Feature-based molecular networking in the GNPS analysis environment
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
Grant support
DP2 GM137413
NIGMS NIH HHS - United States
P41 GM103484
NIGMS NIH HHS - United States
U19 AG063744
NIA NIH HHS - United States
R35 GM128690
NIGMS NIH HHS - United States
R03 CA211211
NCI NIH HHS - United States
K01 GM103809
NIGMS NIH HHS - United States
R24 GM127667
NIGMS NIH HHS - United States
R01 GM107550
NIGMS NIH HHS - United States
R01 LM013115
NLM NIH HHS - United States
PubMed
32839597
PubMed Central
PMC7885687
DOI
10.1038/s41592-020-0933-6
PII: 10.1038/s41592-020-0933-6
Knihovny.cz E-resources
- MeSH
- Biological Products chemistry MeSH
- Databases, Factual MeSH
- Mass Spectrometry * MeSH
- Metabolomics methods MeSH
- Software MeSH
- Computational Biology methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Biological Products MeSH
Molecular networking has become a key method to visualize and annotate the chemical space in non-targeted mass spectrometry data. We present feature-based molecular networking (FBMN) as an analysis method in the Global Natural Products Social Molecular Networking (GNPS) infrastructure that builds on chromatographic feature detection and alignment tools. FBMN enables quantitative analysis and resolution of isomers, including from ion mobility spectrometry.
Applied Bioinformatics Department of Computer Science University of Tübingen Tübingen Germany
Bioinformatics and Scientific Data Leibniz Institute of Plant Biochemistry Halle Germany
Bioinformatics Group Wageningen University Wageningen the Netherlands
Biomolecular Interactions Max Planck Institute for Developmental Biology Tübingen Germany
Bruker Daltonics Bremen Germany
Center for Microbiome Innovation University of California San Diego La Jolla CA USA
Chair for Bioinformatics Friedrich Schiller University Jena Germany
Collaborative Mass Spectrometry Innovation Center University of California San Diego La Jolla CA USA
College of Pharmacy Kangwon National University Chuncheon si Republic of Korea
College of Pharmacy Sookmyung Women's University Seoul Republic of Korea
Department of Biochemistry and Molecular Biology Michigan State University East Lansing MI USA
Department of Biological and Environmental Sciences University of West Alabama Livingston AL USA
Department of Computer Science and Engineering University of California San Diego La Jolla CA USA
Department of Pediatrics University of California San Diego La Jolla CA USA
Department of Phytochemistry and Bioactive Natural Products University of Geneva Geneva Switzerland
Division of Biological Sciences University of California San Diego La Jolla CA USA
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Institute for Bioinformatics and Medical Informatics University of Tübingen Tübingen Germany
Institute for Translational Bioinformatics University Hospital Tübingen Tübingen Germany
Institute of Chemistry Technische Universität Berlin Berlin Germany
Institute of Inorganic and Analytical Chemistry University of Münster Münster Germany
Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
Nonlinear Dynamics Milford MA USA
Research Unit Analytical BioGeoChemistry Helmholtz Zentrum München München Germany
RIKEN Center for Integrative Medical Sciences Yokohama Japan
RIKEN Center for Sustainable Resource Science Yokohama Japan
School of Computing Science University of Glasgow Glasgow UK
Scripps Institution of Oceanography University of California San Diego La Jolla CA USA
Skaggs School of Pharmacy and Pharmaceutical Sciences University of Colorado Denver Aurora CO USA
Structural and Computational Biology Unit European Molecular Biology Laboratory Heidelberg Germany
Univ Grenoble Alpes CNRS Grenoble INP CHU Grenoble Alpes TIMC IMAG Grenoble France
Waters Corporation Milford MA USA
Whitehead Institute for Biomedical Research Cambridge MA USA
See more in PubMed
Watrous J et al. Mass spectral molecular networking of living microbial colonies. Proc. Natl. Acad. Sci. 109, E1743–52 (2012). PubMed PMC
Quinn RA et al. Molecular Networking As a Drug Discovery, Drug Metabolism, and Precision Medicine Strategy. Trends Pharmacol. Sci. 38, 143–154 (2017). PubMed
Traxler MF & Kolter R A massively spectacular view of the chemical lives of microbes. Proceedings of the National Academy of Sciences of the United States of America vol. 109 10128–10129 (2012). PubMed PMC
Wang M et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016). PubMed PMC
Frank AM et al. Clustering Millions of Tandem Mass Spectra. J. Proteome Res. 7, 113–122 (01/2008). PubMed PMC
Hoffmann N et al. mzTab-M: A Data Standard for Sharing Quantitative Results in Mass Spectrometry Metabolomics. Anal. Chem. 91, 3302–3310 (2019). PubMed PMC
Nothias L-F et al. Bioactivity-Based Molecular Networking for the Discovery of Drug Leads in Natural Product Bioassay-Guided Fractionation. J. Nat. Prod. 81, 758–767 (2018). PubMed
Cohen LJ et al. Functional metagenomic discovery of bacterial effectors in the human microbiome and isolation of commendamide, a GPCR G2A/132 agonist. Proc. Natl. Acad. Sci. U. S. A. 112, E4825–E4834 (2015). PubMed PMC
McDonald D et al. American Gut: an Open Platform for Citizen Science Microbiome Research. mSystems 3, (2018). PubMed PMC
Röst HL et al. OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat. Methods 13, 741–748 (2016). PubMed
Pluskal T, Castillo S, Villar-Briones A & Oresic M MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11, 395 (2010). PubMed PMC
Bolyen E et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. (2019) doi:10.1038/s41587-019-0209-9. PubMed DOI PMC
Xia J, Sinelnikov IV, Han B & Wishart DS MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Res. 43, W251–W257 (2015). PubMed PMC
Protsyuk I, Melnik AV, Nothias LF & Rappez L 3D molecular cartography using LC–MS facilitated by Optimus and’ili software. Nat. Protoc. (2018). PubMed
Dührkop K et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 16, 299–302 (2019). PubMed
Mohimani H et al. Dereplication of peptidic natural products through database search of mass spectra. Nat. Chem. Biol. 13, 30–37 (2017). PubMed PMC
van der Hooft JJJ, Wandy J, Barrett MP, Burgess KEV & Rogers S Topic modeling for untargeted substructure exploration in metabolomics. Proc. Natl. Acad. Sci. U. S. A. 113, 13738–13743 (2016). PubMed PMC
Tripathi A et al. Chemically-informed Analyses of Metabolomics Mass Spectrometry Data with Qemistree. bioRxiv 2020.05.04.077636 (2020). PubMed PMC
Tsugawa H et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 12, 523–526 (2015). PubMed PMC
Wang M et al. Mass spectrometry searches using MASST. Nat. Biotechnol. 38, 23–26 (2020). PubMed PMC
Chambers MC et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012). PubMed PMC
Winnikoff JR, Glukhov E, Watrous J, Dorrestein PC & Gerwick WH Quantitative molecular networking to profile marine cyanobacterial metabolomes. J. Antibiot. 67, 105–112 (2014). PubMed PMC
Olivon F, Grelier G, Roussi F, Litaudon M & Touboul D MZmine 2 Data-Preprocessing To Enhance Molecular Networking Reliability. Anal. Chem. (2017) doi:10.1021/acs.analchem.7b01563. PubMed DOI
Ono K, Demchak B & Ideker T Cytoscape tools for the web age: D3.js and Cytoscape.js exporters. F1000Res. 3, 143 (2014). PubMed PMC
Shannon P et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003). PubMed PMC
Tautenhahn R, Böttcher C & Neumann S Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics 9, 504 (2008). PubMed PMC
Libiseller G et al. IPO: a tool for automated optimization of XCMS parameters. BMC Bioinformatics 16, 118 (2015). PubMed PMC
McLean C & Kujawinski EB AutoTuner: High Fidelity and Robust Parameter Selection for Metabolomics Data Processing. Anal. Chem. 92, 5724–5732 (2020). PubMed PMC
Kuhl C, Tautenhahn R, Böttcher C, Larson TR & Neumann S CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal. Chem. 84, 283–289 (2012). PubMed PMC
Tsugawa H et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 2020.02.11.944900 (2020) doi:10.1101/2020.02.11.944900. DOI
Cohen LJ et al. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 549, 48–53 (2017). PubMed PMC
Wang M et al. MASST: A Web-based Basic Mass Spectrometry Search Tool for Molecules to Search Public Data. bioRxiv 591016 (2019) doi:10.1101/591016. DOI
Simón-Manso Y et al. Metabolite profiling of a NIST Standard Reference Material for human plasma (SRM 1950): GC-MS, LC-MS, NMR, and clinical laboratory analyses, libraries, and web-based resources. Anal. Chem. 85, 11725–11731 (2013). PubMed
Meier F et al. Online Parallel Accumulation-Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Mol. Cell. Proteomics 17, 2534–2545 (2018). PubMed PMC
Kind T et al. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat. Methods 10, 755–758 (2013). PubMed PMC
da Silva RR et al. Propagating annotations of molecular networks using in silico fragmentation. PLoS Comput. Biol. 14, e1006089 (2018). PubMed PMC
Ernst M et al. MolNetEnhancer: Enhanced Molecular Networks by Integrating Metabolome Mining and Annotation Tools. Metabolites 9, (2019). PubMed PMC
Beauxis Y & Genta-Jouve G Metwork: a web server for natural products anticipation. Bioinformatics (2018) doi:10.1093/bioinformatics/bty864. PubMed DOI
Allen F, Greiner R & Wishart D Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics 11, 98–110 (2015).
Ruttkies C, Schymanski EL, Wolf S, Hollender J & Neumann S MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J. Cheminform. 8, 1–16 (2016). PubMed PMC
Studying Plant Specialized Metabolites Using Computational Metabolomics Strategies
Empirically establishing drug exposure records directly from untargeted metabolomics data
Reproducible mass spectrometry data processing and compound annotation in MZmine 3
Functional metabolomics of the human scalp: a metabolic niche for Staphylococcus epidermidis
On-tissue dataset-dependent MALDI-TIMS-MS2 bioimaging
Metabolomic Evenness Underlies Intraspecific Differences Among Lineages of a Wetland Grass
Amesia hispanica sp. nov., Producer of the Antifungal Class of Antibiotics Dactylfungins
Integrative analysis of multimodal mass spectrometry data in MZmine 3
Software and Computational Tools for LC-MS-Based Epilipidomics: Challenges and Solutions
Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment