Software and Computational Tools for LC-MS-Based Epilipidomics: Challenges and Solutions

. 2023 Jan 10 ; 95 (1) : 287-303.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36625108
Erratum v

PubMed

Zobrazit více v PubMed

Snaebjornsson M. T.; Janaki-Raman S.; Schulze A. Greasing the Wheels of the Cancer Machine: The Role of Lipid Metabolism in Cancer. Cell Metab 2020, 31 (1), 62–76. 10.1016/j.cmet.2019.11.010. PubMed DOI

Nagao K.; Yanagita T. Functional Lipids in Metabolic Syndrome. J. Nutr Sci. Vitaminol (Tokyo) 2015, 61 (Supplement), S159–S161. 10.3177/jnsv.61.S159. PubMed DOI

Jeong D.-W.; Lee S.; Chun Y.-S. How Cancer Cells Remodel Lipid Metabolism: Strategies Targeting Transcription Factors. Lipids Health Dis 2021, 20 (1), 163.10.1186/s12944-021-01593-8. PubMed DOI PMC

Yost H.; Patel R.; Kipp A.; Reed T. T.. Lipids in Neurodegenerative Diseases. In Bailey’s Industrial Oil and Fat Products; Shahidi F., Ed.; John Wiley & Sons, Ltd, 2020; pp 1–2910.1002/047167849X.BIO115. DOI

Freigang S. The Regulation of Inflammation by Oxidized Phospholipids. Eur. J. Immunol. 2016, 46 (8), 1818–1825. 10.1002/eji.201545676. PubMed DOI

Melo T.; Montero-Bullón J.-F.; Domingues P.; Domingues M. R. Discovery of Bioactive Nitrated Lipids and Nitro-Lipid-Protein Adducts Using Mass Spectrometry-Based Approaches. Redox Biol. 2019, 23, 101106.10.1016/j.redox.2019.101106. PubMed DOI PMC

Spickett C. M. Chlorinated Lipids and Fatty Acids: An Emerging Role in Pathology. Pharmacol Ther 2007, 115 (3), 400–409. 10.1016/j.pharmthera.2007.06.002. PubMed DOI

Dennis E. A.; Norris P. C. Eicosanoid Storm in Infection and Inflammation. Nat. Rev. Immunol 2015, 15 (8), 511–523. 10.1038/nri3859. PubMed DOI PMC

O’Donnell V. B.; Aldrovandi M.; Murphy R. C.; Krönke G. Enzymatically Oxidized Phospholipids Assume Center Stage as Essential Regulators of Innate Immunity and Cell Death. Sci. Signal 2019, 12 (574), eaau2293.10.1126/scisignal.aau2293. PubMed DOI

Buchan G. J.; Bonacci G.; Fazzari M.; Salvatore S. R.; Gelhaus Wendell S. Nitro-Fatty Acid Formation and Metabolism. Nitric Oxide 2018, 79, 38–44. 10.1016/j.niox.2018.07.003. PubMed DOI PMC

Schopfer F. J.; Khoo N. K. H. Nitro-Fatty Acid Logistics: Formation, Biodistribution, Signaling, and Pharmacology. Trends Endocrinol Metab 2019, 30 (8), 505–519. 10.1016/j.tem.2019.04.009. PubMed DOI PMC

Narzt M. S.; Pils V.; Kremslehner C.; Nagelreiter I. M.; Schosserer M.; Bessonova E.; Bayer A.; Reifschneider R.; Terlecki-Zaniewicz L.; Waidhofer-Söllner P.; Mildner M.; Tschachler E.; Cavinato M.; Wedel S.; Jansen-Dürr P.; Nanic L.; Rubelj I.; El-Ghalbzouri A.; Zoratto S.; Marchetti-Deschmann M.; Grillari J.; Gruber F.; Lämmermann I. Epilipidomics of Senescent Dermal Fibroblasts Identify Lysophosphatidylcholines as Pleiotropic Senescence-Associated Secretory Phenotype (SASP) Factors. J. Invest Dermatol 2021, 141 (4S), 993–1006.e15. 10.1016/j.jid.2020.11.020. PubMed DOI

Sochorová M.; Vávrová K.; Fedorova M.; Ni Z.; Slenter D.; Kutmon M.; Willighagen E. L.; Letsiou S.; Töröcsik D.; Marchetti-Deschmann M.; Zoratto S.; Kremslehner C.; Gruber F. Research Techniques Made Simple: Lipidomic Analysis in Skin Research. J. Invest Dermatol 2022, 142 (1), 4–11.e1. 10.1016/j.jid.2021.09.017. PubMed DOI

Gruber F.; Marchetti-Deschmann M.; Kremslehner C.; Schosserer M. The Skin Epilipidome in Stress, Aging, and Inflammation. Front Endocrinol (Lausanne) 2021, 11, 607076.10.3389/fendo.2020.607076. PubMed DOI PMC

Neves B.; Pérez-Sala D.; Ferreira H. B.; Guerra I. M. S.; Moreira A. S. P.; Domingues P.; Domingues M. R.; Melo T. Understanding the Nitrolipidome: From Chemistry to Mass Spectrometry and Biological Significance of Modified Complex Lipids. Prog. Lipid Res. 2022, 87, 101176.10.1016/j.plipres.2022.101176. PubMed DOI

Ni Z.; Goracci L.; Cruciani G.; Fedorova M. Computational Solutions in Redox Lipidomics - Current Strategies and Future Perspectives. Free Radic Biol. Med. 2019, 144, 110–123. 10.1016/j.freeradbiomed.2019.04.027. PubMed DOI

Wang M.; Wang C.; Han R. H.; Han X. Novel Advances in Shotgun Lipidomics for Biology and Medicine. Prog. Lipid Res. 2016, 61, 83–108. 10.1016/j.plipres.2015.12.002. PubMed DOI PMC

Li J.; Vosegaard T.; Guo Z. Applications of Nuclear Magnetic Resonance in Lipid Analyses: An Emerging Powerful Tool for Lipidomics Studies. Prog. Lipid Res. 2017, 68, 37–56. 10.1016/j.plipres.2017.09.003. PubMed DOI

Jurowski K.; Kochan K.; Walczak J.; Barańska M.; Piekoszewski W.; Buszewski B. Analytical Techniques in Lipidomics: State of the Art. Crit Rev. Anal Chem. 2017, 47 (5), 418–437. 10.1080/10408347.2017.1310613. PubMed DOI

Li C.; Chu S.; Tan S.; Yin X.; Jiang Y.; Dai X.; Gong X.; Fang X.; Tian D. Towards Higher Sensitivity of Mass Spectrometry: A Perspective From the Mass Analyzers. Front Chem. 2021, 9, 813359.10.3389/fchem.2021.813359. PubMed DOI PMC

Helmer P. O.; Wienken C. M.; Korf A.; Hayen H. Mass Spectrometric Investigation of Cardiolipins and Their Oxidation Products after Two-Dimensional Heart-Cut Liquid Chromatography. J. Chromatogr A 2020, 1619, 460918.10.1016/j.chroma.2020.460918. PubMed DOI

Paglia G.; Smith A. J.; Astarita G. Ion Mobility Mass Spectrometry in the Omics Era: Challenges and Opportunities for Metabolomics and Lipidomics. Mass Spectrom Rev. 2022, 41 (5), 722–765. 10.1002/mas.21686. PubMed DOI

Dyall S. C.; Balas L.; Bazan N. G.; Brenna J. T.; Chiang N.; da Costa Souza F.; Dalli J.; Durand T.; Galano J.-M.; Lein P. J.; Serhan C. N.; Taha A. Y. Polyunsaturated Fatty Acids and Fatty Acid-Derived Lipid Mediators: Recent Advances in the Understanding of Their Biosynthesis, Structures, and Functions. Prog. Lipid Res. 2022, 86, 101165.10.1016/j.plipres.2022.101165. PubMed DOI PMC

Galano J. M.; Lee Y. Y.; Oger C.; Vigor C.; Vercauteren J.; Durand T.; Giera M.; Lee J. C. Y. Isoprostanes, Neuroprostanes and Phytoprostanes: An Overview of 25 Years of Research in Chemistry and Biology. Prog. Lipid Res. 2017, 68, 83–108. 10.1016/j.plipres.2017.09.004. PubMed DOI

Tyurina Y. Y.; Tyurin V. A.; Anthonymuthu T.; Amoscato A. A.; Sparvero L. J.; Nesterova A. M.; Baynard M. L.; Sun W.; He R. R.; Khaitovich P.; Vladimirov Y. A.; Gabrilovich D. I.; Bayır H.; Kagan V. E. Redox Lipidomics Technology: Looking for a Needle in a Haystack.. Chem. Phys. Lipids 2019, 221, 93–107. 10.1016/j.chemphyslip.2019.03.012. PubMed DOI PMC

Spickett C. M. Formation of Oxidatively Modified Lipids as the Basis for a Cellular Epilipidome. Front Endocrinol (Lausanne) 2020, 11, 602771.10.3389/fendo.2020.602771. PubMed DOI PMC

Simões C.; Silva A. C.; Domingues P.; Laranjeira P.; Paiva A.; Domingues M. R. M. Phosphatidylethanolamines Glycation, Oxidation, and Glycoxidation: Effects on Monocyte and Dendritic Cell Stimulation. Cell Biochem Biophys 2013, 66 (3), 477–487. 10.1007/s12013-012-9495-2. PubMed DOI

Melo T.; Silva E. M. P.; Simões C.; Domingues P.; Domingues M. R. M. Photooxidation of Glycated and Non-Glycated Phosphatidylethanolamines Monitored by Mass Spectrometry. J. Mass Spectrom 2013, 48 (1), 68–78. 10.1002/jms.3129. PubMed DOI

Maciel E.; Neves B. M.; Santinha D.; Reis A.; Domingues P.; Teresa Cruz M.; Pitt A. R.; Spickett C. M.; Domingues M. R. M. Detection of Phosphatidylserine with a Modified Polar Head Group in Human Keratinocytes Exposed to the Radical Generator AAPH. Arch. Biochem. Biophys. 2014, 548, 38–45. 10.1016/j.abb.2014.02.002. PubMed DOI

Hammond V. J.; O’Donnell V. B. Esterified Eicosanoids: Generation, Characterization and Function. Biochim. Biophys. Acta 2012, 1818 (10), 2403–2412. 10.1016/j.bbamem.2011.12.013. PubMed DOI PMC

Aoyagi R.; Ikeda K.; Isobe Y.; Arita M. Comprehensive Analyses of Oxidized Phospholipids Using a Measured MS/MS Spectra Library. J. Lipid Res. 2017, 58 (11), 2229–2237. 10.1194/jlr.D077123. PubMed DOI PMC

Sud M.; Fahy E.; Cotter D.; Brown A.; Dennis E. A.; Glass C. K.; Merrill A. H.; Murphy R. C.; Raetz C. R. H.; Russell D. W.; Subramaniam S. LMSD: LIPID MAPS Structure Database. Nucleic Acids Res. 2007, 35 (Database), D527–D532. 10.1093/nar/gkl838. PubMed DOI PMC

Heiles S. Advanced Tandem Mass Spectrometry in Metabolomics and Lipidomics-Methods and Applications. Anal Bioanal Chem. 2021, 413 (24), 5927–5948. 10.1007/s00216-021-03425-1. PubMed DOI PMC

Hartler J.; Triebl A.; Ziegl A.; Trötzmüller M.; Rechberger G. N.; Zeleznik O. A.; Zierler K. A.; Torta F.; Cazenave-Gassiot A.; Wenk M. R.; Fauland A.; Wheelock C. E.; Armando A. M.; Quehenberger O.; Zhang Q.; Wakelam M. J. O.; Haemmerle G.; Spener F.; Köfeler H. C.; Thallinger G. G. Deciphering Lipid Structures Based on Platform-Independent Decision Rules. Nat. Methods 2017, 14 (12), 1171–1174. 10.1038/nmeth.4470. PubMed DOI PMC

Kind T.; Tsugawa H.; Cajka T.; Ma Y.; Lai Z.; Mehta S. S.; Wohlgemuth G.; Barupal D. K.; Showalter M. R.; Arita M.; Fiehn O. Identification of Small Molecules Using Accurate Mass MS/MS Search. Mass Spectrom Rev. 2018, 37 (4), 513–532. 10.1002/mas.21535. PubMed DOI PMC

Oliw E. H.; Stark K.; Bylund J. Oxidation of Prostaglandin H2 and Prostaglandin H2 Analogues by Human Cytochromes P450: Analysis of ω-Side Chain Hydroxy Metabolites and Four Steroisomers of 5-Hydroxyprostaglandin I1 by Mass Spectrometry. Biochem. Pharmacol. 2001, 62 (4), 407–415. 10.1016/S0006-2952(01)00683-9. PubMed DOI

Liebisch G.; Vizcaíno J. A.; Köfeler H.; Trötzmüller M.; Griffiths W. J.; Schmitz G.; Spener F.; Wakelam M. J. O. Shorthand Notation for Lipid Structures Derived from Mass Spectrometry. J. Lipid Res. 2013, 54 (6), 1523–1530. 10.1194/jlr.M033506. PubMed DOI PMC

Liebisch G.; Fahy E.; Aoki J.; Dennis E. A.; Durand T.; Ejsing C. S.; Fedorova M.; Feussner I.; Griffiths W. J.; Köfeler H.; Merrill A. H.; Murphy R. C.; O’Donnell V. B.; Oskolkova O.; Subramaniam S.; Wakelam M. J. O.; Spener F. Update on LIPID MAPS Classification, Nomenclature, and Shorthand Notation for MS-Derived Lipid Structures. J. Lipid Res. 2020, 61 (12), 1539–1555. 10.1194/jlr.S120001025. PubMed DOI PMC

O’Donnell V. B.; FitzGerald G. A.; Murphy R. C.; Liebisch G.; Dennis E. A.; Quehenberger O.; Subramaniam S.; Wakelam M. J. O. Steps Toward Minimal Reporting Standards for Lipidomics Mass Spectrometry in Biomedical Research Publications. Circ Genom Precis Med. 2020, 13 (6), e003019.10.1161/CIRCGEN.120.003019. PubMed DOI PMC

Ni Z.; Fedorova M. LipidLynxX: A Data Transfer Hub to Support Integration of Large Scale Lipidomics Datasets. bioRxiv 2020, 2020.04.09.033894.10.1101/2020.04.09.033894. DOI

Fahy E.; Subramaniam S.; Brown H. A.; Glass C. K.; Merrill A. H.; Murphy R. C.; Raetz C. R. H.; Russell D. W.; Seyama Y.; Shaw W.; Shimizu T.; Spener F.; van Meer G.; VanNieuwenhze M. S.; White S. H.; Witztum J. L.; Dennis E. A. A Comprehensive Classification System for Lipids. J. Lipid Res. 2005, 46 (5), 839–861. 10.1194/jlr.E400004-JLR200. PubMed DOI

Fahy E.; Subramaniam S.; Murphy R. C.; Nishijima M.; Raetz C. R. H.; Shimizu T.; Spener F.; van Meer G.; Wakelam M. J. O.; Dennis E. A. Update of the LIPID MAPS Comprehensive Classification System for Lipids. J. Lipid Res. 2009, 50 (Suppl), S9–S14. 10.1194/jlr.R800095-JLR200. PubMed DOI PMC

Liebisch G.; Ahrends R.; Arita M.; Arita M.; Bowden J. A.; Ejsing C. S.; Griffiths W. J.; Holčapek M.; Köfeler H.; Mitchell T. W.; Wenk M. R.; Ekroos K. Lipidomics Needs More Standardization. Nat. Metab 2019, 1 (8), 745–747. 10.1038/s42255-019-0094-z. PubMed DOI

Ni Z.; Angelidou G.; Hoffmann R.; Fedorova M. LPPtiger Software for Lipidome-Specific Prediction and Identification of Oxidized Phospholipids from LC-MS Datasets. Sci. Rep 2017, 7 (1), 15138.10.1038/s41598-017-15363-z. PubMed DOI PMC

Qiao L.; Ge A.; Liang Y.; Ye S. Oxidative Degradation of the Monolayer of 1-Palmitoyl-2-Oleoyl-Sn-Glycero-3-Phosphocholine (POPC) in Low-Level Ozone. J. Phys. Chem. B 2015, 119 (44), 14188–14199. 10.1021/acs.jpcb.5b08985. PubMed DOI

Milic I.; Fedorova M. Derivatization and Detection of Small Aliphatic and Lipid-Bound Carbonylated Lipid Peroxidation Products by ESI-MS. Methods Mol. Biol. 2015, 1208, 3–20. 10.1007/978-1-4939-1441-8_1. PubMed DOI

Afonso C. B.; Spickett C. M. Lipoproteins as Targets and Markers of Lipoxidation. Redox Biol. 2019, 23, 101066.10.1016/j.redox.2018.101066. PubMed DOI PMC

Fruhwirth G. O.; Loidl A.; Hermetter A. Oxidized Phospholipids: From Molecular Properties to Disease. Biochim. Biophys. Acta 2007, 1772 (7), 718–736. 10.1016/j.bbadis.2007.04.009. PubMed DOI

Code C.; Mahalka A. K.; Bry K.; Kinnunen P. K. J. Activation of Phospholipase A2 by 1-Palmitoyl-2-(9’-Oxo-Nonanoyl)-Sn-Glycero-3-Phosphocholine in Vitro. Biochim. Biophys. Acta 2010, 1798 (8), 1593–1600. 10.1016/j.bbamem.2010.05.002. PubMed DOI

Kopczynski D.; Hoffmann N.; Peng B.; Ahrends R. Goslin: A Grammar of Succinct Lipid Nomenclature. Anal. Chem. 2020, 92 (16), 10957–10960. 10.1021/acs.analchem.0c01690. PubMed DOI PMC

Boyce J. A. The Role of 15 Lipoxygenase 1 in Asthma Comes into Focus. J. Clin Invest 2022, 132 (1), e155884.10.1172/JCI155884. PubMed DOI PMC

Luo Y.; Jin M.; Lou L.; Yang S.; Li C.; Li X.; Zhou M.; Cai C. Role of Arachidonic Acid Lipoxygenase Pathway in Asthma. Prostaglandins Other Lipid Mediat 2022, 158, 106609.10.1016/j.prostaglandins.2021.106609. PubMed DOI

Jiang W.; Jin Y.; Zhang S.; Ding Y.; Huo K.; Yang J.; Zhao L.; Nian B.; Zhong T. P.; Lu W.; Zhang H.; Cao X.; Shah K. M.; Wang N.; Liu M.; Luo J. PGE2 Activates EP4 in Subchondral Bone Osteoclasts to Regulate Osteoarthritis. Bone Res. 2022, 10 (1), 27.10.1038/s41413-022-00201-4. PubMed DOI PMC

Melo T.; Domingues P.; Ferreira R.; Milic I.; Fedorova M.; Santos S. M.; Segundo M. A.; Domingues M. R. M. Recent Advances on Mass Spectrometry Analysis of Nitrated Phospholipids. Anal. Chem. 2016, 88 (5), 2622–2629. 10.1021/acs.analchem.5b03407. PubMed DOI

Villaseñor A.; Godzien J.; Barker-Tejeda T. C.; Gonzalez-Riano C.; López-López Á.; Dudzik D.; Gradillas A.; Barbas C. Analytical Approaches for Studying Oxygenated Lipids in the Search of Potential Biomarkers by LC-MS. Trends Analyt Chem. 2021, 143, 116367.10.1016/j.trac.2021.116367. DOI

Chang H. Y.; Colby S. M.; Du X.; Gomez J. D.; Helf M. J.; Kechris K.; Kirkpatrick C. R.; Li S.; Patti G. J.; Renslow R. S.; Subramaniam S.; Verma M.; Xia J.; Young J. D. A Practical Guide to Metabolomics Software Development. Anal. Chem. 2021, 93 (4), 1912–1923. 10.1021/acs.analchem.0c03581. PubMed DOI PMC

Tautenhahn R.; Böttcher C.; Neumann S. Highly Sensitive Feature Detection for High Resolution LC/MS. BMC Bioinformatics 2008, 9, 504.10.1186/1471-2105-9-504. PubMed DOI PMC

Züllig T.; Trötzmüller M.; Köfeler H. C. Lipidomics from Sample Preparation to Data Analysis: A Primer. Anal Bioanal Chem. 2020, 412 (10), 2191–2209. 10.1007/s00216-019-02241-y. PubMed DOI PMC

Du X.; Smirnov A.; Pluskal T.; Jia W.; Sumner S.. Metabolomics Data Preprocessing Using ADAP and MZmine 2. In Methods Mol. Biol.; Li S., Ed.; Humana Press Inc.: New York, NY, USA, 2020; Vol. 2104, pp 25–48. PubMed PMC

Goracci L.; Tortorella S.; Tiberi P.; Pellegrino R. M.; di Veroli A.; Valeri A.; Cruciani G. Lipostar, a Comprehensive Platform-Neutral Cheminformatics Tool for Lipidomics. Anal. Chem. 2017, 89 (11), 6257–6264. 10.1021/acs.analchem.7b01259. PubMed DOI

Windig W.; Phalp J. M.; Payne A. W. A Noise and Background Reduction Method for Component Detection in Liquid Chromatography/Mass Spectrometry. Anal. Chem. 1996, 68 (20), 3602–3606. 10.1021/ac960435y. DOI

Tsugawa H.; Cajka T.; Kind T.; Ma Y.; Higgins B.; Ikeda K.; Kanazawa M.; Vandergheynst J.; Fiehn O.; Arita M. MS-DIAL: Data-Independent MS/MS Deconvolution for Comprehensive Metabolome Analysis. Nat. Methods 2015, 12 (6), 523–526. 10.1038/nmeth.3393. PubMed DOI PMC

Pluskal T.; Castillo S.; Villar-Briones A.; Orešič M. MZmine 2: Modular Framework for Processing, Visualizing, and Analyzing Mass Spectrometry-Based Molecular Profile Data. BMC Bioinformatics 2010, 11 (1), 395.10.1186/1471-2105-11-395. PubMed DOI PMC

Hartler J.; Trötzmüller M.; Chitraju C.; Spener F.; Köfeler H. C.; Thallinger G. G. Lipid Data Analyzer: Unattended Identification and Quantitation of Lipids in LC-MS Data. Bioinformatics 2011, 27 (4), 572–577. 10.1093/bioinformatics/btq699. PubMed DOI

Myers O. D.; Sumner S. J.; Li S.; Barnes S.; Du X. Detailed Investigation and Comparison of the XCMS and MZmine 2 Chromatogram Construction and Chromatographic Peak Detection Methods for Preprocessing Mass Spectrometry Metabolomics Data. Anal. Chem. 2017, 89 (17), 8689–8695. 10.1021/acs.analchem.7b01069. PubMed DOI

el Abiead Y.; Milford M.; Schoeny H.; Rusz M.; Salek R. M.; Koellensperger G. Power of MzRAPP-Based Performance Assessments in MS1-Based Nontargeted Feature Detection. Anal. Chem. 2022, 94 (24), 8588–8595. 10.1021/acs.analchem.1c05270. PubMed DOI PMC

de Vijlder T.; Valkenborg D.; Lemière F.; Romijn E. P.; Laukens K.; Cuyckens F. A Tutorial in Small Molecule Identification via Electrospray Ionization-Mass Spectrometry: The Practical Art of Structural Elucidation. Mass Spectrom Rev. 2018, 37 (5), 607–629. 10.1002/mas.21551. PubMed DOI PMC

Kind T.; Fiehn O. Metabolomic Database Annotations via Query of Elemental Compositions: Mass Accuracy Is Insufficient Even at Less than 1 Ppm. BMC Bioinformatics 2006, 7, 234.10.1186/1471-2105-7-234. PubMed DOI PMC

Köfeler H. C.; Eichmann T. O.; Ahrends R.; Bowden J. A.; Danne-Rasche N.; Dennis E. A.; Fedorova M.; Griffiths W. J.; Han X.; Hartler J.; Holčapek M.; Jirásko R.; Koelmel J. P.; Ejsing C. S.; Liebisch G.; Ni Z.; O’Donnell V. B.; Quehenberger O.; Schwudke D.; Shevchenko A.; Wakelam M. J. O.; Wenk M. R.; Wolrab D.; Ekroos K. Quality Control Requirements for the Correct Annotation of Lipidomics Data. Nat. Commun. 2021, 12 (1), 4771.10.1038/s41467-021-24984-y. PubMed DOI PMC

Kind T.; Liu K. H.; Lee D. Y.; Defelice B.; Meissen J. K.; Fiehn O. LipidBlast in Silico Tandem Mass Spectrometry Database for Lipid Identification. Nat. Methods 2013, 10 (8), 755–758. 10.1038/nmeth.2551. PubMed DOI PMC

Hutchins P. D.; Russell J. D.; Coon J. J. Mapping Lipid Fragmentation for Tailored Mass Spectral Libraries. J. Am. Soc. Mass Spectrom. 2019, 30 (4), 659–668. 10.1007/s13361-018-02125-y. PubMed DOI PMC

Chen X.; Yin Y.; Zhou Z.; Li T.; Zhu Z. J. Development of a Combined Strategy for Accurate Lipid Structural Identification and Quantification in Ion-Mobility Mass Spectrometry Based Untargeted Lipidomics. Anal. Chim. Acta 2020, 1136, 115–124. 10.1016/j.aca.2020.08.048. PubMed DOI

Korf A.; Jeck V.; Schmid R.; Helmer P. O.; Hayen H. Lipid Species Annotation at Double Bond Position Level with Custom Databases by Extension of the MZmine 2 Open-Source Software Package. Anal. Chem. 2019, 91 (8), 5098–5105. 10.1021/acs.analchem.8b05493. PubMed DOI

Cajka T.; Fiehn O. Toward Merging Untargeted and Targeted Methods in Mass Spectrometry-Based Metabolomics and Lipidomics. Anal. Chem. 2016, 88 (1), 524–545. 10.1021/acs.analchem.5b04491. PubMed DOI

Balazy M. Eicosanomics: Targeted Lipidomics of Eicosanoids in Biological Systems. Prostaglandins Other Lipid Mediat 2004, 73 (3–4), 173–180. 10.1016/j.prostaglandins.2004.03.003. PubMed DOI

Köfeler H. C.; Ahrends R.; Baker E. S.; Ekroos K.; Han X.; Hoffmann N.; Holčapek M.; Wenk M. R.; Liebisch G. Recommendations for Good Practice in MS-Based Lipidomics. J. Lipid Res. 2021, 62, 100138.10.1016/j.jlr.2021.100138. PubMed DOI PMC

Xu H.; Valenzuela N.; Fai S.; Figeys D.; Bennett S. A. L. Targeted Lipidomics - Advances in Profiling Lysophosphocholine and Platelet-Activating Factor Second Messengers. FEBS J. 2013, 280 (22), 5652–5667. 10.1111/febs.12423. PubMed DOI

Criscuolo A.; Nepachalovich P.; Fernando D.; Rio G.-D.; Lange M.; Ni Z.; Blüher M.; Fedorova M. Epilipidomics Platform for Holistic Profiling of Oxidized Complex Lipids in Blood Plasma of Obese Individuals. bioRxiv 2021, 2021.12.23.473968.10.1101/2021.12.23.473968. DOI

Lerno L. A.; German J. B.; Lebrilla C. B. Method for the Identification of Lipid Classes Based on Referenced Kendrick Mass Analysis. Anal. Chem. 2010, 82 (10), 4236–4245. 10.1021/ac100556g. PubMed DOI PMC

Sleno L. The Use of Mass Defect in Modern Mass Spectrometry. J. Mass Spectrom 2012, 47 (2), 226–236. 10.1002/jms.2953. PubMed DOI

Fouquet T. N. J. The Kendrick Analysis for Polymer Mass Spectrometry. J. Mass Spectrom 2019, 54 (12), 933–947. 10.1002/jms.4480. PubMed DOI

Korf A.; Vosse C.; Schmid R.; Helmer P. O.; Jeck V.; Hayen H. Three-Dimensional Kendrick Mass Plots as a Tool for Graphical Lipid Identification. Rapid Commun. Mass Spectrom. 2018, 32 (12), 981–991. 10.1002/rcm.8117. PubMed DOI

Helmer P. O.; Korf A.; Hayen H. Analysis of Artificially Oxidized Cardiolipins and Monolyso-Cardiolipins via Liquid Chromatography/High-Resolution Mass Spectrometry and Kendrick Mass Defect Plots after Hydrophilic Interaction Liquid Chromatography Based Sample Preparation. Rapid Commun. Mass Spectrom. 2020, 34 (1), e8566.10.1002/rcm.8566. PubMed DOI

Müller W. H.; Verdin A.; Kune C.; Far J.; de Pauw E.; Malherbe C.; Eppe G. Dual-Polarity SALDI FT-ICR MS Imaging and Kendrick Mass Defect Data Filtering for Lipid Analysis. Anal Bioanal Chem. 2021, 413 (10), 2821–2830. 10.1007/s00216-020-03020-w. PubMed DOI

Korf A.; Fouquet T.; Schmid R.; Hayen H.; Hagenhoff S. Expanding the Kendrick Mass Plot Toolbox in MZmine 2 to Enable Rapid Polymer Characterization in Liquid Chromatography-Mass Spectrometry Data Sets. Anal. Chem. 2020, 92 (1), 628–633. 10.1021/acs.analchem.9b03863. PubMed DOI

Krzywinski M.; Schein J.; Birol I.; Connors J.; Gascoyne R.; Horsman D.; Jones S. J.; Marra M. A. Circos: An Information Aesthetic for Comparative Genomics. Genome Res. 2009, 19 (9), 1639–1645. 10.1101/gr.092759.109. PubMed DOI PMC

Jha P.; McDevitt M. T.; Gupta R.; Quiros P. M.; Williams E. G.; Gariani K.; Sleiman M. B.; Diserens L.; Jochem A.; Ulbrich A.; Coon J. J.; Auwerx J.; Pagliarini D. J. Systems Analyses Reveal Physiological Roles and Genetic Regulators of Liver Lipid Species. Cell Syst 2018, 6 (6), 722–733.e6. 10.1016/j.cels.2018.05.016. PubMed DOI PMC

Zhang H.; Meltzer P.; Davis S. RCircos: An R Package for Circos 2D Track Plots. BMC Bioinformatics 2013, 14 (1), 244.10.1186/1471-2105-14-244. PubMed DOI PMC

Cui Y.; Chen X.; Luo H.; Fan Z.; Luo J.; He S.; Yue H.; Zhang P.; Chen R. BioCircos.Js: An Interactive Circos JavaScript Library for Biological Data Visualization on Web Applications. Bioinformatics 2016, 32 (11), 1740–1742. 10.1093/bioinformatics/btw041. PubMed DOI

Collins J. R.; Edwards B. R.; Fredricks H. F.; van Mooy B. A. S. LOBSTAHS: An Adduct-Based Lipidomics Strategy for Discovery and Identification of Oxidative Stress Biomarkers. Anal. Chem. 2016, 88 (14), 7154–7162. 10.1021/acs.analchem.6b01260. PubMed DOI

Koelmel J. P.; Kroeger N. M.; Ulmer C. Z.; Bowden J. A.; Patterson R. E.; Cochran J. A.; Beecher C. W. W.; Garrett T. J.; Yost R. A. LipidMatch: An Automated Workflow for Rule-Based Lipid Identification Using Untargeted High-Resolution Tandem Mass Spectrometry Data. BMC Bioinformatics 2017, 18 (1), 331.10.1186/s12859-017-1744-3. PubMed DOI PMC

Mohamed A.; Molendijk J.; Hill M. M. Lipidr: A Software Tool for Data Mining and Analysis of Lipidomics Datasets. J. Proteome Res. 2020, 19 (7), 2890–2897. 10.1021/acs.jproteome.0c00082. PubMed DOI

O’Connor A.; Brasher C. J.; Slatter D. A.; Meckelmann S. W.; Hawksworth J. I.; Allen S. M.; O’Donnell V. B. LipidFinder: A Computational Workflow for Discovery of Lipids Identifies Eicosanoid-Phosphoinositides in Platelets. JCI Insight 2017, 2 (7), e91634.10.1172/jci.insight.91634. PubMed DOI PMC

Ross D. H.; Cho J. H.; Zhang R.; Hines K. M.; Xu L. LiPydomics: A Python Package for Comprehensive Prediction of Lipid Collision Cross Sections and Retention Times and Analysis of Ion Mobility-Mass Spectrometry-Based Lipidomics Data. Anal. Chem. 2020, 92 (22), 14967–14975. 10.1021/acs.analchem.0c02560. PubMed DOI PMC

Türei D.lipyd: a Python module for lipidomics LC MS/MS data analysis. https://saezlab.github.io/lipyd/ (accessed 2022-10-09).

Krettler C. A.; Hartler J.; Thallinger G. G. Identification and Quantification of Oxidized Lipids in LC-MS Lipidomics Data. Stud Health Technol. Inform 2020, 271, 39–48. 10.3233/SHTI200072. PubMed DOI

Koelmel J. P.LipidMatch Flow - Innovative Omics. https://innovativeomics.com/software/lipidmatch-flow-covers-entire-lipidomics-workflow/ (accessed 2022-10-09).

Tsugawa H.; Ikeda K.; Takahashi M.; Satoh A.; Mori Y.; Uchino H.; Okahashi N.; Yamada Y.; Tada I.; Bonini P.; Higashi Y.; Okazaki Y.; Zhou Z.; Zhu Z. J.; Koelmel J.; Cajka T.; Fiehn O.; Saito K.; Arita M.; Arita M. A Lipidome Atlas in MS-DIAL 4. Nat. Biotechnol. 2020, 38 (10), 1159–1163. 10.1038/s41587-020-0531-2. PubMed DOI

Pluskal T.; Korf A.; Smirnov A.; Schmid R.; Fallon T. R.; Du X.; Weng J. K.. CHAPTER 7: Metabolomics Data Analysis Using MZmine. In New Developments in Mass Spectrometry; Royal Society of Chemistry, 2020; pp 232–25410.1039/9781788019880-00232. DOI

Wei R.; Wang J.; Su M.; Jia E.; Chen S.; Chen T.; Ni Y. Missing Value Imputation Approach for Mass Spectrometry-Based Metabolomics Data. Sci. Rep 2018, 8 (1), 663.10.1038/s41598-017-19120-0. PubMed DOI PMC

Guijas C.; Montenegro-Burke J. R.; Domingo-Almenara X.; Palermo A.; Warth B.; Hermann G.; Koellensperger G.; Huan T.; Uritboonthai W.; Aisporna A. E.; Wolan D. W.; Spilker M. E.; Benton H. P.; Siuzdak G. METLIN: A Technology Platform for Identifying Knowns and Unknowns. Anal. Chem. 2018, 90 (5), 3156–3164. 10.1021/acs.analchem.7b04424. PubMed DOI PMC

Horai H.; Arita M.; Kanaya S.; Nihei Y.; Ikeda T.; Suwa K.; Ojima Y.; Tanaka K.; Tanaka S.; Aoshima K.; Oda Y.; Kakazu Y.; Kusano M.; Tohge T.; Matsuda F.; Sawada Y.; Hirai M. Y.; Nakanishi H.; Ikeda K.; Akimoto N.; Maoka T.; Takahashi H.; Ara T.; Sakurai N.; Suzuki H.; Shibata D.; Neumann S.; Iida T.; Tanaka K.; Funatsu K.; Matsuura F.; Soga T.; Taguchi R.; Saito K.; Nishioka T. MassBank: A Public Repository for Sharing Mass Spectral Data for Life Sciences. J. Mass Spectrom 2010, 45 (7), 703–714. 10.1002/jms.1777. PubMed DOI

MassBank of North America. https://mona.fiehnlab.ucdavis.edu/ (accessed 2022-10-09).

Degtyarenko K.; de Matos P.; Ennis M.; Hastings J.; Zbinden M.; McNaught A.; Alcantara R.; Darsow M.; Guedj M.; Ashburner M. ChEBI: A Database and Ontology for Chemical Entities of Biological Interest. Nucleic Acids Res. 2007, 36, D344–D350. 10.1093/nar/gkm791. PubMed DOI PMC

Kim S.; Chen J.; Cheng T.; Gindulyte A.; He J.; He S.; Li Q.; Shoemaker B. A.; Thiessen P. A.; Yu B.; Zaslavsky L.; Zhang J.; Bolton E. E. PubChem in 2021: New Data Content and Improved Web Interfaces. Nucleic Acids Res. 2021, 49 (D1), D1388–D1395. 10.1093/nar/gkaa971. PubMed DOI PMC

Fahy E.; Sud M.; Cotter D.; Subramaniam S. LIPID MAPS Online Tools for Lipid Research. Nucleic Acids Res. 2007, 35, W606–W612. 10.1093/nar/gkm324. PubMed DOI PMC

Aimo L.; Liechti R.; Hyka-Nouspikel N.; Niknejad A.; Gleizes A.; Götz L.; Kuznetsov D.; David F. P. A.; van der Goot F. G.; Riezman H.; Bougueleret L.; Xenarios I.; Bridge A. The SwissLipids Knowledgebase for Lipid Biology. Bioinformatics 2015, 31 (17), 2860–2866. 10.1093/bioinformatics/btv285. PubMed DOI PMC

O’Donnell V. B.; Dennis E. A.; Wakelam M. J. O.; Subramaniam S. LIPID MAPS: Serving the next Generation of Lipid Researchers with Tools, Resources, Data, and Training. Sci. Signal 2019, 12 (563), eaaw2964.10.1126/scisignal.aaw2964. PubMed DOI

Wishart D. S.; Guo A. C.; Oler E.; Wang F.; Anjum A.; Peters H.; Dizon R.; Sayeeda Z.; Tian S.; Lee B. L.; Berjanskii M.; Mah R.; Yamamoto M.; Jovel J.; Torres-Calzada C.; Hiebert-Giesbrecht M.; Lui V. W.; Varshavi D.; Varshavi D.; Allen D.; Arndt D.; Khetarpal N.; Sivakumaran A.; Harford K.; Sanford S.; Yee K.; Cao X.; Budinski Z.; Liigand J.; Zhang L.; Zheng J.; Mandal R.; Karu N.; Dambrova M.; Schiöth H. B.; Greiner R.; Gautam V. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50 (D1), D622–D631. 10.1093/nar/gkab1062. PubMed DOI PMC

Kuo T. C.; Tseng Y. J. LipidPedia: A Comprehensive Lipid Knowledgebase. Bioinformatics 2018, 34 (17), 2982–2987. 10.1093/bioinformatics/bty213. PubMed DOI PMC

Watanabe K.; Yasugi E.; Oshima M. How to Search the Glycolipid Data in “LIPID BANK for Web”, the Newly Developed Lipid Database in Japan. Trends Glycosci Glycotechnol 2000, 12 (65), 175–184. 10.4052/tigg.12.175. DOI

Gil-De-La-Fuente A.; Godzien J.; Saugar S.; Garcia-Carmona R.; Badran H.; Wishart D. S.; Barbas C.; Otero A. CEU Mass Mediator 3.0: A Metabolite Annotation Tool. J. Proteome Res. 2019, 18 (2), 797–802. 10.1021/acs.jproteome.8b00720. PubMed DOI

Lauder S. N.; Allen-Redpath K.; Slatter D. A.; Aldrovandi M.; O’Connor A.; Farewell D.; Percy C. L.; Molhoek J. E.; Rannikko S.; Tyrrell V. J.; Ferla S.; Milne G. L.; Poole A. W.; Thomas C. P.; Obaji S.; Taylor P. R.; Jones S. A.; de Groot P. G.; Urbanus R. T.; Hörkkö S.; Uderhardt S.; Ackermann J.; Vince Jenkins P.; Brancale A.; Krönke G.; Collins P. W.; O’Donnell V. B. Networks of Enzymatically Oxidized Membrane Lipids Support Calcium-Dependent Coagulation Factor Binding to Maintain Hemostasis. Sci. Signal 2017, 10 (507), eaan2787.10.1126/scisignal.aan2787. PubMed DOI PMC

Köhler N.; Rose T. D.; Falk L.; Pauling J. K. Investigating Global Lipidome Alterations with the Lipid Network Explorer. Metabolites 2021, 11 (8), 488.10.3390/metabo11080488. PubMed DOI PMC

Rose T. D.; Köhler N.; Falk L.; Klischat L.; Lazareva O. E.; Pauling J. K. Lipid Network and Moiety Analysis for Revealing Enzymatic Dysregulation and Mechanistic Alterations from Lipidomics Data. bioRxiv 2022, 2022.02.04.479101.10.1101/2022.02.04.479101. PubMed DOI PMC

Bansal P.; Morgat A.; Axelsen K. B.; Muthukrishnan V.; Coudert E.; Aimo L.; Hyka-Nouspikel N.; Gasteiger E.; Kerhornou A.; Neto T. B.; Pozzato M.; Blatter M. C.; Ignatchenko A.; Redaschi N.; Bridge A. Rhea, the Reaction Knowledgebase in 2022. Nucleic Acids Res. 2022, 50 (D1), D693–D700. 10.1093/nar/gkab1016. PubMed DOI PMC

Gillespie M.; Jassal B.; Stephan R.; Milacic M.; Rothfels K.; Senff-Ribeiro A.; Griss J.; Sevilla C.; Matthews L.; Gong C.; Deng C.; Varusai T.; Ragueneau E.; Haider Y.; May B.; Shamovsky V.; Weiser J.; Brunson T.; Sanati N.; Beckman L.; Shao X.; Fabregat A.; Sidiropoulos K.; Murillo J.; Viteri G.; Cook J.; Shorser S.; Bader G.; Demir E.; Sander C.; Haw R.; Wu G.; Stein L.; Hermjakob H.; D’Eustachio P. The Reactome Pathway Knowledgebase 2022. Nucleic Acids Res. 2022, 50 (D1), D687–D692. 10.1093/nar/gkab1028. PubMed DOI PMC

Aron A. T.; Gentry E. C.; McPhail K. L.; Nothias L. F.; Nothias-Esposito M.; Bouslimani A.; Petras D.; Gauglitz J. M.; Sikora N.; Vargas F.; van der Hooft J. J. J.; Ernst M.; Kang K. bin; Aceves C. M.; Caraballo-Rodríguez A. M.; Koester I.; Weldon K. C.; Bertrand S.; Roullier C.; Sun K.; Tehan R. M.; Boya P C. A.; Christian M. H.; Gutiérrez M.; Ulloa A. M.; Tejeda Mora J. A.; Mojica-Flores R.; Lakey-Beitia J.; Vásquez-Chaves V.; Zhang Y.; Calderón A. I.; Tayler N.; Keyzers R. A.; Tugizimana F.; Ndlovu N.; Aksenov A. A.; Jarmusch A. K.; Schmid R.; Truman A. W.; Bandeira N.; Wang M.; Dorrestein P. C. Reproducible Molecular Networking of Untargeted Mass Spectrometry Data Using GNPS. Nat. Protoc 2020, 15 (6), 1954–1991. 10.1038/s41596-020-0317-5. PubMed DOI

Nothias L. F.; Petras D.; Schmid R.; Dührkop K.; Rainer J.; Sarvepalli A.; Protsyuk I.; Ernst M.; Tsugawa H.; Fleischauer M.; Aicheler F.; Aksenov A. A.; Alka O.; Allard P. M.; Barsch A.; Cachet X.; Caraballo-Rodriguez A. M.; da Silva R. R.; Dang T.; Garg N.; Gauglitz J. M.; Gurevich A.; Isaac G.; Jarmusch A. K.; Kameník Z.; Kang K. bin; Kessler N.; Koester I.; Korf A.; le Gouellec A.; Ludwig M.; Martin H C.; McCall L. I.; McSayles J.; Meyer S. W.; Mohimani H.; Morsy M.; Moyne O.; Neumann S.; Neuweger H.; Nguyen N. H.; Nothias-Esposito M.; Paolini J.; Phelan V. v.; Pluskal T.; Quinn R. A.; Rogers S.; Shrestha B.; Tripathi A.; van der Hooft J. J. J.; Vargas F.; Weldon K. C.; Witting M.; Yang H.; Zhang Z.; Zubeil F.; Kohlbacher O.; Böcker S.; Alexandrov T.; Bandeira N.; Wang M.; Dorrestein P. C. Feature-Based Molecular Networking in the GNPS Analysis Environment. Nat. Methods 2020, 17 (9), 905–908. 10.1038/s41592-020-0933-6. PubMed DOI PMC

Wang M.; Carver J. J.; Phelan V. v.; Sanchez L. M.; Garg N.; Peng Y.; Nguyen D. D.; Watrous J.; Kapono C. A.; Luzzatto-Knaan T.; Porto C.; Bouslimani A.; Melnik A. v.; Meehan M. J.; Liu W. T.; Crüsemann M.; Boudreau P. D.; Esquenazi E.; Sandoval-Calderón M.; Kersten R. D.; Pace L. A.; Quinn R. A.; Duncan K. R.; Hsu C. C.; Floros D. J.; Gavilan R. G.; Kleigrewe K.; Northen T.; Dutton R. J.; Parrot D.; Carlson E. E.; Aigle B.; Michelsen C. F.; Jelsbak L.; Sohlenkamp C.; Pevzner P.; Edlund A.; McLean J.; Piel J.; Murphy B. T.; Gerwick L.; Liaw C. C.; Yang Y. L.; Humpf H. U.; Maansson M.; Keyzers R. A.; Sims A. C.; Johnson A. R.; Sidebottom A. M.; Sedio B. E.; Klitgaard A.; Larson C. B.; Boya C. A. P.; Torres-Mendoza D.; Gonzalez D. J.; Silva D. B.; Marques L. M.; Demarque D. P.; Pociute E.; O’Neill E. C.; Briand E.; Helfrich E. J. N.; Granatosky E. A.; Glukhov E.; Ryffel F.; Houson H.; Mohimani H.; Kharbush J. J.; Zeng Y.; Vorholt J. A.; Kurita K. L.; Charusanti P.; McPhail K. L.; Nielsen K. F.; Vuong L.; Elfeki M.; Traxler M. F.; Engene N.; Koyama N.; Vining O. B.; Baric R.; Silva R. R.; Mascuch S. J.; Tomasi S.; Jenkins S.; Macherla V.; Hoffman T.; Agarwal V.; Williams P. G.; Dai J.; Neupane R.; Gurr J.; Rodríguez A. M. C.; Lamsa A.; Zhang C.; Dorrestein K.; Duggan B. M.; Almaliti J.; Allard P. M.; Phapale P.; Nothias L. F.; Alexandrov T.; Litaudon M.; Wolfender J. L.; Kyle J. E.; Metz T. O.; Peryea T.; Nguyen D. T.; VanLeer D.; Shinn P.; Jadhav A.; Müller R.; Waters K. M.; Shi W.; Liu X.; Zhang L.; Knight R.; Jensen P. R.; Palsson B.; Pogliano K.; Linington R. G.; Gutiérrez M.; Lopes N. P.; Gerwick W. H.; Moore B. S.; Dorrestein P. C.; Bandeira N. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34 (8), 828–837. 10.1038/nbt.3597. PubMed DOI PMC

Watrous J. D.; Niiranen T. J.; Lagerborg K. A.; Henglin M.; Xu Y. J.; Rong J.; Sharma S.; Vasan R. S.; Larson M. G.; Armando A.; Mora S.; Quehenberger O.; Dennis E. A.; Cheng S.; Jain M. Directed Non-Targeted Mass Spectrometry and Chemical Networking for Discovery of Eicosanoids and Related Oxylipins. Cell Chem. Biol. 2019, 26 (3), 433–442.e4. 10.1016/j.chembiol.2018.11.015. PubMed DOI PMC

Magny R.; Regazzetti A.; Kessal K.; Genta-Jouve G.; Baudouin C.; Mélik-Parsadaniantz S.; Brignole-Baudouin F.; Laprévote O.; Auzeil N. Lipid Annotation by Combination of UHPLC-HRMS (MS), Molecular Networking, and Retention Time Prediction: Application to a Lipidomic Study of In Vitro Models of Dry Eye Disease. Metabolites 2020, 10 (6), 225.10.3390/metabo10060225. PubMed DOI PMC

Okahashi N.; Ueda M.; Yasuda S.; Tsugawa H.; Arita M. Global Profiling of Gut Microbiota-Associated Lipid Metabolites in Antibiotic-Treated Mice by LC-MS/MS-Based Analyses. STAR Protoc 2021, 2 (2), 100492.10.1016/j.xpro.2021.100492. PubMed DOI PMC

Ding S.; Bale N. J.; Hopmans E. C.; Villanueva L.; Arts M. G. I.; Schouten S.; Sinninghe Damsté J. S. Lipidomics of Environmental Microbial Communities. II: Characterization Using Molecular Networking and Information Theory. Front Microbiol 2021, 12, 659315.10.3389/fmicb.2021.659315. PubMed DOI PMC

Chen X.; Peng X.; Sun X.; Pan L.; Shi J.; Gao Y.; Lei Y.; Jiang F.; Li R.; Liu Y.; Xu Y. J. Development and Application of Feature-Based Molecular Networking for Phospholipidomics Analysis. J. Agric. Food Chem. 2022, 70 (25), 7815–7825. 10.1021/acs.jafc.2c01770. PubMed DOI

della Sala G.; Coppola D.; Virgili R.; Vitale G. A.; Tanduo V.; Teta R.; Crocetta F.; de Pascale D. Untargeted Metabolomics Yields Insights Into the Lipidome of Botrylloides Niger Herdman, 1886, An Ascidian Invading the Mediterranean Sea. Front Mar Sci. 2022, 9, 865751.10.3389/fmars.2022.865751. DOI

Olivon F.; Elie N.; Grelier G.; Roussi F.; Litaudon M.; Touboul D. MetGem Software for the Generation of Molecular Networks Based on the T-SNE Algorithm. Anal. Chem. 2018, 90 (23), 13900–13908. 10.1021/acs.analchem.8b03099. PubMed DOI

Woldegebriel M.; Derks E. Artificial Neural Network for Probabilistic Feature Recognition in Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. Anal. Chem. 2017, 89 (2), 1212–1221. 10.1021/acs.analchem.6b03678. PubMed DOI

Melnikov A. D.; Tsentalovich Y. P.; Yanshole V. v. Deep Learning for the Precise Peak Detection in High-Resolution LC-MS Data. Anal. Chem. 2020, 92 (1), 588–592. 10.1021/acs.analchem.9b04811. PubMed DOI

Guo J.; Shen S.; Xing S.; Chen Y.; Chen F.; Porter E. M.; Yu H.; Huan T. EVA: Evaluation of Metabolic Feature Fidelity Using a Deep Learning Model Trained With Over 25000 Extracted Ion Chromatograms. Anal. Chem. 2021, 93 (36), 12181–12186. 10.1021/acs.analchem.1c01309. PubMed DOI

Bueschl C.; Doppler M.; Varga E.; Seidl B.; Flasch M.; Warth B.; Zanghellini J. PeakBot: Machine Learning Based Chromatographic Peak Picking. Bioinformatics 2022, 38 (13), 3422–3428. 10.1093/bioinformatics/btac344. PubMed DOI PMC

Witting M.; Böcker S. Current Status of Retention Time Prediction in Metabolite Identification. J. Sep Sci. 2020, 43 (9–10), 1746–1754. 10.1002/jssc.202000060. PubMed DOI

Zhou Z.; Tu J.; Zhu Z. J. Advancing the Large-Scale CCS Database for Metabolomics and Lipidomics at the Machine-Learning Era. Curr. Opin Chem. Biol. 2018, 42, 34–41. 10.1016/j.cbpa.2017.10.033. PubMed DOI

Zhou Z.; Tu J.; Xiong X.; Shen X.; Zhu Z. J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility-Mass Spectrometry-Based Lipidomics. Anal. Chem. 2017, 89 (17), 9559–9566. 10.1021/acs.analchem.7b02625. PubMed DOI

Dührkop K.; Fleischauer M.; Ludwig M.; Aksenov A. A.; Melnik A. v.; Meusel M.; Dorrestein P. C.; Rousu J.; Böcker S. SIRIUS 4: A Rapid Tool for Turning Tandem Mass Spectra into Metabolite Structure Information. Nat. Methods 2019, 16 (4), 299–302. 10.1038/s41592-019-0344-8. PubMed DOI

Stravs M. A.; Dührkop K.; Böcker S.; Zamboni N. MSNovelist: De Novo Structure Generation from Mass Spectra. Nat. Methods 2022, 19 (7), 865–870. 10.1038/s41592-022-01486-3. PubMed DOI PMC

boecker-lab/sirius: SIRIUS is a software for discovering a landscape of de-novo identification of metabolites using tandem mass spectrometry. https://github.com/boecker-Lab/sirius (accessed 2022-10-09).

Wang M.; Jarmusch A. K.; Vargas F.; Aksenov A. A.; Gauglitz J. M.; Weldon K.; Petras D.; da Silva R.; Quinn R.; Melnik A. v.; van der Hooft J. J. J.; Caraballo-Rodríguez A. M.; Nothias L. F.; Aceves C. M.; Panitchpakdi M.; Brown E.; di Ottavio F.; Sikora N.; Elijah E. O.; Labarta-Bajo L.; Gentry E. C.; Shalapour S.; Kyle K. E.; Puckett S. P.; Watrous J. D.; Carpenter C. S.; Bouslimani A.; Ernst M.; Swafford A. D.; Zúñiga E. I.; Balunas M. J.; Klassen J. L.; Loomba R.; Knight R.; Bandeira N.; Dorrestein P. C. Mass Spectrometry Searches Using MASST. Nat. Biotechnol. 2020, 38 (1), 23–26. 10.1038/s41587-019-0375-9. PubMed DOI PMC

Jarmusch A. K.; Aron A. T.; Petras D.; Phelan V. v.; Bittremieux W.; Acharya D. D.; Ahmed M. M. A.; Bauermeister A.; Bertin M. J.; Boudreau P. D.; Borges R. M.; Bowen B. P.; Brown C. J.; Chagas F. O.; Clevenger K. D.; Correia M. S. P.; Crandall W. J.; Crüsemann M.; Damiani T.; Fiehn O.; Garg N.; Gerwick W. H.; Gilbert J. R.; Globisch D.; Gomes P. W. P.; Heuckeroth S.; James C. A.; Jarmusch S. A.; Kakhkhorov S. A.; Kang K. bin.; Kersten R. D.; Kim H.; Kirk R. D.; Kohlbacher O.; Kontou E. E.; Liu K.; Lizama-Chamu I.; Luu G. T.; Knaan T. L.; Marty M. T.; McAvoy A. C.; McCall L.-I.; Mohamed O. G.; Nahor O.; Niedermeyer T. H. J.; Northen T. R.; Overdahl K. E.; Pluskal T.; Rainer J.; Reher R.; Rodriguez E.; Sachsenberg T. T.; Sanchez L. M.; Schmid R.; Stevens C.; Tian Z.; Tripathi A.; Tsugawa H.; Nishida K.; Matsuzawa Y.; Hooft J. J. J. van der.; Vicini A.; Walter A.; Weber T.; Xiong Q.; Xu T.; Zhao H. N.; Dorrestein P. C.; Wang M. A Universal Language for Finding Mass Spectrometry Data Patterns. bioRxiv 2022, 2022.08.06.503000.10.1101/2022.08.06.503000. DOI

GNPS MASST. https://masst.ucsd.edu/ (accessed 2022-10-09).

Sud M.; Fahy E.; Cotter D.; Azam K.; Vadivelu I.; Burant C.; Edison A.; Fiehn O.; Higashi R.; Nair K. S.; Sumner S.; Subramaniam S. Metabolomics Workbench: An International Repository for Metabolomics Data and Metadata, Metabolite Standards, Protocols, Tutorials and Training, and Analysis Tools. Nucleic Acids Res. 2016, 44 (D1), D463–D470. 10.1093/nar/gkv1042. PubMed DOI PMC

Haug K.; Salek R. M.; Conesa P.; Hastings J.; de Matos P.; Rijnbeek M.; Mahendraker T.; Williams M.; Neumann S.; Rocca-Serra P.; Maguire E.; González-Beltrán A.; Sansone S.-A.; Griffin J. L.; Steinbeck C. MetaboLights—an Open-Access General-Purpose Repository for Metabolomics Studies and Associated Meta-Data. Nucleic Acids Res. 2013, 41 (D1), D781–D786. 10.1093/nar/gks1004. PubMed DOI PMC

Godzien J.; Ciborowski M.; Martínez-Alcázar M. P.; Samczuk P.; Kretowski A.; Barbas C. Rapid and Reliable Identification of Phospholipids for Untargeted Metabolomics with LC-ESI-QTOF-MS/MS. J. Proteome Res. 2015, 14 (8), 3204–3216. 10.1021/acs.jproteome.5b00169. PubMed DOI

Zhou Z.; Luo M.; Chen X.; Yin Y.; Xiong X.; Wang R.; Zhu Z.-J. Ion Mobility Collision Cross-Section Atlas for Known and Unknown Metabolite Annotation in Untargeted Metabolomics. Nat. Commun. 2020, 11 (1), 4334.10.1038/s41467-020-18171-8. PubMed DOI PMC

Bonini P.; Kind T.; Tsugawa H.; Barupal D. K.; Fiehn O. Retip: Retention Time Prediction for Compound Annotation in Untargeted Metabolomics. Anal. Chem. 2020, 92 (11), 7515–7522. 10.1021/acs.analchem.9b05765. PubMed DOI PMC

Bach E.; Szedmak S.; Brouard C.; Böcker S.; Rousu J. Liquid-Chromatography Retention Order Prediction for Metabolite Identification. Bioinformatics 2018, 34 (17), i875–i883. 10.1093/bioinformatics/bty590. PubMed DOI

Liebal U. W.; Phan A. N. T.; Sudhakar M.; Raman K.; Blank L. M. Machine Learning Applications for Mass Spectrometry-Based Metabolomics. Metabolites 2020, 10 (6), 243.10.3390/metabo10060243. PubMed DOI PMC

Gaud C. C.; Sousa B.; Nguyen A.; Fedorova M.; Ni Z.; O’Donnell V. B.; Wakelam M. J. O.; Andrews S.; Lopez-Clavijo A. F. BioPAN: A Web-Based Tool to Explore Mammalian Lipidome Metabolic Pathways on LIPID MAPS. F1000Res. 2021, 10, 4.10.12688/f1000research.28022.2. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

LORA, Lipid Over-Representation Analysis Based on Structural Information

. 2023 Aug 29 ; 95 (34) : 12600-12604. [epub] 20230816

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...