On-tissue dataset-dependent MALDI-TIMS-MS2 bioimaging
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37980348
PubMed Central
PMC10657435
DOI
10.1038/s41467-023-43298-9
PII: 10.1038/s41467-023-43298-9
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- iontová mobilní spektrometrie * MeSH
- krysa rodu Rattus MeSH
- metabolomika * metody MeSH
- software MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Trapped ion mobility spectrometry (TIMS) adds an additional separation dimension to mass spectrometry (MS) imaging, however, the lack of fragmentation spectra (MS2) impedes confident compound annotation in spatial metabolomics. Here, we describe spatial ion mobility-scheduled exhaustive fragmentation (SIMSEF), a dataset-dependent acquisition strategy that augments TIMS-MS imaging datasets with MS2 spectra. The fragmentation experiments are systematically distributed across the sample and scheduled for multiple collision energies per precursor ion. Extendable data processing and evaluation workflows are implemented into the open source software MZmine. The workflow and annotation capabilities are demonstrated on rat brain tissue thin sections, measured by matrix-assisted laser desorption/ionisation (MALDI)-TIMS-MS, where SIMSEF enables on-tissue compound annotation through spectral library matching and rule-based lipid annotation within MZmine and maps the (un)known chemical space by molecular networking. The SIMSEF algorithm and data analysis pipelines are open source and modular to provide a community resource.
Bruker Daltonics GmbH and Co KG Bremen Germany
Collaborative Mass Spectrometry Innovation Center University of California San Diego La Jolla CA USA
Institute of Inorganic and Analytical Chemistry University of Münster Münster Germany
Institute of Neuropathology University Hospital Münster Münster Germany
Zobrazit více v PubMed
Taylor MJ, Lukowski JK, Anderton CR. Spatially resolved mass spectrometry at the single cell: recent innovations in proteomics and metabolomics. J. Am. Soc. Mass Spectrom. 2021;32:872–894. doi: 10.1021/jasms.0c00439. PubMed DOI PMC
Niehaus M, Soltwisch J, Belov ME, Dreisewerd K. Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nat. Methods. 2019;16:925–931. doi: 10.1038/s41592-019-0536-2. PubMed DOI
Soltwisch J, et al. MALDI-2 on a trapped ion mobility quadrupole time-of-flight instrument for rapid mass spectrometry imaging and ion mobility separation of complex lipid profiles. Anal. Chem. 2020;92:8697–8703. doi: 10.1021/acs.analchem.0c01747. PubMed DOI
Müller MA, Kompauer M, Strupat K, Heiles S, Spengler B. Implementation of a high-repetition-rate laser in an AP-SMALDI MSI system for enhanced measurement performance. J. Am. Soc. Mass Spectrom. 2021;32:465–472. doi: 10.1021/jasms.0c00368. PubMed DOI
Körber A, Keelor JD, Claes BSR, Heeren RMA, Anthony IGM. Fast mass microscopy: mass spectrometry imaging of a gigapixel image in 34 min. Anal. Chem. 2022;94:14652–14658. doi: 10.1021/acs.analchem.2c02870. PubMed DOI PMC
Bednařík A, et al. MALDI MS imaging at acquisition rates exceeding 100 pixels per second. J. Am. Soc. Mass Spectrom. 2019;30:289–298. doi: 10.1007/s13361-018-2078-8. PubMed DOI
Miki A, et al. MALDI-TOF and MALDI-FTICR imaging mass spectrometry of methamphetamine incorporated into hair. J. Mass Spectrom. 2011;46:411–416. doi: 10.1002/jms.1908. PubMed DOI
Sommella E, et al. MALDI mass spectrometry imaging highlights specific metabolome and lipidome profiles in salivary gland tumor tissues. Metabolites. 2022;12:530. doi: 10.3390/metabo12060530. PubMed DOI PMC
Wang M, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016;34:828–837. doi: 10.1038/nbt.3597. PubMed DOI PMC
Nothias L-F, et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods. 2020;17:905–908. doi: 10.1038/s41592-020-0933-6. PubMed DOI PMC
Dührkop K, et al. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat. Biotechnol. 2021;39:462–471. doi: 10.1038/s41587-020-0740-8. PubMed DOI
Ludwig M, et al. Database-independent molecular formula annotation using Gibbs sampling through ZODIAC. Nat. Mach. Intell. 2020;2:629–641. doi: 10.1038/s42256-020-00234-6. DOI
Dührkop K, et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods. 2019;16:299–302. doi: 10.1038/s41592-019-0344-8. PubMed DOI
Landgraf RR, Prieto Conaway MC, Garrett TJ, Stacpoole PW, Yost RA. Imaging of lipids in spinal cord using intermediate pressure matrix-assisted laser desorption-linear ion trap/Orbitrap MS. Anal. Chem. 2009;81:8488–8495. doi: 10.1021/ac901387u. PubMed DOI PMC
Perdian DC, Lee YJ. Imaging MS methodology for more chemical information in less data acquisition time utilizing a hybrid linear ion trap-orbitrap mass spectrometer. Anal. Chem. 2010;82:9393–9400. doi: 10.1021/ac102017q. PubMed DOI
OuYang C, Chen B, Li L. High throughput in situ DDA analysis of neuropeptides by coupling novel multiplex mass spectrometric imaging (MSI) with gas-phase fractionation. J. Am. Soc. Mass Spectrom. 2015;26:1992–2001. doi: 10.1007/s13361-015-1265-0. PubMed DOI PMC
Hansen RL, Lee YJ. Overlapping MALDI-mass spectrometry imaging for in-parallel MS and MS/MS data acquisition without sacrificing spatial resolution. J. Am. Soc. Mass Spectrom. 2017;28:1910–1918. doi: 10.1007/s13361-017-1699-7. PubMed DOI
Ellis SR, et al. Automated, parallel mass spectrometry imaging and structural identification of lipids. Nat. Methods. 2018;15:515–518. doi: 10.1038/s41592-018-0010-6. PubMed DOI
Trim PJ, et al. Matrix-assisted laser desorption/ionization-ion mobility separation-mass spectrometry imaging of vinblastine in whole body tissue sections. Anal. Chem. 2008;80:8628–8634. doi: 10.1021/ac8015467. PubMed DOI
Lanekoff I, et al. High-speed tandem mass spectrometric in situ imaging by nanospray desorption electrospray ionization mass spectrometry. Anal. Chem. 2013;85:9596–9603. doi: 10.1021/ac401760s. PubMed DOI PMC
Skowronek P, et al. Rapid and in-depth coverage of the (phospho-)proteome with deep libraries and optimal window design for dia-PASEF. Mol. Cell. Proteom. 2022;21:100279. doi: 10.1016/j.mcpro.2022.100279. PubMed DOI PMC
Meier F, Park MA, Mann M. Trapped ion mobility spectrometry and parallel accumulation-serial fragmentation in proteomics. Mol. Cell. Proteom. 2021;20:100138. doi: 10.1016/j.mcpro.2021.100138. PubMed DOI PMC
Helmer PO, Behrens A, Rudt E, Karst U, Hayen H. Hydroperoxylated vs dihydroxylated lipids: differentiation of isomeric cardiolipin oxidation products by multidimensional separation techniques. Anal. Chem. 2020;92:12010–12016. doi: 10.1021/acs.analchem.0c02605. PubMed DOI
Drakopoulou SK, Damalas DE, Baessmann C, Thomaidis NS. Trapped ion mobility incorporated in LC-HRMS workflows as an integral analytical platform of high sensitivity: targeted and untargeted 4D-metabolomics in extra virgin olive oil. J. Agric. Food Chem. 2021;69:15728–15737. doi: 10.1021/acs.jafc.1c04789. PubMed DOI
Fernandez-Lima FA, Kaplan DA, Park MA. Note: integration of trapped ion mobility spectrometry with mass spectrometry. Rev. Sci. Instrum. 2011;82:126106. doi: 10.1063/1.3665933. PubMed DOI PMC
Fernandez-Lima, F., Kaplan, D. A., Suetering, J. & Park, M. A. Gas-phase separation using a trapped ion mobility spectrometer. Int. J. Ion Mobil. Spectrom. 14, 93–98 (2011). PubMed PMC
Meier F, et al. Online parallel accumulation–serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer *. Mol. Cell. Proteom. 2018;17:2534–2545. doi: 10.1074/mcp.TIR118.000900. PubMed DOI PMC
Meier F, et al. Parallel accumulation-serial fragmentation (PASEF): multiplying sequencing speed and sensitivity by synchronized scans in a trapped ion mobility device. J. Proteome Res. 2015;14:5378–5387. doi: 10.1021/acs.jproteome.5b00932. PubMed DOI
Meier F, et al. diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition. Nat. Methods. 2020;17:1229–1236. doi: 10.1038/s41592-020-00998-0. PubMed DOI
Lesur A, et al. Highly multiplexed targeted proteomics acquisition on a TIMS-QTOF. Anal. Chem. 2021;93:1383–1392. doi: 10.1021/acs.analchem.0c03180. PubMed DOI
Distler, U. et al. midiaPASEF maximizes information content in data-independent acquisition proteomics. bioRxiv, 10.1101/2023.01.30.526204 (2023).
Szyrwiel, L., Sinn, L., Ralser, M. & Demichev, V. Slice-PASEF: fragmenting all ions for maximum sensitivity in proteomics. bioRxiv, 10.1101/2022.10.31.514544 (2022).
Skowronek P, et al. Synchro-PASEF allows precursor-specific fragment ion extraction and interference removal in data-independent acquisition. Mol. Cell. Proteom. 2022;22:100489. doi: 10.1016/j.mcpro.2022.100489. PubMed DOI PMC
Wolf C, et al. Mobility-resolved broadband dissociation and parallel reaction monitoring for laser desorption/ionization-mass spectrometry—Tattoo pigment identification supported by trapped ion mobility spectrometry. Anal. Chim. Acta. 2023;1242:340796. doi: 10.1016/j.aca.2023.340796. PubMed DOI
Eiersbrock FB, Orthen JM, Soltwisch J. Validation of MALDI-MS imaging data of selected membrane lipids in murine brain with and without laser postionization by quantitative nano-HPLC-MS using laser microdissection. Anal. Bioanal. Chem. 2020;412:6875–6886. doi: 10.1007/s00216-020-02818-y. PubMed DOI PMC
Burnum KE, et al. Spatial and temporal alterations of phospholipids determined by mass spectrometry during mouse embryo implantation. J. Lipid Res. 2009;50:2290–2298. doi: 10.1194/jlr.M900100-JLR200. PubMed DOI PMC
Hankin JA, Murphy RC. Relationship between MALDI IMS intensity and measured quantity of selected phospholipids in rat brain sections. Anal. Chem. 2010;82:8476–8484. doi: 10.1021/ac101079v. PubMed DOI PMC
Helmer PO, et al. Complementing matrix-assisted laser desorption ionization-mass spectrometry imaging with chromatography data for improved assignment of isobaric and isomeric phospholipids utilizing trapped ion mobility-mass spectrometry. Anal. Chem. 2021;93:2135–2143. doi: 10.1021/acs.analchem.0c03942. PubMed DOI
Schmid R, et al. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat. Biotechnol. 2023;41:447–449. doi: 10.1038/s41587-023-01690-2. PubMed DOI PMC
Pulfer M, Murphy RC. Electrospray mass spectrometry of phospholipids. Mass Spectrom. Rev. 2003;22:332–364. doi: 10.1002/mas.10061. PubMed DOI
Korf A, Jeck V, Schmid R, Helmer PO, Hayen H. Lipid species annotation at double bond position level with custom databases by extension of the MZmine 2 open-source software package. Anal. Chem. 2019;91:5098–5105. doi: 10.1021/acs.analchem.8b05493. PubMed DOI
Liebisch G, et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res. 2020;61:1539–1555. doi: 10.1194/jlr.S120001025. PubMed DOI PMC
Groessl M, Graf S, Knochenmuss R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst. 2015;140:6904–6911. doi: 10.1039/C5AN00838G. PubMed DOI
Zhou Z, Tu J, Xiong X, Shen X, Zhu Z-J. LipidCCS: prediction of collision cross-section values for lipids with high precision to support ion mobility-mass spectrometry-based lipidomics. Anal. Chem. 2017;89:9559–9566. doi: 10.1021/acs.analchem.7b02625. PubMed DOI
Zheng X, et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 2017;8:7724–7736. doi: 10.1039/C7SC03464D. PubMed DOI PMC
Wang J, et al. MALDI-TOF MS imaging of metabolites with a N-(1-naphthyl) ethylenediamine dihydrochloride matrix and its application to colorectal cancer liver metastasis. Anal. Chem. 2015;87:422–430. doi: 10.1021/ac504294s. PubMed DOI
Heuckeroth, S. SteffenHeu/simsef_py: SIMSEF v1.0.0. Zenodo10.5281/ZENODO.8009939 (2023).
Xi Y, et al. SMART: a data reporting standard for mass spectrometry imaging. J. Mass Spectrom. 2023;58:e4904. doi: 10.1002/jms.4904. PubMed DOI PMC