Detection of Single Ag Nanoparticles Using Laser Desorption/Ionization Mass Spectrometry

. 2023 Jul 05 ; 34 (7) : 1459-1466. [epub] 20230612

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37307240

The detection of a single entity (molecule, cell, particle, etc.) was always a challenging subject. Here we demonstrate the detection of single Ag nanoparticles (NPs) using subatmospheric pressure laser desorption/ionization mass spectrometry (LDI MS). The sample preparation, measurement conditions, generated ions, and limiting experimental factors are discussed here. We detected from 84 to 95% of the deposited 80 nm Ag NPs. The presented LDI MS platform is an alternative to laser ablation inductively coupled plasma mass spectrometry for imaging distribution of individual NPs across the sample surface and has a great potential for multiplexed mapping of low-abundance biomarkers in tissues.

Zobrazit více v PubMed

Yan B.; Kim S. T.; Kim C. S.; Saha K.; Moyano D. F.; Xing Y.; Jiang Y.; Roberts A. L.; Alfonso F. S.; Rotello V. M.; Vachet R. W. Multiplexed Imaging of Nanoparticles in Tissues Using Laser Desorption/Ionization Mass Spectrometry. J. Am. Chem. Soc. 2013, 135 (34), 12564–12567. 10.1021/ja406553f. PubMed DOI PMC

Arami H.; Khandhar A.; Liggitt D.; Krishnan K. M. In Vivo Delivery, Pharmacokinetics, Biodistribution and Toxicity of Iron Oxide Nanoparticles. Chem. Soc. Rev. 2015, 44 (23), 8576.10.1039/C5CS00541H. PubMed DOI PMC

Abdelhamid H. N.; Wu H. F. Gold Nanoparticles Assisted Laser Desorption/Ionization Mass Spectrometry and Applications: From Simple Molecules to Intact Cells. Anal Bioanal Chem. 2016, 408, 4485–4502. 10.1007/s00216-016-9374-6. PubMed DOI

Walt D. R. Optical Methods for Single Molecule Detection and Analysis. Anal. Chem. 2013, 85 (3), 1258.10.1021/ac3027178. PubMed DOI PMC

Montaño M. D.; Olesik J. W.; Barber A. G.; Challis K.; Ranville J. F. Single Particle ICP-MS: Advances toward Routine Analysis of Nanomaterials. Anal Bioanal Chem. 2016 408:19 2016, 408 (19), 5053–5074. 10.1007/s00216-016-9676-8. PubMed DOI

Becker J. S.; Sela H.; Dobrowolska J.; Zoriy M.; Becker J. S. Recent Applications on Isotope Ratio Measurements by ICP-MS and LA-ICP-MS on Biological Samples and Single Particles. Int. J. Mass Spectrom. 2008, 270 (1–2), 1–7. 10.1016/j.ijms.2007.10.008. DOI

Buhr E.; Senftleben N.; Klein T.; Bergmann D.; Gnieser D.; Frase C. G.; Bosse H. Characterization of Nanoparticles by Scanning Electron Microscopy in Transmission Mode. Meas Sci. Technol. 2009, 20 (8), 084025.10.1088/0957-0233/20/8/084025. DOI

Benešová I.; Dlabková K.; Zelenák F.; Vaculovič T.; Kanický V.; Preisler J. Direct Analysis of Gold Nanoparticles from Dried Droplets Using Substrate-Assisted Laser Desorption Single Particle-ICPMS. Anal. Chem. 2016, 88 (5), 2576–2582. 10.1021/acs.analchem.5b02421. PubMed DOI

Li Q.; Wang Z.; Mo J.; Zhang G.; Chen Y.; Huang C. Imaging Gold Nanoparticles in Mouse Liver by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Scientific Reports 2017 7:1 2017, 7 (1), 1–7. 10.1038/s41598-017-03275-x. PubMed DOI PMC

Yamashita S.; Yoshikuni Y.; Obayashi H.; Suzuki T.; Green D.; Hirata T. Simultaneous Determination of Size and Position of Silver and Gold Nanoparticles in Onion Cells Using Laser Ablation-ICP-MS. Anal. Chem. 2019, 91 (7), 4544–4551. 10.1021/acs.analchem.8b05632. PubMed DOI

Metarapi D.; Šala M.; Vogel-Mikuš K.; Šelih V. S.; van Elteren J. T. Nanoparticle Analysis in Biomaterials Using Laser Ablation-Single Particle-Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2019, 91 (9), 6200–6205. 10.1021/acs.analchem.9b00853. PubMed DOI PMC

Stiborek M.; Jindřichová L.; Meliorisová S.; Bednařík A.; Prysiazhnyi V.; Kroupa J.; Houška P.; Adamová B.; Navrátilová J.; Kanický V.; Preisler J. Infrared Laser Desorption of Intact Nanoparticles for Digital Tissue Imaging. Anal. Chem. 2022, 94, 18114.10.1021/acs.analchem.2c05216. PubMed DOI

Tanaka K.; Waki H.; Ido Y.; Akita S.; Yoshida Y.; Yoshida T.; Matsuo T. Protein and Polymer Analyses up to m/z 100 000 by Laser Ionization Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 1988, 2 (8), 151–153. 10.1002/rcm.1290020802. DOI

Chu H. W.; Lai C. S.; Ko J. Y.; Harroun S. G.; Chuang C. I.; Wang R. Y. L.; Unnikrishnan B.; Huang C. C. Nanoparticle-Based LDI-MS Immunoassay for the Multiple Diagnosis of Viral Infections. ACS Sens 2019, 4 (6), 1543–1551. 10.1021/acssensors.9b00054. PubMed DOI

Tseng Y. T.; Harroun S. G.; Wu C. W.; Mao J. Y.; Chang H. T.; Huang C. C. Satellite-like Gold Nanocomposites for Targeted Mass Spectrometry Imaging of Tumor Tissues. Nanotheranostics 2017, 1 (2), 141–153. 10.7150/ntno.18897. PubMed DOI PMC

Nizioł J.; Sunner J.; Beech I.; Ossoliński K.; Ossolińska A.; Ossoliński T.; Płaza A.; Ruman T. Localization of Metabolites of Human Kidney Tissue with Infrared Laser-Based Selected Reaction Monitoring Mass Spectrometry Imaging and Silver-109 Nanoparticle-Based Surface Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Anal. Chem. 2020, 92 (6), 4251–4258. 10.1021/acs.analchem.9b04580. PubMed DOI PMC

Mohammadi A. S.; Phan N. T. N.; Fletcher J. S.; Ewing A. G. Intact Lipid Imaging of Mouse Brain Samples: MALDI, Nanoparticle-Laser Desorption Ionization, and 40 KeV Argon Cluster Secondary Ion Mass Spectrometry. Anal Bioanal Chem. 2016, 408 (24), 6857–6868. 10.1007/s00216-016-9812-5. PubMed DOI PMC

Muller L.; Baldwin K.; Barbacci D. C.; Jackson S. N.; Roux A.; Balaban C. D.; Brinson B. E.; McCully M. I.; Lewis E. K.; Schultz J. A.; Woods A. S. Laser Desorption/Ionization Mass Spectrometric Imaging of Endogenous Lipids from Rat Brain Tissue Implanted with Silver Nanoparticles. J. Am. Soc. Mass Spectrom. 2017, 28 (8), 1716–1728. 10.1007/s13361-017-1665-4. PubMed DOI PMC

Muller L.; Kailas A.; Jackson S. N.; Roux A.; Barbacci D. C.; Schultz J. A.; Balaban C. D.; Woods A. S. Lipid Imaging within the Normal Rat Kidney Using Silver Nanoparticles by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Kidney Int. 2015, 88 (1), 186–192. 10.1038/ki.2015.3. PubMed DOI PMC

Kim B. H.; Shin K.; Kwon S. G.; Jang Y.; Lee H. S.; Lee H.; Jun S. W.; Lee J.; Han S. Y.; Yim Y. H.; Kim D. H.; Hyeon T. Sizing by Weighing: Characterizing Sizes of Ultrasmall-Sized Iron Oxide Nanocrystals Using MALDI-TOF Mass Spectrometry. J. Am. Chem. Soc. 2013, 135 (7), 2407–2410. 10.1021/ja310030c. PubMed DOI

Schaaff T. G. Laser Desorption and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of 29-KDa Au:SR Cluster Compounds. Anal. Chem. 2004, 76 (21), 6187–6196. 10.1021/ac0353482. PubMed DOI

Tsunoyama H.; Negishi Y.; Tsukuda T. Chromatographic Isolation of “Missing” Au 55 Clusters Protected by Alkanethiolates. J. Am. Chem. Soc. 2006, 128, 6036.10.1021/ja061659t. PubMed DOI

Tam T. S. C.; Cheng Y. H.; Lok C. N.; Au-Yeung H. Y.; Ni W. X.; Wei X. L.; Ng K. M. Surface Optimization of Gold Nanoparticle Mass Tags for the Sensitive Detection of Protein Biomarkers via Immuno-Capture LI-MS. Analyst 2020, 145 (19), 6237–6242. 10.1039/D0AN01121E. PubMed DOI

Yan B.; Zhu Z. J.; Miranda O. R.; Chompoosor A.; Rotello V. M.; Vachet R. W. Laser Desorption/Ionization Mass Spectrometry Analysis of Monolayer-Protected Gold Nanoparticles. Anal Bioanal Chem. 2010, 396 (3), 1025–1035. 10.1007/s00216-009-3250-6. PubMed DOI

Prysiazhnyi V.; Bednařík A.; Zalud M.; Hegrová V.; Neuman J.; Preisler J. Fate of Gold Nanoparticles in Laser Desorption/Ionization Mass Spectrometry: Toward the Imaging of Individual Nanoparticles. J. Am. Soc. Mass Spectrom. 2023, 34, 570.10.1021/jasms.2c00300. PubMed DOI PMC

Jiang Y.; Sun J.; Cao X.; Liu H.; Xiong C.; Nie Z. Laser Desorption/Ionization Mass Spectrometry Imaging: A New Tool to See through Nanoscale Particles in Biological Systems. Chem. Eur. J. 2022, 28 (13), e20210371010.1002/chem.202103710. PubMed DOI

Bokhart M. T.; Nazari M.; Garrard K. P.; Muddiman D. C. MSiReader v1.0: Evolving Open-Source Mass Spectrometry Imaging Software for Targeted and Untargeted Analyses. J. Am. Soc. Mass Spectrom. 2018, 29 (1), 8–16. 10.1007/s13361-017-1809-6. PubMed DOI PMC

Molecular Mass Calculator - Christoph Gohlke. https://www.lfd.uci.edu/~gohlke/molmass (accessed 2022-03-14).

Kang W. Y.; Thompson P. T.; El-Amouri S. S.; Fan T. W. M.; Lane A. N.; Higashi R. M. Improved Segmented-Scan Spectral Stitching for Stable Isotope Resolved Metabolomics by Ultra-High-Resolution Fourier Transform Mass Spectrometry. Anal. Chim. Acta 2019, 1080, 104.10.1016/j.aca.2019.06.019. PubMed DOI PMC

Zubarev R. A.; Makarov A. Orbitrap Mass Spectrometry. Anal. Chem. 2013, 85 (11), 5288–5296. 10.1021/ac4001223. PubMed DOI

Lange O.; Damoc E.; Wieghaus A.; Makarov A. Enhanced Fourier Transform for Orbitrap Mass Spectrometry. Int. J. Mass Spectrom. 2014, 369, 16–22. 10.1016/j.ijms.2014.05.019. DOI

Makonnen Y.; Burgener J.; Beauchemin D. Improvement of Analytical Performance in Inductively Coupled Plasma Optical Emission Spectrometry without Compromising Robustness Using an Infrared-Heated Sample Introduction System with a Pneumatic Nebulizer. J. Anal At Spectrom 2015, 30 (1), 214–224. 10.1039/C4JA00258J. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Digital Immunoassay for Biomarker Detection Based on Single-Particle Laser Ablation ICP MS

. 2025 Jul 08 ; 97 (26) : 13832-13839. [epub] 20250624

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...