LORA, Lipid Over-Representation Analysis Based on Structural Information

. 2023 Aug 29 ; 95 (34) : 12600-12604. [epub] 20230816

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37584663

With the increasing number of lipidomic studies, there is a need for an efficient and automated analysis of lipidomic data. One of the challenges faced by most existing approaches to lipidomic data analysis is lipid nomenclature. The systematic nomenclature of lipids contains all available information about the molecule, including its hierarchical representation, which can be used for statistical evaluation. The Lipid Over-Representation Analysis (LORA) web application (https://lora.metabolomics.fgu.cas.cz) analyzes this information using the Java-based Goslin framework, which translates lipid names into a standardized nomenclature. Goslin provides the level of lipid hierarchy, including information on headgroups, acyl chains, and their modifications, up to the "complete structure" level. LORA allows the user to upload the experimental query and reference data sets, select a grammar for lipid name normalization, and then process the data. The user can then interactively explore the results and perform lipid over-representation analysis based on selected criteria. The results are graphically visualized according to the lipidome hierarchy. The lipids present in the most over-represented terms (lipids with the highest number of enriched shared structural features) are defined as Very Important Lipids (VILs). For example, the main result of a demo data set is the information that the query is significantly enriched with "glycerophospholipids" containing "acyl 20:4" at the "sn-2 position". These terms define a set of VILs (e.g., PC 18:2/20:4;O and PE 16:0/20:4(5,8,10,14);OH). All results, graphs, and visualizations are summarized in a report. LORA is a tool focused on the smart mining of epilipidomics data sets to facilitate their interpretation at the molecular level.

Zobrazit více v PubMed

Šala M.; Lísa M.; Campbell J. L.; Holčapek M. Determination of triacylglycerol regioisomers using differential mobility spectrometry. Rapid Commun. Mass Spectrom. 2016, 30, 256–264. 10.1002/rcm.7430. PubMed DOI

Menzel J. P.; Young R. S. E.; Benfield A. H.; Scott J. S.; Wongsomboon P.; Cudlman L.; Cvacka J.; Butler L. M.; Henriques S. T.; Poad B. L. J.; Blanksby S. J. Ozone-enabled fatty acid discovery reveals unexpected diversity in the human lipidome. Nat. Commun. 2023, 14, 3940.10.1038/s41467-023-39617-9. PubMed DOI PMC

Ren H.; Triebl A.; Muralidharan S.; Wenk M. R.; Xia Y.; Torta F. Mapping the distribution of double bond location isomers in lipids across mouse tissues. Analyst 2021, 146, 3899–3907. 10.1039/D1AN00449B. PubMed DOI

Brezinova M.; Kuda O.; Hansikova J.; Rombaldova M.; Balas L.; Bardova K.; Durand T.; Rossmeisl M.; Cerna M.; Stranak Z.; Kopecky J. Levels of palmitic acid ester of hydroxystearic acid (PAHSA) are reduced in the breast milk of obese mothers. BBA MCBL 2018, 1863, 126–131. 10.1016/j.bbalip.2017.11.004. PubMed DOI

Hancock S. E.; Poad B. L.; Batarseh A.; Abbott S. K.; Mitchell T. W. Advances and unresolved challenges in the structural characterization of isomeric lipids. Anal. Biochem. 2017, 524, 45–55. 10.1016/j.ab.2016.09.014. PubMed DOI

Liebisch G.; Fahy E.; Aoki J.; Dennis E. A.; Durand T.; Ejsing C. S.; Fedorova M.; Feussner I.; Griffiths W. J.; Kofeler H.; Merrill A. H. Jr; Murphy R. C.; O’Donnell V. B.; Oskolkova O.; Subramaniam S.; Wakelam M. J. O.; Spener F. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res. 2020, 61, 1539–1555. 10.1194/jlr.S120001025. PubMed DOI PMC

Damiani T.; Bonciarelli S.; Thallinger G. G.; Koehler N.; Krettler C. A.; Salihoglu A. K.; Korf A.; Pauling J. K.; Pluskal T.; Ni Z.; Goracci L. Software and Computational Tools for LC-MS-Based Epilipidomics: Challenges and Solutions. Anal. Chem. 2023, 95, 287–303. 10.1021/acs.analchem.2c04406. PubMed DOI PMC

Molenaar M. R.; Jeucken A.; Wassenaar T. A.; van de Lest C. H. A.; Brouwers J. F.; Helms J. B. LION/web: a web-based ontology enrichment tool for lipidomic data analysis. Gigascience 2019, 8, giz061.10.1093/gigascience/giz061. PubMed DOI PMC

Clair G.; Reehl S.; Stratton K. G.; Monroe M. E.; Tfaily M. M.; Ansong C.; Kyle J. E. Lipid Mini-On: mining and ontology tool for enrichment analysis of lipidomic data. Bioinformatics 2019, 35, 4507–4508. 10.1093/bioinformatics/btz250. PubMed DOI PMC

Kopczynski D.; Hoffmann N.; Peng B.; Ahrends R. Goslin: A Grammar of Succinct Lipid Nomenclature. Anal. Chem. 2020, 92, 10957–10960. 10.1021/acs.analchem.0c01690. PubMed DOI PMC

Kopczynski D.; Hoffmann N.; Peng B.; Liebisch G.; Spener F.; Ahrends R. Goslin 2.0 Implements the Recent Lipid Shorthand Nomenclature for MS-Derived Lipid Structures. Anal. Chem. 2022, 94, 6097–6101. 10.1021/acs.analchem.1c05430. PubMed DOI PMC

Ni Z.; Fedorova M.. LipidLynxX: a data transfer hub to support integration of large scale lipidomics datasets. bioRxiv Preprint, 2020. 10.1101/2020.04.09.033894. DOI

Janovska P.; Melenovsky V.; Svobodova M.; Havlenova T.; Kratochvilova H.; Haluzik M.; Hoskova E.; Pelikanova T.; Kautzner J.; Monzo L.; Jurcova I.; Adamcova K.; Lenkova L.; Buresova J.; Rossmeisl M.; Kuda O.; Cajka T.; Kopecky J. Dysregulation of epicardial adipose tissue in cachexia due to heart failure: the role of natriuretic peptides and cardiolipin. J. Cachexia Sarcopenia Muscle 2020, 11, 1614–1627. 10.1002/jcsm.12631. PubMed DOI PMC

Lange M.; Angelidou G.; Ni Z.; Criscuolo A.; Schiller J.; Bluher M.; Fedorova M. AdipoAtlas: A reference lipidome for human white adipose tissue. Cell Rep. Med. 2021, 2, 100407.10.1016/j.xcrm.2021.100407. PubMed DOI PMC

Lauder S. N.; Allen-Redpath K.; Slatter D. A.; Aldrovandi M.; O’Connor A.; Farewell D.; Percy C. L.; Molhoek J. E.; Rannikko S.; Tyrrell V. J.; Ferla S.; Milne G. L.; Poole A. W.; Thomas C. P.; Obaji S.; Taylor P. R.; Jones S. A.; de Groot P. G.; Urbanus R. T.; Horkko S.; Uderhardt S.; Ackermann J.; Vince Jenkins P.; Brancale A.; Kronke G.; Collins P. W.; O’Donnell V. B. Networks of enzymatically oxidized membrane lipids support calcium-dependent coagulation factor binding to maintain hemostasis. Sci. Signal 2017, 10, eaan2787.10.1126/scisignal.aan2787. PubMed DOI PMC

Virtanen P.; Gommers R.; Oliphant T. E.; Haberland M.; Reddy T.; Cournapeau D.; Burovski E.; Peterson P.; Weckesser W.; Bright J.; van der Walt S. J.; Brett M.; Wilson J.; Millman K. J.; Mayorov N.; Nelson A. R. J.; Jones E.; Kern R.; Larson E.; Carey C. J.; et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. 10.1038/s41592-019-0686-2. PubMed DOI PMC

Chen S. Y.; Feng Z.; Yi X. A general introduction to adjustment for multiple comparisons. J. Thorac. Dis. 2017, 9, 1725–1729. 10.21037/jtd.2017.05.34. PubMed DOI PMC

Huang D. W.; Sherman B. T.; Lempicki R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37, 1–13. 10.1093/nar/gkn923. PubMed DOI PMC

Karp P. D.; Midford P. E.; Caspi R.; Khodursky A. Pathway size matters: the influence of pathway granularity on over-representation (enrichment analysis) statistics. BMC Genomics 2021, 22, 191.10.1186/s12864-021-07502-8. PubMed DOI PMC

Lex A.; Gehlenborg N.; Strobelt H.; Vuillemot R.; Pfister H. UpSet: Visualization of Intersecting Sets. IEEE Trans Vis Comput. Graph 2014, 20, 1983–1992. 10.1109/TVCG.2014.2346248. PubMed DOI PMC

Cock P. J.; Antao T.; Chang J. T.; Chapman B. A.; Cox C. J.; Dalke A.; Friedberg I.; Hamelryck T.; Kauff F.; Wilczynski B.; de Hoon M. J. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009, 25, 1422–1423. 10.1093/bioinformatics/btp163. PubMed DOI PMC

Han M. V.; Zmasek C. M. phyloXML: XML for evolutionary biology and comparative genomics. BMC Bioinformatics 2009, 10, 356.10.1186/1471-2105-10-356. PubMed DOI PMC

Lopes M.; Brejchova K.; Riecan M.; Novakova M.; Rossmeisl M.; Cajka T.; Kuda O. Metabolomics atlas of oral 13C-glucose tolerance test in mice. Cell Rep. 2021, 37, 109833.10.1016/j.celrep.2021.109833. PubMed DOI

Van Rossum G.; Drake F. L.. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, 2009.

Sievert C.Interactive Web-Based Data Visualization with R, plotly, and shiny; Chapman and Hall/CRC: FL, 2020.

Martens M.; Ammar A.; Riutta A.; Waagmeester A.; Slenter D. N.; Hanspers K.; Miller R. A.; Digles D.; Lopes E. N.; Ehrhart F.; Dupuis L. J.; Winckers L. A.; Coort S. L.; Willighagen E. L.; Evelo C. T.; Pico A. R.; Kutmon M. WikiPathways: connecting communities. Nucleic Acids Res. 2021, 49, D613–D621. 10.1093/nar/gkaa1024. PubMed DOI PMC

Gaud C.; Sousa B. C.; Nguyen A.; Fedorova M.; Ni Z.; O’Donnell V. B.; Wakelam M. J. O.; Andrews S.; Lopez-Clavijo A. F. BioPAN: a web-based tool to explore mammalian lipidome metabolic pathways on LIPID MAPS. F1000Res. 2021, 10, 4.10.12688/f1000research.28022.2. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...