Fate of Gold Nanoparticles in Laser Desorption/Ionization Mass Spectrometry: Toward the Imaging of Individual Nanoparticles

. 2023 Apr 05 ; 34 (4) : 570-578. [epub] 20230314

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36917818

This study focuses on mapping the spatial distribution of Au nanoparticles (NPs) by laser desorption/ionization mass spectrometry imaging (LDI MSI). Laser interaction with NPs and associated phenomena, such as change of shape, melting, migration, and release of Au ions, are explored at the single particle level. Arrays of dried droplets containing low numbers of spatially segregated NPs were reproducibly prepared by automated drop-on-demand piezo-dispensing and analyzed by LDI MSI using an ultrahigh resolution orbital trapping instrument. To enhance the signal from NPs, an in source gas-phase chemical reaction of generated Au ions with xylene was employed. The developed technique allowed the detecting, chemical characterization, and mapping of the spatial distribution of Au NPs; the ion signals were detected from as low as ten 50 nm Au NPs on a pixel. Furthermore, the Au NP melting dynamics under laser irradiation was monitored by correlative atomic force microscopy (AFM) and scanning electron microscopy (SEM). AFM measurements of Au NPs before and after LDI MSI analysis revealed changes in NP shape from a sphere to a half-ellipsoid and total volume reduction of NPs down to 45% of their initial volume.

Zobrazit více v PubMed

Giesen C.; Mairinger T.; Khoury L.; Waentig L.; Jakubowski N.; Panne U. Multiplexed Immunohistochemical Detection of Tumor Markers in Breast Cancer Tissue Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2011, 83 (21), 8177–8183. 10.1021/ac2016823. PubMed DOI

Chu H. W.; Unnikrishnan B.; Anand A.; Mao J. Y.; Huang C. C. Nanoparticle-Based Laser Desorption/Ionization Mass Spectrometric Analysis of Drugs and Metabolites. J. Food Drug Anal. 2018, 26 (4), 1215–1228. 10.1016/j.jfda.2018.07.001. PubMed DOI PMC

Vlcnovska M.; Stossova A.; Kuchynka M.; Dillingerova V.; Polanska H.; Masarik M.; Hrstka R.; Adam V.; Kanicky V.; Vaculovic T.; Vaculovicova M. Comparison of Metal Nanoparticles (Au, Ag, Eu, Cd) Used for Immunoanalysis Using La-Icp-Ms Detection. Molecules 2021, 26 (3), 630.10.3390/molecules26030630. PubMed DOI PMC

Roy C.; Sebok B.; Scott S. B.; Fiordaliso E. M.; Sørensen J. E.; Bodin A.; Trimarco D. B.; Damsgaard C. D.; Vesborg P. C. K.; Hansen O.; Stephens I. E. L.; Kibsgaard J.; Chorkendorff I. Impact of Nanoparticle Size and Lattice Oxygen on Water Oxidation on NiFeOxHy. Nat. Catal. 2018, 1 (11), 820–829. 10.1038/s41929-018-0162-x. DOI

Galazzi R. M.; Chacón-Madrid K.; Freitas D. C.; da Costa L. F.; Arruda M. A. Z. Inductively Coupled Plasma Mass Spectrometry Based Platforms for Studies Involving Nanoparticle Effects in Biological Samples. Rapid Commun. Mass Spectrom. 2020, 34 (S3), 1–14. 10.1002/rcm.8726. PubMed DOI

Buhr E.; Senftleben N.; Klein T.; Bergmann D.; Gnieser D.; Frase C.G.; Bosse H. Characterization of Nanoparticles by Scanning Electron Microscopy in Transmission Mode. Meas. Sci. Technol. 2009, 20 (8), 084025.10.1088/0957-0233/20/8/084025. DOI

Zhou X.; Yang C. T.; Xu Q.; Lou Z.; Xu Z.; Thierry B.; Gu N. Gold Nanoparticle Probe-Assisted Antigen-Counting Chip Using SEM. ACS Appl. Mater. Interfaces 2019, 11 (7), 6769–6776. 10.1021/acsami.8b19055. PubMed DOI

Hoo C. M.; Starostin N.; West P.; Mecartney M. L. Comparison of Atomic Force Microscopy (AFM) and Dynamic Light Scattering (DLS) Methods to Characterize Nanoparticle Size Distributions. J. Nanoparticle Res. 2008, 10 (SUPPL. 1), 89–96. 10.1007/s11051-008-9435-7. DOI

Ostrowski A.; Nordmeyer D.; Boreham A.; Holzhausen C.; Mundhenk L.; Graf C.; Meinke M. C.; Vogt A.; Hadam S.; Lademann J.; Ruhl E.; Alexiev U.; Gruber A. D. Overview about the Localization of Nanoparticles in Tissue and Cellular Context by Different Imaging Techniques. Beilstein J. Nanotechnol. 2015, 6 (1), 263–280. 10.3762/bjnano.6.25. PubMed DOI PMC

Nadort A.; Sreenivasan V. K. A.; Song Z.; Grebenik E.A.; Nechaev A.V.; Semchishen V.A.; Panchenko V.Y.; Zvyagin A.V. Quantitative Imaging of Single Upconversion Nanoparticles in Biological Tissue. PLoS One 2013, 8 (5), e63292.10.1371/journal.pone.0063292. PubMed DOI PMC

Delvallée A.; Feltin N.; Ducourtieux S.; Trabelsi M.; Hochepied J.F. Comparison of AFM and SEM Measurements on the Same Set of Nanoparticles. Meas. Sci. Technol. 2015, 26 (8), 085601.10.1088/0957-0233/26/8/085601. DOI

Delvallée A.; Oulalite N.; Crouzier L.; Ducourtieux S.; Lambeng N.; Amor W.; Bouzakher Ghomrasni N.; Feltin N.; Viot A.; Jamet C. Correlation of AFM/SEM/EDS Images to Discriminate Several Nanoparticle Populations Mixed in Cosmetics. Microsc. Today 2021, 29 (3), 46–51. 10.1017/S1551929521000638. DOI

Montaño M. D.; Olesik J. W.; Barber A. G.; Challis K.; Ranville J. F. Single Particle ICP-MS: Advances toward Routine Analysis of Nanomaterials. Anal. Bioanal. Chem. 2016, 408 (19), 5053–5074. 10.1007/s00216-016-9676-8. PubMed DOI

Benešová I.; Dlabková K.; Zelenák F.; Vaculovič T.; Kanický V.; Preisler J. Direct Analysis of Gold Nanoparticles from Dried Droplets Using Substrate-Assisted Laser Desorption Single Particle-ICPMS. Anal. Chem. 2016, 88 (5), 2576–2582. 10.1021/acs.analchem.5b02421. PubMed DOI

Yamashita S.; Yoshikuni Y.; Obayashi H.; Suzuki T.; Green D.; Hirata T. Simultaneous Determination of Size and Position of Silver and Gold Nanoparticles in Onion Cells Using Laser Ablation-ICP-MS. Anal. Chem. 2019, 91 (7), 4544–4551. 10.1021/acs.analchem.8b05632. PubMed DOI

Luo W.; Li T.; Wang M.; Dai W.; Jiao C.; Ma Y.; Ding Y.; Yang F.; He X.; Zhang Z. Nanoparticles Determination by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. J. Nanosci. Nanotechnol. 2021, 21 (11), 5436–5442. 10.1166/jnn.2021.19476. PubMed DOI

Metarapi D.; Šala M.; Vogel-Mikuš K.; Šelih V. S.; Van Elteren J. T. Nanoparticle Analysis in Biomaterials Using Laser Ablation-Single Particle-Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2019, 91 (9), 6200–6205. 10.1021/acs.analchem.9b00853. PubMed DOI PMC

Stiborek M.; Jindřichová L.; Meliorisová S.; Bednařík A.; Prysiazhnyi V.; Kroupa J.; Houška P.; Adamová B.; Navrátilová J.; Kanický V.; Preisler J. Infrared Laser Desorption of Intact Nanoparticles for Digital Tissue Imaging. Anal. Chem. 2022, 94, 18114.10.1021/acs.analchem.2c05216. PubMed DOI

Song K.; Cheng Q. Desorption and Ionization Mechanisms and Signal Enhancement in Surface Assisted Laser Desorption Ionization Mass Spectrometry (SALDI-MS). Appl. Spectrosc. Rev. 2019, 0 (0), 1–23. 10.1080/05704928.2019.1570519. DOI

Lai H. Z.; Wang S. G.; Wu C. Y.; Chen Y. C. Detection of Staphylococcus Aureus by Functional Gold Nanoparticle-Based Affinity Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 2015, 87 (4), 2114–2120. 10.1021/ac503097v. PubMed DOI

Muko D.; Ikenaga T.; Kasai M.; Rabor J. B.; Nishitani A.; Niidome Y. Imaging Mass Spectrometry of Gold Nanoparticles in a Tissue Section as an Immunohistochemical Staining Mass Probe. J. Mass Spectrom. 2019, 54 (1), 1–6. 10.1002/jms.4290. PubMed DOI

Müller W. H.; Verdin A.; De Pauw E.; Malherbe C.; Eppe G. Surface-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging: A Review. Mass Spectrom. Rev. 2022, 41 (3), 373–420. 10.1002/mas.21670. PubMed DOI PMC

Muller L.; Kailas A.; Jackson S. N.; Roux A.; Barbacci D. C.; Schultz J. A.; Balaban C. D.; Woods A. S. Lipid Imaging within the Normal Rat Kidney Using Silver Nanoparticles by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Kidney Int. 2015, 88 (1), 186–192. 10.1038/ki.2015.3. PubMed DOI PMC

Zhu Z.-J.; Ghosh P. S.; Miranda O. R.; Vachet R. W.; Rotello V. M. Multiplexed Screening of Cellular Uptake of Gold Nanoparticles Using Laser Desorption/Ionization Mass Spectrometry. J. Am. Chem. Soc. 2008, 130 (43), 14139–14143. 10.1021/ja805392f. PubMed DOI PMC

Yan B.; Kim S. T.; Kim C. S.; Saha K.; Moyano D. F.; Xing Y.; Jiang Y.; Roberts A. L.; Alfonso F. S.; Rotello V. M.; Vachet R. W. Multiplexed Imaging of Nanoparticles in Tissues Using Laser Desorption/Ionization Mass Spectrometry. J. Am. Chem. Soc. 2013, 135 (34), 12564–12567. 10.1021/ja406553f. PubMed DOI PMC

Yan B.; Zhu Z.-J.; Miranda O. R.; Chompoosor A.; Rotello V. M.; Vachet R. W. Laser desorption/ionization mass spectrometry analysis of monolayer-protected gold nanoparticles. Anal. Bioanal. Chem. 2010, 396, 1025–1035. 10.1007/s00216-009-3250-6. PubMed DOI

Cazier H.; Malgorn C.; Fresneau N.; Georgin D.; Sallustrau A.; Chollet C.; Tabet J. C.; Campidelli S.; Pinault M.; Mayne M.; Taran F.; Dive V.; Junot C.; Fenaille F.; Colsch B. Development of a Mass Spectrometry Imaging Method for Detecting and Mapping Graphene Oxide Nanoparticles in Rodent Tissues. J. Am. Soc. Mass Spectrom. 2020, 31 (5), 1025–1036. 10.1021/jasms.9b00070. PubMed DOI

Schaaff G. T. Laser Desorption and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of 29-kDa Au:SR Cluster Compounds. Anal. Chem. 2004, 76 (21), 6187–6196. 10.1021/ac0353482. PubMed DOI

Tsunoyama H.; Negishi Y.; Tsukuda T. Chromatographic Isolation of “Missing” Au55 Clusters Protected by Alkanethiolates. J. Am. Chem. Soc. 2006, 128 (18), 6036–6037. 10.1021/ja061659t. PubMed DOI

Navin J. K.; Grass M. E.; Somorjai G. A.; Marsh A. L. Characterization of Colloidal Platinum Nanoparticles by MALDI-TOF Mass Spectrometry. Anal. Chem. 2009, 81, 6295.10.1021/ac900309z. DOI

Kim B. H.; Shin K.; Kwon S. G.; Jang Y.; Lee H. S.; Lee H.; Jun S. W.; Lee J.; Han S. Y.; Yim Y. H.; Kim D. H.; Hyeon T. Sizing by Weighing: Characterizing Sizes of Ultrasmall-Sized Iron Oxide Nanocrystals Using MALDI-TOF Mass Spectrometry. J. Am. Chem. Soc. 2013, 135 (7), 2407–2410. 10.1021/ja310030c. PubMed DOI

Prysiazhnyi V.; Dycka F.; Kratochvil J.; Sterba J.; Stranak V. Gas-Aggregated Ag Nanoparticles for Detection of Small Molecules Using LDI MS. Anal. Bioanal. Chem. 2020, 412, 1037–1047. 10.1007/s00216-019-02329-5. PubMed DOI

Nizioł J.; Sunner J.; Beech I.; Ossoliński K.; Ossolińska A.; Ossoliński T.; Płaza A.; Ruman T. Localization of Metabolites of Human Kidney Tissue with Infrared Laser-Based Selected Reaction Monitoring Mass Spectrometry Imaging and Silver-109 Nanoparticle-Based Surface Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Anal. Chem. 2020, 92 (6), 4251–4258. 10.1021/acs.analchem.9b04580. PubMed DOI PMC

Prysiazhnyi V.; Dycka F.; Kratochvil J.; Stranak V.; Po-pok V. N. Effect of Ag Nanoparticle Size on Ion Formation in Nanoparti-cle Assisted LDI MS. Appl. Nano 2020, 1 (1), 3–13. 10.3390/applnano1010002. DOI

Eliezer S.; Eliaz N.; Grossman E.; Fisher D.; Gouzman I.; Henis Z.; Pecker S.; Horovitz Y.; Fraenkel M.; Maman S.; Lereah Y. Synthesis of Nanoparticles with Femtosecond Laser Pulses. Phys. Rev. B - Condens. Matter Mater. Phys. 2004, 69 (14), 1–6. 10.1103/PhysRevB.69.144119. DOI

Ko S. H.; Pan H.; Grigoropoulos C. P.; Luscombe C. K.; Frechet J. M. J.; Poulikakos D. Air Stable High Resolution Organic Transistors by Selective Laser Sintering of Ink-Jet Printed Metal Nanoparticles. Appl. Phys. Lett. 2007, 90 (14), 141103.10.1063/1.2719162. DOI

Asadi S.; Bianchi L.; De Landro M.; Korganbayev S.; Schena E.; Saccomandi P. Laser-Induced Optothermal Response of Gold Nanoparticles: From a Physical Viewpoint to Cancer Treatment Application. J. Biophotonics 2021, 14 (2), e202000161.10.1002/jbio.202000161. PubMed DOI

Hashimoto S.; Werner D.; Uwada T. Studies on the Interaction of Pulsed Lasers with Plasmonic Gold Nanoparticles toward Light Manipulation, Heat Management, and Nanofabrication. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13 (1), 28–54. 10.1016/j.jphotochemrev.2012.01.001. DOI

Foster D. M.; Pavloudis T.; Kioseoglou J.; Palmer R. E. Atomic-Resolution Imaging of Surface and Core Melting in Individual Size-Selected Au Nanoclusters on Carbon. Nat. Commun. 2019, 10 (1), 1–8. 10.1038/s41467-019-10713-z. PubMed DOI PMC

Ingham B. X-Ray Scattering Characterisation of Nanoparticles. Crystallogr. Rev. 2015, 21 (4), 229–303. 10.1080/0889311X.2015.1024114. DOI

Pustovalov V. K. Light-to-Heat Conversion and Heating of Single Nanoparticles, Their Assemblies, and the Surrounding Medium under Laser Pulses. RSC Adv. 2016, 6 (84), 81266–81289. 10.1039/C6RA11130K. DOI

Wang N.; Rokhlin S. I.; Farson D. F. Ultrafast Laser Melting of Au Nanoparticles: Atomistic Simulations. J. Nanoparticle Res. 2011, 13 (10), 4491–4509. 10.1007/s11051-011-0402-3. DOI

Sassaroli E.; Li K. C. P.; O’Neill B. E. Numerical Investigation of Heating of a Gold Nanoparticle and the Surrounding Microenvironment by Nanosecond Laser Pulses for Nanomedicine Applications. Phys. Med. Biol. 2009, 54 (18), 5541–5560. 10.1088/0031-9155/54/18/013. PubMed DOI

McLean J. A.; Stumpo K. A.; Russell D. H. Size-Selected (2–10 nm) Gold Nanoparticles for Matrix Assisted Laser Desorption Ionization of Peptides. J. Am. Chem. Soc. 2005, 127 (15), 5304–5305. 10.1021/ja043907w. PubMed DOI

Levitas V.I.; Samani K. Size and Mechanics Effects in Surface-Induced Melting of Nanoparticles. Nat. Commun. 2011, 2 (1), 284.10.1038/ncomms1275. PubMed DOI

Prysiazhnyi V.; Dycka F.; Kratochvil J.; Stranak V.; Popok V. N. Effect of Ag Nanoparticle Size on Ion Formation in Nanoparticle Assisted LDI MS. Appl. Nano 2020, 1 (1), 3–13. 10.3390/applnano1010002. DOI

Bednařík A.; Prysiazhnyi V.; Preisler J. Metal Ionization in Sub-Atmospheric Pressure MALDI Interface: A New Tool for Mass Spectrometry of Volatile Organic Compounds. Anal. Chem. 2021, 93 (27), 9445–9453. 10.1021/acs.analchem.1c01124. PubMed DOI

Moon S.; Kim Y.G.; Dong L.; Lombardi M.; Haeggstrom E.; Jensen R.V.; Hsiao L.L.; Demirci U. Drop-on-Demand Single Cell Isolation and Total RNA Analysis. PLoS One 2011, 6 (3), e17455.10.1371/journal.pone.0017455. PubMed DOI PMC

Patterson J. P.; Parent L. R.; Cantlon J.; Eickhoff H.; Bared G.; Evans J. E.; Gianneschi N. C. Picoliter Drop-On-Demand Dispensing for Multiplex Liquid Cell Transmission Electron Microscopy. Microsc. Microanal. 2016, 22 (3), 507–514. 10.1017/S1431927616000659. PubMed DOI PMC

Cazaux J. Material Contrast in SEM: Fermi Energy and Work Function Effects. Ultramicroscopy 2010, 110 (3), 242–253. 10.1016/j.ultramic.2009.12.002. PubMed DOI

Bednařík A.; Machálková M.; Moskovets E.; Coufalíková K.; Krásenský P.; Houška P.; Kroupa J.; Navrátilová J.; Šmarda J.; Preisler J. MALDI MS Imaging at Acquisition Rates Exceeding 100 Pixels per Second. J. Am. Soc. Mass Spectrom. 2019, 30 (2), 289–298. 10.1007/s13361-018-2078-8. PubMed DOI

Wiegelmann M.; Dreisewerd K.; Soltwisch J. Influence of the Laser Spot Size, Focal Beam Profile, and Tissue Type on the Lipid Signals Obtained by MALDI-MS Imaging in Oversampling Mode. J. Am. Soc. Mass Spectrom. 2016, 27 (12), 1952–1964. 10.1007/s13361-016-1477-y. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...