• Je něco špatně v tomto záznamu ?

Laboratory acclimation to autumn-like conditions induces freeze tolerance in the spring field cricket Gryllus veletis (Orthoptera: Gryllidae)

J. Toxopeus, AH. McKinnon, T. Štětina, KF. Turnbull, BJ. Sinclair,

. 2019 ; 113 (-) : 9-16. [pub] 20181221

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20006675

Many temperate insects encounter temperatures low enough to freeze their body fluids. Remarkably, some insects are freeze-tolerant, surviving this internal ice formation. However, the mechanisms underlying freeze tolerance are not well-understood, in part due to a lack of tractable model organisms. We describe a novel laboratory model to study insect freeze tolerance, the spring field cricket Gryllus veletis (Orthopera: Gryllidae). Following acclimation to six weeks of decreasing temperature and photoperiod, G. veletis become freeze-tolerant, similar to those exposed to natural autumn conditions in London, Ontario, Canada. Acclimated crickets suppress their metabolic rate by c. 33%, and survive freezing for up to one week at -8 °C, and to temperatures as low as -12 °C. Freeze-tolerant G. veletis protect fat body cells from freeze injury in vivo, and fat body tissue from freeze-tolerant cricket survives brief freeze treatments when frozen ex vivo. Freeze-tolerant crickets freeze at c. -6 °C, which may be initiated by accumulation of ice-nucleating agents in hemolymph or gut tissue. Although we hypothesize that control of ice formation facilitates freeze tolerance, initiating ice formation at high subzero temperatures does not confer freeze tolerance on freeze-intolerant nymphs. Acclimation increases hemolymph osmolality from c. 400 to c. 650 mOsm, which may facilitate freeze tolerance by reducing ice content. Hemolymph ion concentrations do not change with acclimation, and we therefore predict that freeze-tolerant G. veletis elevate hemolymph osmolality by accumulating other molecules. Gryllus veletis is easily reared and manipulated in a controlled laboratory environment, and is therefore a suitable candidate for further investigating the mechanisms underlying freeze tolerance.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20006675
003      
CZ-PrNML
005      
20200518132902.0
007      
ta
008      
200511s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jinsphys.2018.12.007 $2 doi
035    __
$a (PubMed)30582905
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Toxopeus, Jantina $u Department of Biology, University of Western Ontario, 1151 Richmond St N, London, ON N6A 5B7, Canada. Electronic address: jantina.toxopeus@ucdenver.edu.
245    10
$a Laboratory acclimation to autumn-like conditions induces freeze tolerance in the spring field cricket Gryllus veletis (Orthoptera: Gryllidae) / $c J. Toxopeus, AH. McKinnon, T. Štětina, KF. Turnbull, BJ. Sinclair,
520    9_
$a Many temperate insects encounter temperatures low enough to freeze their body fluids. Remarkably, some insects are freeze-tolerant, surviving this internal ice formation. However, the mechanisms underlying freeze tolerance are not well-understood, in part due to a lack of tractable model organisms. We describe a novel laboratory model to study insect freeze tolerance, the spring field cricket Gryllus veletis (Orthopera: Gryllidae). Following acclimation to six weeks of decreasing temperature and photoperiod, G. veletis become freeze-tolerant, similar to those exposed to natural autumn conditions in London, Ontario, Canada. Acclimated crickets suppress their metabolic rate by c. 33%, and survive freezing for up to one week at -8 °C, and to temperatures as low as -12 °C. Freeze-tolerant G. veletis protect fat body cells from freeze injury in vivo, and fat body tissue from freeze-tolerant cricket survives brief freeze treatments when frozen ex vivo. Freeze-tolerant crickets freeze at c. -6 °C, which may be initiated by accumulation of ice-nucleating agents in hemolymph or gut tissue. Although we hypothesize that control of ice formation facilitates freeze tolerance, initiating ice formation at high subzero temperatures does not confer freeze tolerance on freeze-intolerant nymphs. Acclimation increases hemolymph osmolality from c. 400 to c. 650 mOsm, which may facilitate freeze tolerance by reducing ice content. Hemolymph ion concentrations do not change with acclimation, and we therefore predict that freeze-tolerant G. veletis elevate hemolymph osmolality by accumulating other molecules. Gryllus veletis is easily reared and manipulated in a controlled laboratory environment, and is therefore a suitable candidate for further investigating the mechanisms underlying freeze tolerance.
650    12
$a aklimatizace $7 D000064
650    _2
$a zvířata $7 D000818
650    12
$a nízká teplota $7 D003080
650    12
$a zmrazování $7 D005615
650    _2
$a Gryllidae $x růst a vývoj $x fyziologie $7 D006135
650    _2
$a homeostáza $7 D006706
650    _2
$a nymfa $x růst a vývoj $x fyziologie $7 D009758
650    _2
$a roční období $7 D012621
651    _2
$a Ontario $7 D009864
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a McKinnon, Alexander H $u Department of Biology, University of Western Ontario, 1151 Richmond St N, London, ON N6A 5B7, Canada.
700    1_
$a Štětina, Tomáš $u Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 370 05, Czech Republic.
700    1_
$a Turnbull, Kurtis F $u Department of Biology, University of Western Ontario, 1151 Richmond St N, London, ON N6A 5B7, Canada.
700    1_
$a Sinclair, Brent J $u Department of Biology, University of Western Ontario, 1151 Richmond St N, London, ON N6A 5B7, Canada.
773    0_
$w MED00006287 $t Journal of insect physiology $x 1879-1611 $g Roč. 113, č. - (2019), s. 9-16
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30582905 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20200518132901 $b ABA008
999    __
$a ok $b bmc $g 1525533 $s 1096731
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 113 $c - $d 9-16 $e 20181221 $i 1879-1611 $m Journal of insect physiology $n J Insect Physiol $x MED00006287
LZP    __
$a Pubmed-20200511

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...