Evidence for hunter-gatherer impacts on raven diet and ecology in the Gravettian of Southern Moravia
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
817564
European Research Council - International
PubMed
37349568
DOI
10.1038/s41559-023-02107-8
PII: 10.1038/s41559-023-02107-8
Knihovny.cz E-zdroje
- MeSH
- dieta MeSH
- dospělí MeSH
- ekologie MeSH
- ekosystém MeSH
- kosti a kostní tkáň MeSH
- lidé MeSH
- vrány * MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The earlier Gravettian of Southern Moravia-the Pavlovian-is notable for the many raven bones (Corvus corax) documented in its faunal assemblages. On the basis of the rich zooarchaeological and settlement data from the Pavlovian, previous work suggested that common ravens were attracted by human domestic activities and subsequently captured by Pavlovian people, presumably for feathers and perhaps food. Here, we report independent δ15N, δ13C and δ34S stable isotope data obtained from 12 adult ravens from the Pavlovian key sites of Předmostí I, Pavlov I and Dolní Věstonice I to test this idea. We show that Pavlovian ravens regularly fed on larger herbivores and especially mammoths, aligning in feeding preferences with contemporaneous Gravettian foragers. We argue that opportunistic-generalist ravens were encouraged by human settlement and carcass provisioning. Our data may thus provide surprisingly early evidence for incipient synanthropism among Palaeolithic ravens. We suggest that anthropogenic manipulation of carrion supply dynamics furnished unique contexts for the emergence of human-oriented animal behaviours, in turn promoting novel human foraging opportunities-dynamics which are therefore important for understanding early hunter-gatherer ecosystem impacts.
Biogeology Research Group Department of Geosciences University of Tübingen Tübingen Germany
Center for Environmental Humanities School of Culture and Society Aarhus University Aarhus Denmark
Department of Archaeology and Heritage Studies Aarhus University Aarhus Denmark
Department of Geosciences and Geography University of Helsinki Helsinki Finland
Moravian Museum Anthropos Institute Brno Czech Republic
Senckenberg Centre for Human Evolution and Palaeoenvironment University of Tübingen Tübingen Germany
Zobrazit více v PubMed
Barton, C. M., Riel-Salvatore, J., Anderies, J. M. & Popescu, G. Modeling human ecodynamics and biocultural interactions in the Late Pleistocene of Western Eurasia. Hum. Ecol. 39, 705–725 (2011). DOI
Bird, R. B. Disturbance, complexity, scale: new approaches to the study of human–environment interactions. Annu. Rev. Anthropol. 44, 241–257 (2015). DOI
Moritz, M. et al. Emergent sustainability in open property regimes. Proc. Natl Acad. Sci. USA 115, 12859–12867 (2018). PubMed DOI PMC
Bliege Bird, R. et al. Fire mosaics and habitat choice in nomadic foragers. Proc. Natl Acad. Sci. USA 117, 12904–12914 (2020). PubMed DOI PMC
Foley, S. F. et al. The Palaeoanthropocene—the beginnings of anthropogenic environmental change. Anthropocene 3, 83–88 (2013). DOI
Erlandson, J. M. & Braje, T. J. Archeology and the Anthropocene. Anthropocene 4, 1–7 (2013). DOI
Boivin, N. L. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016). PubMed DOI PMC
Fox, T., Pope, M. & Ellis, E. C. Engineering the Anthropocene: scalable social networks and resilience building in human evolutionary timescales. Anthr. Rev. 4, 199–215 (2017).
Bocherens, H. The rise of the anthroposphere since 50,000 years: an ecological replacement of megaherbivores by humans in terrestrial ecosystems? Front. Ecol. Evol. 6, 3 (2018).
Hussain, S. T. & Riede, F. Paleoenvironmental humanities: challenges and prospects of writing deep environmental histories. WIREs Clim. Change 11, e667 (2020).
McCorriston, J. & Field, J. S. Anthropocene: A New Introduction to World Prehistory (Thames and Hudson, 2020).
Boivin, N. & Crowther, A. Mobilizing the past to shape a better Anthropocene. Nat. Ecol. Evol. 5, 273–284 (2021). PubMed DOI
Edgeworth, M. Transgressing time: archaeological evidence in/of the Anthropocene. Annu. Rev. Anthropol. 50, 93–108 (2021). DOI
Riel-Salvatore, J. A niche construction perspective on the Middle–Upper Paleolithic transition in Italy. J. Archaeol. Method Theory 17, 323–355 (2010). DOI
Raymond, H. The ecologically noble savage debate. Annu. Rev. Anthropol. 36, 177–190 (2007). DOI
DeLancey An ecological concept of wilderness. Ethics Environ. 17, 25 (2012). DOI
Bliege Bird, R., Bird, D. W., Codding, B. F., Parker, C. H. & Jones, J. H. The ‘fire stick farming’ hypothesis: Australian Aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics. Proc. Natl Acad. Sci. USA 105, 14796–14801 (2008). PubMed DOI PMC
Smith, B. D. General patterns of niche construction and the management of ‘wild’ plant and animal resources by small-scale pre-industrial societies. Philos. Trans. R. Soc. B 366, 836–848 (2011). DOI
Bliege Bird, R. & Nimmo, D. Restore the lost ecological functions of people. Nat. Ecol. Evol. 2, 1050–1052 (2018). PubMed DOI
Moran, E. F. People and Nature: An Introduction to Human Ecological Relations (John Wiley Blackwell, 2017).
Wehi, P. M. & Lord, J. M. Importance of including cultural practices in ecological restoration: biocultural restoration. Conserv. Biol. 31, 1109–1118 (2017). PubMed DOI
Comberti, C., Thornton, T. F., Wyllie de Echeverria, V. & Patterson, T. Ecosystem services or services to ecosystems? Valuing cultivation and reciprocal relationships between humans and ecosystems. Glob. Environ. Change 34, 247–262 (2015). DOI
Rowley-Conwy, P. & Layton, R. Foraging and farming as niche construction: stable and unstable adaptations. Philos. Trans. R. Soc. B 366, 849–862 (2011). DOI
Riede, F. Adaptation and niche construction in human prehistory: a case study from the southern Scandinavian Late Glacial. Philos. Trans. R. Soc. B 366, 793–808 (2011). DOI
Stiner, M. C. & Kuhn, S. L. Are we missing the ‘sweet spot’ between optimality theory and niche construction theory in archaeology? J. Anthropol. Archaeol. 44, 177–184 (2016). DOI
Thompson, J. C., Wright, D. K. & Ivory, S. J. The emergence and intensification of early hunter‐gatherer niche construction. Evol. Anthropol. Issues N. Rev. 30, 17–27 (2021). DOI
O’Connor, T. Animals as Neighbors: The Past and Present of Commensal Species (Michigan State Univ. Press, 2013).
Brown, A. G., Basell, L. S. & Farbstein, R. Eels, beavers, and horses: human niche construction in the European Late Upper Palaeolithic. Proc. Prehist. Soc. 83, 1–22 (2017). DOI
Baumann, C., Bocherens, H., Drucker, D. G. & Conard, N. J. Fox dietary ecology as a tracer of human impact on Pleistocene ecosystems. PLoS ONE 15, e0235692 (2020). PubMed DOI PMC
Bocherens, H. & Drucker, D. G. in Human–Elephant Interactions: From Past to Present (eds Konidaris, G. E. et al.) 249–262 (Tübingen Univ. Press, 2021).
Roebroeks, W. et al. Landscape modification by Last Interglacial Neanderthals. Sci. Adv. 7, eabj5567 (2021). PubMed DOI PMC
Grayson, D. K. The archaeological record of human impacts on animal populations. J. World Prehist. 15, 1–68 (2001). DOI
Jöris, O. & Weninger, B. Coping with the cold: on the climatic context of the Moravian Mid Upper Palaeolithic. The Gravettian along the Danube. Dolnověstonické Stud. 11, 57–70 (2004).
Fewlass, H. et al. Direct radiocarbon dates of mid Upper Palaeolithic human remains from Dolní Věstonice II and Pavlov I, Czech Republic. J. Archaeol. Sci. Rep. 27, 102000 (2019).
Svoboda, J., Novák, M., Sázelová, S. & Demek, J. Pavlov I: a large Gravettian site in space and time. Quat. Int. 406, 95–105 (2016). DOI
Wilczyński, J. et al. New radiocarbon dates for the Late Gravettian in Eastern Central Europe. Radiocarbon 62, 243–259 (2020). DOI
Svoboda, J. Dolní Věstonice--Pavlov: explaining Paleolithic settlements in central Europe (Texas A&M Univ. Press, 2020).
Oliva, M. Dolní Věstonice I (1922–1942): Hans Freising—Karel Absolon—Assien Bohmers (Moravské Zemské Muzeum, 2014).
Pavlov I Southeast: A Window into the Gravettian Lifestyles (Academy of Sciences of the Czech Republic, Institute of Archaeology, 2005).
Svoboda, J. et al. Pavlov VI: an Upper Palaeolithic living unit. Antiquity 83, 282–295 (2009). DOI
Absolon, K. & Klíma, B. Předmostí, ein Mammutjägerplatz in Mähren (Archeologický ústav ČSAV v Brnë, 1977).
Svoboda, J. A. The Gravettian on the Middle Danube. Paléo https://doi.org/10.4000/paleo.607 (2007).
Svoboda, J. Dolní Věstonice II: Chronostratigraphy, Paleoethnology, Paleoanthropology (Academy of Sciences of the Czech Republic, 2016).
Svoboda, J. et al. Pleistocene landslides and mammoth bone deposits: the case of Dolní Věstonice II, Czech Republic. Geoarchaeology 34, 745–758 (2019). DOI
Revedin, A. et al. Thirty thousand-year-old evidence of plant food processing. Proc. Natl Acad. Sci. USA 107, 18815–18819 (2010). PubMed DOI PMC
Revedin, A. et al. New technologies for plant food processing in the Gravettian. Quat. Int. 359–360, 77–88 (2015). DOI
Adovasio, J. M., Soffer, O. & Klíma, B. Upper Palaeolithic fibre technology: interlaced woven finds from Pavlov I, Czech Republic, c. 26,000 years ago. Antiquity 70, 526–534 (1996). DOI
Farbstein, R. Technologies of art: a critical reassessment of Pavlovian art and society, using chaîne opératoire method and theory. Curr. Anthropol. 52, 401–432 (2011). DOI
Verpoorte, A. Places of Art, Traces of Fire. A Contextual Approach to Anthropomorphic Figurines in the Pavlovian (Archaeological Studies Leiden Univ., 2000).
Svoboda, J. et al. Dolní Věstonice IIa: Gravettian microstratigraphy, environment, and the origin of baked clay production in Moravia. Quat. Int. 359–360, 195–210 (2015). DOI
Goutas, N. From stone flaking to grinding: three original Pavlovian antler tools from Moravia (Pavlov I, Czech Republic). Quat. Int. 359–360, 240–260 (2015). DOI
Nývltová Fišáková, M. Seasonality of Gravettian sites in the Middle Danube Region and adjoining areas of Central Europe. Quat. Int. 294, 120–134 (2013). DOI
Beresford-Jones, D. G. et al. Burning wood or burning bone? A reconsideration of flotation evidence from Upper Palaeolithic (Gravettian) sites in the Moravian Corridor. J. Archaeol. Sci. 37, 2799–2811 (2010). DOI
Hussain, S. T. Gazing at owls? Human–strigiform interfaces and their role in the construction of Gravettian lifeworlds in East-Central Europe. Environ. Archaeol. 24, 359–376 (2019). DOI
Bochenski, Z. M. et al. Fowling during the Gravettian: the avifauna of Pavlov I, the Czech Republic. J. Archaeol. Sci. 36, 2655–2665 (2009). DOI
Wojtal, P., Wilczyński, J., Bocheński, Z. M. & Svoboda, J. A. The scene of spectacular feasts: animal remains from Pavlov I south-east, the Czech Republic. Quat. Int. 252, 122–141 (2012). DOI
Wojtal, P., Wilczyński, J., Wertz, K. & Svoboda, J. A. The scene of a spectacular feast (part II): animal remains from Dolní Věstonice II, the Czech Republic. Quat. Int. 466, 194–211 (2018). DOI
Wertz, K., Wilczyński, J. & Tomek, T. Birds in the Pavlovian culture: Dolni Vestonice II, Pavlov I and Pavlov II. Quat. Int. 359–360, 72–76 (2015). DOI
Wertz, K., Wilczyński, J., Tomek, T., Roblickova, M. & Oliva, M. Bird remains from Dolni Vestonice I and Predmosti I (Pavlovian, the Czech Republic). Quat. Int. 421, 190–200 (2016). DOI
Kost, C. & Hussain, S. T. Archaeo-ornithology: towards an archaeology of human–bird interfaces. Environ. Archaeol. 24, 337–358 (2019). DOI
Hussain, S. T. in The Situationality of Human–Animal Relations. Perspectives from Anthropology and Philosophy (eds Breyer, T. & Widlok, T.) 83–112 (transcript Verlag, 2018).
Klegarth, A. R. in The International Encyclopedia of Primatology (eds Bezanson, M. et al.) 1–5 (John Wiley, 2017). https://doi.org/10.1002/9781119179313.wbprim0448
Froiland, S. Finding nature in the unnatural: toward a philosophy of synanthropy. Eukaryon 13, 41–43 (2017).
Johnston, R. F. in Avian Ecology and Conservation in an Urbanizing World (eds Marzluff, J. M., Bowman, R. & Donnelly, R.) 49–67 (Springer, 2001). https://doi.org/10.1007/978-1-4615-1531-9_3
Povolný, D. in Flies and Disease (ed. Greenberg, B.) 16–55 (Princeton Univ. Press, 2019).
Gade, D. W. Shifting synanthropy of the crow in Eastern North America. Geogr. Rev. 100, 152–175 (2010). DOI
Marzluff, J. M. & Angell, T. In the Company of Crows and Ravens (Yale Univ. Press, 2005).
Bocherens, H. & Drucker, D. G. in The Encyclopedia of Quaternary Science (ed. Elias, S.) 304–314 (Elsevier, 2013).
Krajcarz, M. T., Krajcarz, M. & Bocherens, H. Collagen-to-collagen prey–predator isotopic enrichment (Δ DOI
Craig, O. E. et al. Stable isotope analysis of Late Upper Palaeolithic human and faunal remains from Grotta del Romito (Cosenza), Italy. J. Archaeol. Sci. 37, 2504–2512 (2010). DOI
Bocherens, H. et al. Reconstruction of the Gravettian food-web at Předmostí I using multi-isotopic tracking ( DOI
Drucker, D. G. et al. Tracking possible decline of woolly mammoth during the Gravettian in Dordogne (France) and the Ach Valley (Germany) using multi-isotope tracking ( DOI
Drucker, D. G., Bridault, A., Ducrocq, T., Baumann, C. & Valentin, F. Environment and human subsistence in Northern France at the Late Glacial to early Holocene transition. Archaeol. Anthropol. Sci. 12, 194 (2020). DOI
Britton, K. et al. Multi-isotope zooarchaeological investigations at Abri du Maras: the paleoecological and paleoenvironmental context of Neanderthal subsistence strategies in the Rhône Valley during MIS 3. J. Hum. Evol. 174, 103292 (2023). PubMed DOI
Bataille, C. P. et al. Triple sulfur-oxygen-strontium isotopes probabilistic geographic assignment of archaeological remains using a novel sulfur isoscape of western Europe. PLoS ONE 16, e0250383 (2021). PubMed DOI PMC
Stevens, R. E. et al. Iso-Wetlands: unlocking wetland ecologies and agriculture in prehistory through sulfur isotopes. Archaeol. Int. 25, 168–176 (2022). DOI
DeNiro, M. J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806–809 (1985). DOI
van Klinken, G. J. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci. 26, 687–695 (1999). DOI
Nehlich, O. & Richards, M. P. Establishing collagen quality criteria for sulphur isotope analysis of archaeological bone collagen. Archaeol. Anthropol. Sci. 1, 59–75 (2009). DOI
Parnell, A. C. et al. Bayesian stable isotope mixing models. Environmetrics 24, 387–399 (2013).
Phillips, D. L. et al. Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool. 92, 823–835 (2014). DOI
Stock, B. C. et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6, e5096 (2018). PubMed DOI PMC
Wilczyński, J., Wojtal, P., Robličková, M. & Oliva, M. Dolní Věstonice I (Pavlovian, the Czech Republic)—results of zooarchaeological studies of the animal remains discovered on the campsite (excavation 1924–52). Quat. Int. 379, 58–70 (2015). DOI
Brugère, A. Not one but two mammoth hunting strategies in the Gravettian of the Pavlov Hills area (southern Moravia). Quat. Int. 337, 80–89 (2014). DOI
Guiry, E. J., Orchard, T. J., Needs-Howarth, S. & Szpak, P. Freshwater wetland-driven variation in sulfur isotope compositions: implications for human paleodiet and ecological research. Front. Ecol. Evol. 10, 953042 (2022).
Zawadzka, D. & Zawadzki, G. Synanthropisation and synurbisation of raven Corvus corax in Poland: a review. Int. Stud. Sparrows 38, 11–16 (2014). DOI
West, E. H., Henry, W. R., Goldenberg, W. & Peery, M. Z. Influence of food subsidies on the foraging ecology of a synanthropic species in protected areas. Ecosphere 7, e01532 (2016).
Savage, C. S. & Croll, J. Bird Brains: The Intelligence of Crows, Ravens, Magpies, and Jays (Greystone Books, 2018).
Heinrich, B. Mind of the Raven: Investigations and Adventures with Wolf-birds (Harper Perennial, 2006).
Van Dooren, T. The Wake of Crows: Living and Dying in Shared Worlds (Columbia Univ. Press, 2019).
Marzluff, J. M. & Angell, T. Cultural coevolution: how the human bond with crows and ravens extends theory and raises new questions. J. Ecol. Anthropol. 9, 69–75 (2005).
Svoboda, J. et al. Paleolithic hunting in a southern Moravian landscape: the case of Milovice IV, Czech Republic. Geoarchaeology 26, 838–866 (2011). DOI
Holyoak, D. A comparative study of the food of some British Corvidae. Bird Study 15, 147–153 (1968). DOI
Gołdyn, B., Książkiewicz-Parulska, Z. & Zduniak, P. Freshwater molluscs in diet of hooded crow (Corvus cornix). Wilson J. Ornithol. 128, 459–462 (2016). DOI
Tome, D., Krofel, M. & Mihelic, T. The diet of the raven Corvus corax in south-west Slovenia. Ann. Ser. Hist. Nat. 19, 161–166 (2009).
Boarman, W. I. & Berry, K. H. in Our Living Resources: A Report to the Nation on the Distribution, Abundance, and Health of U.S. Plants, Animals, and Ecosystems (eds LaRoe, E. T. et al.) 73–75 (National Biological Service, 1995).
Wojtal, P., Svoboda, J., Roblíčková, M. & Wilczyński, J. Carnivores in the everyday life of Gravettian hunters-gatherers in Central Europe. J. Anthropol. Archaeol. 59, 101171 (2020). DOI
Wilczyński, J. et al. Friend or foe? Large canid remains from Pavlovian sites and their archaeozoological context. J. Anthropol. Archaeol. 59, 101197 (2020). DOI
Svoboda, J. A. The Upper Paleolithic burial area at Předmostí: ritual and taphonomy. J. Hum. Evol. 54, 15–33 (2008). DOI
Pettitt, P. The Palaeolithic Origins of Human Burial (Routledge, 2011).
Martin, D. On the cultural ecology of sky burial on the Himalayan Plateau. East West 46, 353–370 (1996).
Moreman, C. M. On the relationship between birds and spirits of the dead. Soc. Anim. 22, 481–502 (2014). DOI
Maring, R. & Riede, F. Possible wild boar management during the Ertebølle Period. A carbon and nitrogen isotope analysis of Mesolithic wild boar from Fannerup F, Denmark. Environ. Archaeol. 24, 15–27 (2019). DOI
Musil, R. Gravettian environmental changes in a N–S transect of central Europe. Open Geosci. 3, 147–154 (2011). DOI
Svoboda, J. A. Dolní Věstonice—Pavlov: Ort: Südmähren, Zeit: 30000 Jahre v.Chr. = Unter-Wisternitz und Pollau (Regionalmuseum, 2010).
Borgia, V. The mammoth cycle. Hunting with ivory spear-points in the Gravettian site of Pavlov I (Czech Republic). Quat. Int. 510, 52–64 (2019). DOI
Oliva, M. (ed.) Sidlíště Mamutího Lidu u Milovic pod Palávou: Otázka Struktur s Mamutími Kostmi. Milovice: Site of the Mammoth People Below the Pavlov Hills (Moravské Zemské Muzeum, 2009).
Maher, L. A. Persistent place-making in prehistory: the creation, maintenance, and transformation of an epipalaeolithic landscape. J. Archaeol. Method Theory 26, 998–1083 (2019). DOI
Trinkaus, E., Sázelová, S. & Svoboda, J. Pieces of people in the Pavlovian. Hum. Remains Violence 5, 70–87 (2019). DOI
Pryor, A. J. E., Pullen, A., Beresford-Jones, D. G., Svoboda, J. A. & Gamble, C. S. Reflections on Gravettian firewood procurement near the Pavlov Hills, Czech Republic. J. Anthropol. Archaeol. 43, 1–12 (2016). DOI
Douglas, M. S. V., Smol, J. P., Savelle, J. M. & Blais, J. M. Prehistoric Inuit whalers affected Arctic freshwater ecosystems. Proc. Natl Acad. Sci. USA 101, 1613–1617 (2004). PubMed DOI PMC
Gomo, G., Mattisson, J., Hagen, B. R., Moa, P. F. & Willebrand, T. Scavenging on a pulsed resource: quality matters for corvids but density for mammals. BMC Ecol. 17, 22 (2017). PubMed DOI PMC
Loretto, M.-C., Reimann, S., Schuster, R., Graulich, D. M. & Bugnyar, T. Shared space, individually used: spatial behaviour of non-breeding ravens (Corvus corax) close to a permanent anthropogenic food source. J. Ornithol. 157, 439–450 (2016). DOI
Rösner, S., Selva, N., Müller, T., Pugacewicz, E. & Laudet, F. in Corvids of Poland (eds Jerzak, L. et al.) 385–405 (Bogucki Wydawnictwo Naukowe, 2005).
Selva, N. et al. in Carrion Ecology and Management (eds Olea, P. P. et al.) 71–99 (Springer International, 2019).
Temple, S. A. Winter food habits of ravens on the Arctic slope of Alaska. Arctic 27, 41–46 (1974). DOI
Strømseng, E. Environmental Determinants of Spatio-temporal Variation in a Scavenger Guild on Sub-Arctic Tundra. MSc thesis, Univ. Tromsö (2007).
Killengreen, S. T., Strømseng, E., Yoccoz, N. G. & Ims, R. A. How ecological neighbourhoods influence the structure of the scavenger guild in low arctic tundra: neighbourhood effects on tundra scavenger guild. Divers. Distrib. 18, 563–574 (2012). DOI
Blázquez, M., Sánchez-Zapata, J. A., Botella, F., Carrete, M. & Eguía, S. Spatio-temporal segregation of facultative avian scavengers at ungulate carcasses. Acta Oecologica 35, 645–650 (2009). DOI
Cortés-Avizanda, A., Selva, N., Carrete, M. & Donázar, J. A. Effects of carrion resources on herbivore spatial distribution are mediated by facultative scavengers. Basic Appl. Ecol. 10, 265–272 (2009). DOI
Stahler, D., Heinrich, B. & Smith, D. Common ravens, Corvus corax, preferentially associate with grey wolves, Canis lupus, as a foraging strategy in winter. Anim. Behav. 64, 283–290 (2002). DOI
Selva, N., Jędrzejewska, B., Jędrzejewski, W. & Wajrak, A. Factors affecting carcass use by a guild of scavengers in European temperate woodland. Can. J. Zool. 83, 1590–1601 (2005). DOI
Kaczensky, P., Hayes, R. D. & Promberger, C. Effect of raven Corvus corax scavenging on the kill rates of wolf Canis lupus packs. Wildl. Biol. 11, 101–108 (2005). DOI
Bugnyar, T. & Kotrschal, K. Scrounging tactics in free-ranging ravens, Corvus corax. Ethology 108, 993–1009 (2002). DOI
Lamoureux, R. Winter population dynamics between the Eastern Wolf (Canis lycaon) and the Common Raven (Corvus corax) in Algonquin Park, Ontario. J. Undergrad. Stud. Trent. 4, 61–66 (2016).
Ripple, W. J. & Beschta, R. L. Wolves and the ecology of fear: can predation risk structure ecosystems? BioScience 54, 755–766 (2004). DOI
Hammerschlag, N. et al. Evaluating the landscape of fear between apex predatory sharks and mobile sea turtles across a large dynamic seascape. Ecology 96, 2117–2126 (2015). PubMed DOI
Fielding, M. W. et al. Dominant carnivore loss benefits native avian and invasive mammalian scavengers. Proc. R. Soc. B https://doi.org/10.1098/rspb.2022.0521 (2022).
Marzluff, J. M. & Neatherlin, E. Corvid response to human settlements and campgrounds: causes, consequences, and challenges for conservation. Biol. Conserv. 130, 301–314 (2006). DOI
Webb, W. C., Marzluff, J. M. & Hepinstall-Cymerman, J. Linking resource use with demography in a synanthropic population of common ravens. Biol. Conserv. 144, 2264–2273 (2011). DOI
Webb, W. C., Boarman, W. I. & Rotenberry, J. T. Common raven juvenile survival in a human-augmented landscape. Condor 106, 517–528 (2004). DOI
O’Neil, S. T. et al. Broad‐scale occurrence of a subsidized avian predator: reducing impacts of ravens on sage‐grouse and other sensitive prey. J. Appl. Ecol. 55, 2641–2652 (2018). DOI
Baltensperger, A. P. et al. Seasonal observations and machine-learning-based spatial model predictions for the common raven (Corvus corax) in the urban, sub-arctic environment of Fairbanks, Alaska. Polar Biol. 36, 1587–1599 (2013). DOI
Restani, M., Marzluff, J. M. & Yates, R. E. Effects of anthropogenic food sources on movements, survivorship, and sociality of common ravens in the Arctic. Condor 103, 399–404 (2001). DOI
Backensto, S. Common Ravens in Alaska’s North Slope Oil Fields: An Integrated Study Using Local Knowledge and Science. MSc thesis, Univ. Fairbanks Alsk. (2010).
Oosten, J. & Laugrand, F. The bringer of light: the raven in Inuit tradition. Polar Rec. 42, 187–204 (2006). DOI
Zahara, A. R. D. & Hird, M. J. Raven, dog, human: inhuman colonialism and unsettling cosmologies. Environ. Humanities 7, 169–190 (2016). DOI
Kalof, L., Whitley, C., Vrla, S. & Rizzolo, J. B. in Shared Lives of Humans and Animals (eds Räsänen, T. & Syrjämaa, T.) Ch. 11 (Routledge, 2017).
Bijlsma, R. G. & Seldam, Hten Impact of focal food bonanzas on breeding ravens Corvus corax. Ardea 101, 55–59 (2013). DOI
Arnold, Z. J., Wenger, S. J. & Hall, R. J. Not just trash birds: quantifying avian diversity at landfills using community science data. PLoS ONE 16, e0255391 (2021). PubMed DOI PMC
Ellis, E. C. Ecology in an anthropogenic biosphere. Ecol. Monogr. 85, 287–331 (2015). DOI
Lupo, K. D. & Schmitt, D. N. When bigger is not better: the economics of hunting megafauna and its implications for Plio-Pleistocene hunter-gatherers. J. Anthropol. Archaeol. 44, 185–197 (2016). DOI
Stahl, P. W. in Encyclopedia of Global Archaeology (ed. Smith, C.) 4433–4439 (Springer, 2020).
Neusius, S. W. in Case Studies in Environmental Archaeology (eds Reitz, E. J. et al.) 297–314 (Springer, 2008).
Guiry, E., Orchard, T. J., Needs-Howarth, S. & Szpak, P. Isotopic evidence for garden hunting and resource depression in the Late Woodland of Northeastern North America. Am. Antiq. 86, 90–110 (2021). DOI
Acosta, A., Carbonera, M. & Loponte, D. Archaeological hunting patterns of Amazonian horticulturists: the Guarani example. Int. J. Osteoarchaeol. 29, 999–1012 (2019). DOI
Linares, O. F. ‘Garden hunting’ in the American tropics. Hum. Ecol. 4, 331–349 (1976). DOI
Sugiyama, N., Martínez-Polanco, M. F., France, C. A. M. & Cooke, R. G. Domesticated landscapes of the neotropics: isotope signatures of human–animal relationships in pre-Columbian Panama. J. Anthropol. Archaeol. 59, 101195 (2020). DOI
Dunn, R. R., Nunn, C. L. & Horvath, J. E. The Global Synanthrome Project: a call for an exhaustive study of human associates. Trends Parasitol. 33, 4–7 (2017). PubMed DOI
Guimarães, P. R., Pires, M. M., Jordano, P., Bascompte, J. & Thompson, J. N. Indirect effects drive coevolution in mutualistic networks. Nature 550, 511–514 (2017). PubMed DOI
Thornton, T. F., Deur, D. & Adams, B. in Language and Toponomy in Alaska and Beyond: Papers in Honor of James Kari (eds Holton, G. & Thornton, T. F.) 39–55 (Alaska Native Language Center Press, 2019).
Sax, B. Crow (Reaktion Books, 2003).
Chowning, A. Raven myths in Northwestern North America and Northeastern Asia. Arct. Anthropol. 1, 1–5 (1962).
Laugrand, F. & Oosten, J. Hunters, Predators and Prey: Inuit Perceptions of Animals (Berghahn Books, 2016).
Thomas, R. The comparative osteology of european corvids (Aves: Corvidae), with a key to the identification of their skeletal elements. Int. J. Osteoarchaeol. 11, 448–449 (2001). DOI
Cohen, A. & Serjeantson, D. A Manual for the Identification of Bird Bones from Archaeological Sites (Archetype, 1996).
Bocherens, H., Drucker, D., Billiou, D. & Moussa, I. Une nouvelle approche pour évaluer l’état de conservation de l’os et du collagène pour les mesures isotopiques (datation au radiocarbone, isotopes stables du carbone et de l’azote). L'Anthropologie 109, 557–567 (2005). DOI
Bocherens, H. et al. Paleobiological implications of the isotopic signatures ( DOI
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).
Hamilton, N. E. & Ferry, M. ggtern: ternary diagrams using ggplot2. J. Stat. Softw. 87, 1–17 (2018).
Stock, B. & Semmens, B. MixSIAR GUI User Manual v3.12016. (Zenodo, 2016).
Richards, M. P., Pettitt, P. B., Stiner, M. C. & Trinkaus, E. Stable isotope evidence for increasing dietary breadth in the European mid-Upper Paleolithic. Proc. Natl Acad. Sci. USA 98, 6528–6532 (2001). PubMed DOI PMC
Pettitt, P. & Trinkaus, E. Direct radiocarbon dating of the Brno 2 Gravettian human remains. Anthropologie 38, 149–150 (2000).
Trinkaus, E., Svoboda, J. A., Wojtal, P., Fišákova, M. N. & Wilczyński, J. Human remains from the Moravian Gravettian: morphology and taphonomy of additional elements from Dolní Vĕstonice II and Pavlov I: morphology and taphonomy of additional Pavlovian human remains. Int. J. Osteoarchaeol. 20, 645–669 (2010). DOI
Gelman, A. Bayesian Data Analysis (Chapman and Hall/CRC, 2013).
Cheung, C. & Szpak, P. Interpreting past human diets using stable isotope mixing models—best practices for data acquisition. J. Archaeol. Method Theory 29, 138–161 (2022). DOI
Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R: Bayesian isotopic niche metrics. J. Anim. Ecol. 80, 595–602 (2011). PubMed DOI
Layman, C. A., Arrington, D. A., Montaña, C. G. & Post, D. M. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88, 42–48 (2007). PubMed DOI
Robinson, J. R. Investigating isotopic niche space: using rKIN for stable isotope studies in archaeology. J. Archaeol. Method Theory 29, 831–861 (2022). DOI
Reade, H. et al. Deglacial landscapes and the Late Upper Palaeolithic of Switzerland. Quat. Sci. Rev. 239, 106372 (2020). DOI
Reade, H. et al. Magdalenian and Epimagdalenian chronology and palaeoenvironments at Kůlna Cave, Moravia, Czech Republic. Archaeol. Anthropol. Sci. 13, 4 (2021). PubMed DOI
Wißing, C. et al. Stable isotopes reveal patterns of diet and mobility in the last Neandertals and first modern humans in Europe. Sci. Rep. 9, 4433 (2019). PubMed DOI PMC
Hajdas, I. Radiocarbon dating and its applications in Quaternary studies. E&G Quat. Sci. J. 57, 2–24 (2008). DOI
Hajdas, I., Bonani, G., Furrer, H., Mäder, A. & Schoch, W. Radiocarbon chronology of the mammoth site at Niederweningen, Switzerland: results from dating bones, teeth, wood, and peat. Quat. Int. 164–165, 98–105 (2007). DOI
Bronk Ramsey, C. OxCal Software, version 4.4 (2023); https://c14.arch.ox.ac.uk/oxcal.html
Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020). DOI