2022;13:124. doi: 10.1038/s41467-021-27765-9. PubMed DOI PMC
Pascual G, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature. 2017;541:41–45. doi: 10.1038/nature20791. PubMed DOI
Küçüksayan, E. et al. Sapienic Acid Metabolism Influences Membrane Plasticity and Protein Signaling in Breast Cancer Cell Lines. Cells11, 225 (2022). PubMed PMC
Hoy AJ, Nagarajan SR, Butler LM. Tumour fatty acid metabolism in the context of therapy resistance and obesity. Nat. Rev. Cancer. 2021;21:753–766. doi: 10.1038/s41568-021-00388-4. PubMed DOI
Cao W, et al. Large-scale lipid analysis with C=C location and sn-position isomer resolving power. Nat. Commun. 2020;11:375. doi: 10.1038/s41467-019-14180-4. PubMed DOI PMC
Kirschbaum C, et al. Establishing carbon–carbon double bond position and configuration in unsaturated fatty acids by gas-phase infrared spectroscopy. Chem. Sci. 2023;14:2518–2527. doi: 10.1039/D2SC06487A. PubMed DOI PMC
Vriens K, et al. Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity. Nature. 2019;566:403–406. doi: 10.1038/s41586-019-0904-1. PubMed DOI PMC
Else PL. The highly unnatural fatty acid profile of cells in culture. Prog. Lipid Res. 2020;77:101017. doi: 10.1016/j.plipres.2019.101017. PubMed DOI
Guillou H, Zadravec D, Martin PGP, Jacobsson A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog. Lipid Res. 2010;49:186–199. doi: 10.1016/j.plipres.2009.12.002. PubMed DOI
Brenna JT, Kothapalli KSD. New understandings of the pathway of long-chain polyunsaturated fatty acid biosynthesis. Curr. Opin. Clin. Nutr. Metab. Care. 2022;25:60–66. doi: 10.1097/MCO.0000000000000810. PubMed DOI
Ellis SR, et al. Automated, parallel mass spectrometry imaging and structural identification of lipids. Nat. Methods. 2018;15:515–518. doi: 10.1038/s41592-018-0010-6. PubMed DOI
Scott JS, Nassar ZD, Swinnen JV, Butler LM. Monounsaturated fatty acids: key regulators of cell viability and intracellular signaling in cancer. Mol. Cancer Res. 2022;20:1354–1364. doi: 10.1158/1541-7786.MCR-21-1069. PubMed DOI
Hamilton BR, et al. Mapping enzyme activity on tissue by functional mass spectrometry imaging. Angew. Chem. Int. Ed. 2020;59:3855–3858. doi: 10.1002/anie.201911390. PubMed DOI PMC
Randolph CE, Blanksby SJ, McLuckey SA. Enhancing detection and characterization of lipids using charge manipulation in electrospray ionization-tandem mass spectrometry. Chem. Phys. Lipids. 2020;232:104970. doi: 10.1016/j.chemphyslip.2020.104970. PubMed DOI PMC
Wang M, Han RH, Han X. Fatty acidomics: global analysis of lipid species containing a carboxyl group with a charge-remote fragmentation-assisted approach. Anal. Chem. 2013;85:9312–9320. doi: 10.1021/ac402078p. PubMed DOI PMC
Yang K, Dilthey BG, Gross RW. Identification and quantitation of fatty acid double bond positional isomers: a shotgun lipidomics approach using charge-switch derivatization. Anal. Chem. 2013;85:9742–9750. doi: 10.1021/ac402104u. PubMed DOI PMC
Menzel, J. P. Ozone-enabled fatty acid discovery reveals unexpected diversity in the human lipidome. jphmenzel/jpmlipidomics. 10.5281/zenodo.7930133 (2023). PubMed PMC
Menzel, J. P. et al. Ozone-enabled fatty acid discovery reveals unexpected diversity in the human lipidome. QUT Research Data Finder, 10.25912/RDF_1667992514317 (2022). PubMed PMC
MS-DIAL 5 multimodal mass spectrometry data mining unveils lipidome complexities
Metabolic Pathways of Acylcarnitine Synthesis
LORA, Lipid Over-Representation Analysis Based on Structural Information
Ozone-enabled fatty acid discovery reveals unexpected diversity in the human lipidome