MALDI MS Imaging at Acquisition Rates Exceeding 100 Pixels per Second

. 2019 Feb ; 30 (2) : 289-298. [epub] 20181119

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30456596

Grantová podpora
MUNI/G/0974/2016 Grantová Agentura Masarykovy Univerzity (CZ)
15-05387S Grantová Agentura České Republiky
LQ1601 Ministerstvo Školství, Mládeže a Tělovýchovy
LQ1605 Ministerstvo Školství, Mládeže a Tělovýchovy
LO1202 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 30456596
DOI 10.1007/s13361-018-2078-8
PII: 10.1007/s13361-018-2078-8
Knihovny.cz E-zdroje

The practicality of matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) applied to molecular imaging of biological tissues is limited by the analysis speed. Typically, a relatively low speed of stop-and-go micromotion of XY stages is considered as a factor substantially reducing the rate with which fresh sample material can be supplied to the laser spot. The sample scan rate in our laboratory-built high-throughput imaging TOF mass spectrometer was significantly improved through the use of a galvanometer-based optical scanner performing fast laser spot repositioning on a target plate. The optical system incorporated into the ion source of our MALDI TOF mass spectrometer allowed focusing the laser beam via a modified grid into a 10-μm round spot. This permitted the acquisition of high-resolution MS images with a well-defined pixel size at acquisition rates exceeding 100 pixel/s. The influence of selected parameters on the total MS imaging time is discussed. The new scanning technique was employed to display the distribution of an antitumor agent in 3D colorectal adenocarcinoma cell aggregates; a single MS image comprising 100 × 100 pixels with 10-μm lateral resolution was recorded in approximately 70 s. Graphical Abstract.

Zobrazit více v PubMed

Nat Methods. 2017 Jan;14(1):90-96 PubMed

J Am Soc Mass Spectrom. 2017 Mar;28(3):434-442 PubMed

Anal Chem. 2017 Aug 15;89(16):8453-8458 PubMed

Eur J Mass Spectrom (Chichester). 2014;20(5):351-60 PubMed

Methods. 2016 Jul 15;104:21-32 PubMed

Anal Chem. 2017 Sep 5;89(17):9438-9444 PubMed

Rapid Commun Mass Spectrom. 2014 Aug 15;28(15):1649-57 PubMed

J Mass Spectrom. 2014 May;49(5):417-22 PubMed

Anal Chem. 2017 Jul 18;89(14):7493-7501 PubMed

Nat Methods. 2008 Jan;5(1):101-8 PubMed

Cancer Lett. 1998 Sep 11;131(1):29-34 PubMed

Rapid Commun Mass Spectrom. 2015 Dec 15;29(23):2195-203 PubMed

Proteomics. 2016 Jun;16(11-12):1678-89 PubMed

J Mass Spectrom. 2015 Apr;50(4):703-10 PubMed

Anal Bioanal Chem. 2015 Mar;407(8):2255-64 PubMed

J Proteomics. 2012 Aug 30;75(16):5106-5110 PubMed

Proteomics. 2016 Jun;16(11-12):1814-21 PubMed

Anal Chem. 2017 Dec 5;89(23):12641-12645 PubMed

Anal Chem. 2014 Jan 21;86(2):982-6 PubMed

J Am Soc Mass Spectrom. 2015 Jun;26(6):911-4 PubMed

Trends Biotechnol. 2013 Feb;31(2):108-15 PubMed

Science. 1988 Apr 8;240(4849):177-84 PubMed

Anal Chem. 2002 Jan 1;74(1):17-25 PubMed

Rapid Commun Mass Spectrom. 2012 May 15;26(9):1141-6 PubMed

J Am Soc Mass Spectrom. 2007 Sep;18(9):1646-52 PubMed

Science. 2015 Apr 10;348(6231):211-5 PubMed

Anal Chem. 2008 Jul 15;80(14):5648-53 PubMed

Chem Commun (Camb). 2017 Jun 29;53(53):7246-7249 PubMed

Rapid Commun Mass Spectrom. 2010 Feb;24(3):355-64 PubMed

J Am Soc Mass Spectrom. 2011 Jun;22(6):1022-31 PubMed

Anal Chem. 2014 Jan 7;86(1):321-5 PubMed

Anal Chem. 2012 Feb 21;84(4):2048-54 PubMed

J Natl Cancer Inst. 1971 Jan;46(1):113-20 PubMed

Histochem Cell Biol. 2013 Jun;139(6):759-83 PubMed

J Am Soc Mass Spectrom. 2012 Oct;23(10):1679-88 PubMed

Anal Chem. 2006 Feb 1;78(3):912-9 PubMed

J Am Soc Mass Spectrom. 2015 Jun;26(6):850-2 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...