Detection of Single Ag Nanoparticles Using Laser Desorption/Ionization Mass Spectrometry
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37307240
PubMed Central
PMC10326916
DOI
10.1021/jasms.3c00137
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The detection of a single entity (molecule, cell, particle, etc.) was always a challenging subject. Here we demonstrate the detection of single Ag nanoparticles (NPs) using subatmospheric pressure laser desorption/ionization mass spectrometry (LDI MS). The sample preparation, measurement conditions, generated ions, and limiting experimental factors are discussed here. We detected from 84 to 95% of the deposited 80 nm Ag NPs. The presented LDI MS platform is an alternative to laser ablation inductively coupled plasma mass spectrometry for imaging distribution of individual NPs across the sample surface and has a great potential for multiplexed mapping of low-abundance biomarkers in tissues.
Zobrazit více v PubMed
Yan B.; Kim S. T.; Kim C. S.; Saha K.; Moyano D. F.; Xing Y.; Jiang Y.; Roberts A. L.; Alfonso F. S.; Rotello V. M.; Vachet R. W. Multiplexed Imaging of Nanoparticles in Tissues Using Laser Desorption/Ionization Mass Spectrometry. J. Am. Chem. Soc. 2013, 135 (34), 12564–12567. 10.1021/ja406553f. PubMed DOI PMC
Arami H.; Khandhar A.; Liggitt D.; Krishnan K. M. In Vivo Delivery, Pharmacokinetics, Biodistribution and Toxicity of Iron Oxide Nanoparticles. Chem. Soc. Rev. 2015, 44 (23), 8576.10.1039/C5CS00541H. PubMed DOI PMC
Abdelhamid H. N.; Wu H. F. Gold Nanoparticles Assisted Laser Desorption/Ionization Mass Spectrometry and Applications: From Simple Molecules to Intact Cells. Anal Bioanal Chem. 2016, 408, 4485–4502. 10.1007/s00216-016-9374-6. PubMed DOI
Walt D. R. Optical Methods for Single Molecule Detection and Analysis. Anal. Chem. 2013, 85 (3), 1258.10.1021/ac3027178. PubMed DOI PMC
Montaño M. D.; Olesik J. W.; Barber A. G.; Challis K.; Ranville J. F. Single Particle ICP-MS: Advances toward Routine Analysis of Nanomaterials. Anal Bioanal Chem. 2016 408:19 2016, 408 (19), 5053–5074. 10.1007/s00216-016-9676-8. PubMed DOI
Becker J. S.; Sela H.; Dobrowolska J.; Zoriy M.; Becker J. S. Recent Applications on Isotope Ratio Measurements by ICP-MS and LA-ICP-MS on Biological Samples and Single Particles. Int. J. Mass Spectrom. 2008, 270 (1–2), 1–7. 10.1016/j.ijms.2007.10.008. DOI
Buhr E.; Senftleben N.; Klein T.; Bergmann D.; Gnieser D.; Frase C. G.; Bosse H. Characterization of Nanoparticles by Scanning Electron Microscopy in Transmission Mode. Meas Sci. Technol. 2009, 20 (8), 084025.10.1088/0957-0233/20/8/084025. DOI
Benešová I.; Dlabková K.; Zelenák F.; Vaculovič T.; Kanický V.; Preisler J. Direct Analysis of Gold Nanoparticles from Dried Droplets Using Substrate-Assisted Laser Desorption Single Particle-ICPMS. Anal. Chem. 2016, 88 (5), 2576–2582. 10.1021/acs.analchem.5b02421. PubMed DOI
Li Q.; Wang Z.; Mo J.; Zhang G.; Chen Y.; Huang C. Imaging Gold Nanoparticles in Mouse Liver by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Scientific Reports 2017 7:1 2017, 7 (1), 1–7. 10.1038/s41598-017-03275-x. PubMed DOI PMC
Yamashita S.; Yoshikuni Y.; Obayashi H.; Suzuki T.; Green D.; Hirata T. Simultaneous Determination of Size and Position of Silver and Gold Nanoparticles in Onion Cells Using Laser Ablation-ICP-MS. Anal. Chem. 2019, 91 (7), 4544–4551. 10.1021/acs.analchem.8b05632. PubMed DOI
Metarapi D.; Šala M.; Vogel-Mikuš K.; Šelih V. S.; van Elteren J. T. Nanoparticle Analysis in Biomaterials Using Laser Ablation-Single Particle-Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2019, 91 (9), 6200–6205. 10.1021/acs.analchem.9b00853. PubMed DOI PMC
Stiborek M.; Jindřichová L.; Meliorisová S.; Bednařík A.; Prysiazhnyi V.; Kroupa J.; Houška P.; Adamová B.; Navrátilová J.; Kanický V.; Preisler J. Infrared Laser Desorption of Intact Nanoparticles for Digital Tissue Imaging. Anal. Chem. 2022, 94, 18114.10.1021/acs.analchem.2c05216. PubMed DOI
Tanaka K.; Waki H.; Ido Y.; Akita S.; Yoshida Y.; Yoshida T.; Matsuo T. Protein and Polymer Analyses up to m/z 100 000 by Laser Ionization Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 1988, 2 (8), 151–153. 10.1002/rcm.1290020802. DOI
Chu H. W.; Lai C. S.; Ko J. Y.; Harroun S. G.; Chuang C. I.; Wang R. Y. L.; Unnikrishnan B.; Huang C. C. Nanoparticle-Based LDI-MS Immunoassay for the Multiple Diagnosis of Viral Infections. ACS Sens 2019, 4 (6), 1543–1551. 10.1021/acssensors.9b00054. PubMed DOI
Tseng Y. T.; Harroun S. G.; Wu C. W.; Mao J. Y.; Chang H. T.; Huang C. C. Satellite-like Gold Nanocomposites for Targeted Mass Spectrometry Imaging of Tumor Tissues. Nanotheranostics 2017, 1 (2), 141–153. 10.7150/ntno.18897. PubMed DOI PMC
Nizioł J.; Sunner J.; Beech I.; Ossoliński K.; Ossolińska A.; Ossoliński T.; Płaza A.; Ruman T. Localization of Metabolites of Human Kidney Tissue with Infrared Laser-Based Selected Reaction Monitoring Mass Spectrometry Imaging and Silver-109 Nanoparticle-Based Surface Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Anal. Chem. 2020, 92 (6), 4251–4258. 10.1021/acs.analchem.9b04580. PubMed DOI PMC
Mohammadi A. S.; Phan N. T. N.; Fletcher J. S.; Ewing A. G. Intact Lipid Imaging of Mouse Brain Samples: MALDI, Nanoparticle-Laser Desorption Ionization, and 40 KeV Argon Cluster Secondary Ion Mass Spectrometry. Anal Bioanal Chem. 2016, 408 (24), 6857–6868. 10.1007/s00216-016-9812-5. PubMed DOI PMC
Muller L.; Baldwin K.; Barbacci D. C.; Jackson S. N.; Roux A.; Balaban C. D.; Brinson B. E.; McCully M. I.; Lewis E. K.; Schultz J. A.; Woods A. S. Laser Desorption/Ionization Mass Spectrometric Imaging of Endogenous Lipids from Rat Brain Tissue Implanted with Silver Nanoparticles. J. Am. Soc. Mass Spectrom. 2017, 28 (8), 1716–1728. 10.1007/s13361-017-1665-4. PubMed DOI PMC
Muller L.; Kailas A.; Jackson S. N.; Roux A.; Barbacci D. C.; Schultz J. A.; Balaban C. D.; Woods A. S. Lipid Imaging within the Normal Rat Kidney Using Silver Nanoparticles by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Kidney Int. 2015, 88 (1), 186–192. 10.1038/ki.2015.3. PubMed DOI PMC
Kim B. H.; Shin K.; Kwon S. G.; Jang Y.; Lee H. S.; Lee H.; Jun S. W.; Lee J.; Han S. Y.; Yim Y. H.; Kim D. H.; Hyeon T. Sizing by Weighing: Characterizing Sizes of Ultrasmall-Sized Iron Oxide Nanocrystals Using MALDI-TOF Mass Spectrometry. J. Am. Chem. Soc. 2013, 135 (7), 2407–2410. 10.1021/ja310030c. PubMed DOI
Schaaff T. G. Laser Desorption and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of 29-KDa Au:SR Cluster Compounds. Anal. Chem. 2004, 76 (21), 6187–6196. 10.1021/ac0353482. PubMed DOI
Tsunoyama H.; Negishi Y.; Tsukuda T. Chromatographic Isolation of “Missing” Au 55 Clusters Protected by Alkanethiolates. J. Am. Chem. Soc. 2006, 128, 6036.10.1021/ja061659t. PubMed DOI
Tam T. S. C.; Cheng Y. H.; Lok C. N.; Au-Yeung H. Y.; Ni W. X.; Wei X. L.; Ng K. M. Surface Optimization of Gold Nanoparticle Mass Tags for the Sensitive Detection of Protein Biomarkers via Immuno-Capture LI-MS. Analyst 2020, 145 (19), 6237–6242. 10.1039/D0AN01121E. PubMed DOI
Yan B.; Zhu Z. J.; Miranda O. R.; Chompoosor A.; Rotello V. M.; Vachet R. W. Laser Desorption/Ionization Mass Spectrometry Analysis of Monolayer-Protected Gold Nanoparticles. Anal Bioanal Chem. 2010, 396 (3), 1025–1035. 10.1007/s00216-009-3250-6. PubMed DOI
Prysiazhnyi V.; Bednařík A.; Zalud M.; Hegrová V.; Neuman J.; Preisler J. Fate of Gold Nanoparticles in Laser Desorption/Ionization Mass Spectrometry: Toward the Imaging of Individual Nanoparticles. J. Am. Soc. Mass Spectrom. 2023, 34, 570.10.1021/jasms.2c00300. PubMed DOI PMC
Jiang Y.; Sun J.; Cao X.; Liu H.; Xiong C.; Nie Z. Laser Desorption/Ionization Mass Spectrometry Imaging: A New Tool to See through Nanoscale Particles in Biological Systems. Chem. Eur. J. 2022, 28 (13), e20210371010.1002/chem.202103710. PubMed DOI
Bokhart M. T.; Nazari M.; Garrard K. P.; Muddiman D. C. MSiReader v1.0: Evolving Open-Source Mass Spectrometry Imaging Software for Targeted and Untargeted Analyses. J. Am. Soc. Mass Spectrom. 2018, 29 (1), 8–16. 10.1007/s13361-017-1809-6. PubMed DOI PMC
Molecular Mass Calculator - Christoph Gohlke. https://www.lfd.uci.edu/~gohlke/molmass (accessed 2022-03-14).
Kang W. Y.; Thompson P. T.; El-Amouri S. S.; Fan T. W. M.; Lane A. N.; Higashi R. M. Improved Segmented-Scan Spectral Stitching for Stable Isotope Resolved Metabolomics by Ultra-High-Resolution Fourier Transform Mass Spectrometry. Anal. Chim. Acta 2019, 1080, 104.10.1016/j.aca.2019.06.019. PubMed DOI PMC
Zubarev R. A.; Makarov A. Orbitrap Mass Spectrometry. Anal. Chem. 2013, 85 (11), 5288–5296. 10.1021/ac4001223. PubMed DOI
Lange O.; Damoc E.; Wieghaus A.; Makarov A. Enhanced Fourier Transform for Orbitrap Mass Spectrometry. Int. J. Mass Spectrom. 2014, 369, 16–22. 10.1016/j.ijms.2014.05.019. DOI
Makonnen Y.; Burgener J.; Beauchemin D. Improvement of Analytical Performance in Inductively Coupled Plasma Optical Emission Spectrometry without Compromising Robustness Using an Infrared-Heated Sample Introduction System with a Pneumatic Nebulizer. J. Anal At Spectrom 2015, 30 (1), 214–224. 10.1039/C4JA00258J. DOI
Digital Immunoassay for Biomarker Detection Based on Single-Particle Laser Ablation ICP MS