• This record comes from PubMed

Feature-based molecular networking in the GNPS analysis environment

. 2020 Sep ; 17 (9) : 905-908. [epub] 20200824

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.

Grant support
DP2 GM137413 NIGMS NIH HHS - United States
P41 GM103484 NIGMS NIH HHS - United States
U19 AG063744 NIA NIH HHS - United States
R35 GM128690 NIGMS NIH HHS - United States
R03 CA211211 NCI NIH HHS - United States
K01 GM103809 NIGMS NIH HHS - United States
R24 GM127667 NIGMS NIH HHS - United States
R01 GM107550 NIGMS NIH HHS - United States
R01 LM013115 NLM NIH HHS - United States

Links

PubMed 32839597
PubMed Central PMC7885687
DOI 10.1038/s41592-020-0933-6
PII: 10.1038/s41592-020-0933-6
Knihovny.cz E-resources

Molecular networking has become a key method to visualize and annotate the chemical space in non-targeted mass spectrometry data. We present feature-based molecular networking (FBMN) as an analysis method in the Global Natural Products Social Molecular Networking (GNPS) infrastructure that builds on chromatographic feature detection and alignment tools. FBMN enables quantitative analysis and resolution of isomers, including from ion mobility spectrometry.

Applied Bioinformatics Department of Computer Science University of Tübingen Tübingen Germany

Bioinformatics and Scientific Data Leibniz Institute of Plant Biochemistry Halle Germany

Bioinformatics Group Wageningen University Wageningen the Netherlands

Biomolecular Interactions Max Planck Institute for Developmental Biology Tübingen Germany

Bruker Daltonics Bremen Germany

Center for Algorithmic Biotechnology Institute of Translational Biomedicine St Petersburg State University St Petersburg Russia

Center for Microbiome Innovation University of California San Diego La Jolla CA USA

Centro de Biodiversidad y Descubrimiento de Drogas Instituto de Investigaciones Científicas y Servicios de Alta Tecnología Panama Republic of Panama

Chair for Bioinformatics Friedrich Schiller University Jena Germany

Collaborative Mass Spectrometry Innovation Center University of California San Diego La Jolla CA USA

College of Pharmacy Kangwon National University Chuncheon si Republic of Korea

College of Pharmacy Sookmyung Women's University Seoul Republic of Korea

Computational Biology Department School of Computer Sciences Carnegie Mellon University Pittsburgh PA USA

Department of Biochemistry and Molecular Biology Michigan State University East Lansing MI USA

Department of Biological and Environmental Sciences University of West Alabama Livingston AL USA

Department of Chemistry and Biochemistry Department of Microbiology and Plant Biology and Laboratories of Molecular Anthropology and Microbiome Research University of Oklahoma Norman OK USA

Department of Computer Science and Engineering University of California San Diego La Jolla CA USA

Department of Pediatrics University of California San Diego La Jolla CA USA

Department of Physics and Chemistry School of Pharmaceutical Sciences of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil

Department of Phytochemistry and Bioactive Natural Products University of Geneva Geneva Switzerland

Division of Biological Sciences University of California San Diego La Jolla CA USA

Equipe PNAS UMR 8038 CiTCoM CNRS Faculté de Pharmacie de Paris Université Paris Descartes Paris France

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany

Institute for Bioinformatics and Medical Informatics University of Tübingen Tübingen Germany

Institute for Biomedicine Eurac Research Affiliated Institute of the University of Lübeck Bolzano Italy

Institute for Translational Bioinformatics University Hospital Tübingen Tübingen Germany

Institute of Chemistry Technische Universität Berlin Berlin Germany

Institute of Inorganic and Analytical Chemistry University of Münster Münster Germany

Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic

Laboratoire de Chimie des Produits Naturels UMR CNRS SPE Université de Corse Pascal Paoli Corte France

Nonlinear Dynamics Milford MA USA

Research Unit Analytical BioGeoChemistry Helmholtz Zentrum München München Germany

RIKEN Center for Integrative Medical Sciences Yokohama Japan

RIKEN Center for Sustainable Resource Science Yokohama Japan

School of Chemistry and Biochemistry Center for Microbial Dynamics and Infection Georgia Institute of Technology Atlanta GA USA

School of Computing Science University of Glasgow Glasgow UK

Scripps Institution of Oceanography University of California San Diego La Jolla CA USA

Section for Clinical Mass Spectrometry Department of Congenital Disorders Danish Center for Neonatal Screening Statens Serum Institut Copenhagen Denmark

Skaggs School of Pharmacy and Pharmaceutical Sciences University of California San Diego La Jolla CA USA

Skaggs School of Pharmacy and Pharmaceutical Sciences University of Colorado Denver Aurora CO USA

Structural and Computational Biology Unit European Molecular Biology Laboratory Heidelberg Germany

Univ Grenoble Alpes CNRS Grenoble INP CHU Grenoble Alpes TIMC IMAG Grenoble France

Waters Corporation Milford MA USA

Whitehead Institute for Biomedical Research Cambridge MA USA

See more in PubMed

Watrous J et al. Mass spectral molecular networking of living microbial colonies. Proc. Natl. Acad. Sci. 109, E1743–52 (2012). PubMed PMC

Quinn RA et al. Molecular Networking As a Drug Discovery, Drug Metabolism, and Precision Medicine Strategy. Trends Pharmacol. Sci. 38, 143–154 (2017). PubMed

Traxler MF & Kolter R A massively spectacular view of the chemical lives of microbes. Proceedings of the National Academy of Sciences of the United States of America vol. 109 10128–10129 (2012). PubMed PMC

Wang M et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016). PubMed PMC

Frank AM et al. Clustering Millions of Tandem Mass Spectra. J. Proteome Res. 7, 113–122 (01/2008). PubMed PMC

Hoffmann N et al. mzTab-M: A Data Standard for Sharing Quantitative Results in Mass Spectrometry Metabolomics. Anal. Chem. 91, 3302–3310 (2019). PubMed PMC

Nothias L-F et al. Bioactivity-Based Molecular Networking for the Discovery of Drug Leads in Natural Product Bioassay-Guided Fractionation. J. Nat. Prod. 81, 758–767 (2018). PubMed

Cohen LJ et al. Functional metagenomic discovery of bacterial effectors in the human microbiome and isolation of commendamide, a GPCR G2A/132 agonist. Proc. Natl. Acad. Sci. U. S. A. 112, E4825–E4834 (2015). PubMed PMC

McDonald D et al. American Gut: an Open Platform for Citizen Science Microbiome Research. mSystems 3, (2018). PubMed PMC

Röst HL et al. OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat. Methods 13, 741–748 (2016). PubMed

Pluskal T, Castillo S, Villar-Briones A & Oresic M MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11, 395 (2010). PubMed PMC

Bolyen E et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. (2019) doi:10.1038/s41587-019-0209-9. PubMed DOI PMC

Xia J, Sinelnikov IV, Han B & Wishart DS MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Res. 43, W251–W257 (2015). PubMed PMC

Protsyuk I, Melnik AV, Nothias LF & Rappez L 3D molecular cartography using LC–MS facilitated by Optimus and’ili software. Nat. Protoc. (2018). PubMed

Dührkop K et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 16, 299–302 (2019). PubMed

Mohimani H et al. Dereplication of peptidic natural products through database search of mass spectra. Nat. Chem. Biol. 13, 30–37 (2017). PubMed PMC

van der Hooft JJJ, Wandy J, Barrett MP, Burgess KEV & Rogers S Topic modeling for untargeted substructure exploration in metabolomics. Proc. Natl. Acad. Sci. U. S. A. 113, 13738–13743 (2016). PubMed PMC

Tripathi A et al. Chemically-informed Analyses of Metabolomics Mass Spectrometry Data with Qemistree. bioRxiv 2020.05.04.077636 (2020). PubMed PMC

Tsugawa H et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 12, 523–526 (2015). PubMed PMC

Wang M et al. Mass spectrometry searches using MASST. Nat. Biotechnol. 38, 23–26 (2020). PubMed PMC

Chambers MC et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012). PubMed PMC

Winnikoff JR, Glukhov E, Watrous J, Dorrestein PC & Gerwick WH Quantitative molecular networking to profile marine cyanobacterial metabolomes. J. Antibiot. 67, 105–112 (2014). PubMed PMC

Olivon F, Grelier G, Roussi F, Litaudon M & Touboul D MZmine 2 Data-Preprocessing To Enhance Molecular Networking Reliability. Anal. Chem. (2017) doi:10.1021/acs.analchem.7b01563. PubMed DOI

Ono K, Demchak B & Ideker T Cytoscape tools for the web age: D3.js and Cytoscape.js exporters. F1000Res. 3, 143 (2014). PubMed PMC

Shannon P et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003). PubMed PMC

Tautenhahn R, Böttcher C & Neumann S Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics 9, 504 (2008). PubMed PMC

Libiseller G et al. IPO: a tool for automated optimization of XCMS parameters. BMC Bioinformatics 16, 118 (2015). PubMed PMC

McLean C & Kujawinski EB AutoTuner: High Fidelity and Robust Parameter Selection for Metabolomics Data Processing. Anal. Chem. 92, 5724–5732 (2020). PubMed PMC

Kuhl C, Tautenhahn R, Böttcher C, Larson TR & Neumann S CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal. Chem. 84, 283–289 (2012). PubMed PMC

Tsugawa H et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 2020.02.11.944900 (2020) doi:10.1101/2020.02.11.944900. DOI

Cohen LJ et al. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 549, 48–53 (2017). PubMed PMC

Wang M et al. MASST: A Web-based Basic Mass Spectrometry Search Tool for Molecules to Search Public Data. bioRxiv 591016 (2019) doi:10.1101/591016. DOI

Simón-Manso Y et al. Metabolite profiling of a NIST Standard Reference Material for human plasma (SRM 1950): GC-MS, LC-MS, NMR, and clinical laboratory analyses, libraries, and web-based resources. Anal. Chem. 85, 11725–11731 (2013). PubMed

Meier F et al. Online Parallel Accumulation-Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Mol. Cell. Proteomics 17, 2534–2545 (2018). PubMed PMC

Kind T et al. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat. Methods 10, 755–758 (2013). PubMed PMC

da Silva RR et al. Propagating annotations of molecular networks using in silico fragmentation. PLoS Comput. Biol. 14, e1006089 (2018). PubMed PMC

Ernst M et al. MolNetEnhancer: Enhanced Molecular Networks by Integrating Metabolome Mining and Annotation Tools. Metabolites 9, (2019). PubMed PMC

Beauxis Y & Genta-Jouve G Metwork: a web server for natural products anticipation. Bioinformatics (2018) doi:10.1093/bioinformatics/bty864. PubMed DOI

Allen F, Greiner R & Wishart D Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics 11, 98–110 (2015).

Ruttkies C, Schymanski EL, Wolf S, Hollender J & Neumann S MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J. Cheminform. 8, 1–16 (2016). PubMed PMC

Newest 20 citations...

See more in
Medvik | PubMed

Computational metabolomics reveals overlooked chemodiversity of alkaloid scaffolds in Piper fimbriulatum

. 2025 Mar ; 121 (5) : e70086.

Statistical analysis of feature-based molecular networking results from non-targeted metabolomics data

. 2025 Jan ; 20 (1) : 92-162. [epub] 20240920

Studying Plant Specialized Metabolites Using Computational Metabolomics Strategies

Empirically establishing drug exposure records directly from untargeted metabolomics data

. 2024 Oct 26 ; () : . [epub] 20241026

Reproducible mass spectrometry data processing and compound annotation in MZmine 3

. 2024 Sep ; 19 (9) : 2597-2641. [epub] 20240520

Functional metabolomics of the human scalp: a metabolic niche for Staphylococcus epidermidis

. 2024 Feb 20 ; 9 (2) : e0035623. [epub] 20240111

On-tissue dataset-dependent MALDI-TIMS-MS2 bioimaging

. 2023 Nov 18 ; 14 (1) : 7495. [epub] 20231118

More than just an eagle killer: The freshwater cyanobacterium Aetokthonos hydrillicola produces highly toxic dolastatin derivatives

. 2023 Oct 03 ; 120 (40) : e2219230120. [epub] 20230926

Evaluation of Data-Dependent MS/MS Acquisition Parameters for Non-Targeted Metabolomics and Molecular Networking of Environmental Samples: Focus on the Q Exactive Platform

. 2023 Aug 29 ; 95 (34) : 12673-12682. [epub] 20230814

Metabolomic Evenness Underlies Intraspecific Differences Among Lineages of a Wetland Grass

. 2023 Aug ; 49 (7-8) : 437-450. [epub] 20230426

Amesia hispanica sp. nov., Producer of the Antifungal Class of Antibiotics Dactylfungins

. 2023 Apr 12 ; 9 (4) : . [epub] 20230412

Integrative analysis of multimodal mass spectrometry data in MZmine 3

. 2023 Apr ; 41 (4) : 447-449.

Software and Computational Tools for LC-MS-Based Epilipidomics: Challenges and Solutions

. 2023 Jan 10 ; 95 (1) : 287-303.

What Goes in Must Come Out? The Metabolic Profile of Plants and Caterpillars, Frass, And Adults of Asota (Erebidae: Aganainae) Feeding on Ficus (Moraceae) in New Guinea

. 2022 Oct ; 48 (9-10) : 718-729. [epub] 20220816

Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment

. 2021 Jun 22 ; 12 (1) : 3832. [epub] 20210622

Feature-Based Molecular Networking to Target the Isolation of New Caffeic Acid Esters from Yacon (Smallanthus sonchifolius, Asteraceae)

. 2020 Oct 13 ; 10 (10) : . [epub] 20201013

Isolation, Genomic and Metabolomic Characterization of Streptomyces tendae VITAKN with Quorum Sensing Inhibitory Activity from Southern India

. 2020 Jan 16 ; 8 (1) : . [epub] 20200116

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...