Magdalenian and Epimagdalenian chronology and palaeoenvironments at Kůlna Cave, Moravia, Czech Republic

. 2021 ; 13 (1) : 4. [epub] 20201217

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33365102

UNLABELLED: Kůlna Cave is the only site in Moravia, Czech Republic, from which large assemblages of both Magdalenian and Epimagdalenian archaeological materials have been excavated from relatively secure stratified deposits. The site therefore offers the unrivalled opportunity to explore the relationship between these two archaeological phases. In this study, we undertake radiocarbon, stable isotope (carbon, nitrogen and sulphur), and ZooMS analysis of the archaeological faunal assemblage to explore the chronological and environmental context of the Magdalenian and Epimagdalenian deposits. Our results show that the Magdalenian and Epimagdalenian deposits can be understood as discrete units from one another, dating to the Late Glacial between c. 15,630 cal. BP and 14,610 cal. BP, and c. 14,140 cal. BP and 12,680 cal. BP, respectively. Stable isotope results (δ13C, δ15N, δ34S) indicate that Magdalenian and Epimagdalenian activity at Kůlna Cave occurred in very different environmental settings. Magdalenian occupation took place within a nutrient-poor landscape that was experiencing rapid changes to environmental moisture, potentially linked to permafrost thaw. In contrast, Epimagdalenian occupation occurred in a relatively stable, temperate environment composed of a mosaic of woodland and grassland habitats. The potential chronological gap between the two phases, and their associations with very different environmental conditions, calls into question whether the Epimagdalenian should be seen as a local, gradual development of the Magdalenian. It also raises the question of whether the gap in occupation at Kůlna Cave could represent a change in settlement dynamics and/or behavioural adaptations to changing environmental conditions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12520-020-01254-4.

Zobrazit více v PubMed

Adolphi F, Muscheler R. Synchronizing the Greenland ice core and radiocarbon timescales over the Holocene – Bayesian wiggle-matching of cosmogenic radionuclide records. Clim Past. 2016;12:15–30. doi: 10.5194/cp-12-15-2016. DOI

Ambrose SH. Preparation and characterization of bone and tooth collagen for isotopic analysis. J Archaeol Sci. 1990;17(4):431–451. doi: 10.1016/0305-4403(90)90007-R. DOI

Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT. Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem Cy. 2003;17(1):1031. doi: 10.1029/2002GB001903. DOI

Andersen KK, Svensson A, Johnsen SJ, Rasmussen SO, Bigler M, Röthlisberger R, Ruth U, Siggaard-Andersen ML, Peder Steffensen J, Dahl-Jensen D. The Greenland Ice Core Chronology 2005, 15-42 ka. Part 1: constructing the time scale. Quat Sci Rev. 2006;25(23-24):3246–3257. doi: 10.1016/j.quascirev.2006.08.002. DOI

Bannikov AG, Zhirnov LH, Lebedeva LS, Fandeev, A. A. (1961) Biology of the Saiga. Moscow, Izdatcl'sivo Sd'skokhozyaistvennoi Literatury, Zlmrnalov i Plakatov. [English translation: 1967, Jerusalem, Israel Program for Scientific Translations].

Ben-David M, Shochat E, Adams LG. The utility of stable isotope analysis in studying the foraging ecology of herbivores: Examples from moose and caribou. Alces. 2001;37(2):421–434.

Björkvald L, Giesler R, Laudon H, Humborg C, Mörth CM. Landscape variations in stream water SO42 and δ34S SO4 in a boreal stream network. Geochim Cosmochim Ac. 2009;73(16):4648–4660. doi: 10.1016/j.gca.2009.05.052. DOI

Blinková Z, Neruda P. Spatial distribution of the Magdalenian Artefacts (Layer 6) in the Kůlna Cave (Czech Republic) Anthropologie (Brno) 2015;53(1-2):279–294.

Blockley SPE, Blockley SM, Donahue RE, Lane CS, Lowe JJ, Pollard AM. The chronology of abrupt climate change and Late Upper Palaeolithic human adaptation in Europe. J Quat Sci. 2006;21(5):575–584. doi: 10.1002/jqs.1041. DOI

Bobak D, Połtowicz-Bobak M. Bayesian age modelling of the Magdalenian settlement in the territory of present-day Poland. Recherches Archéologiques NS. 2014;5-6(2013-2014):51–67.

Bocherens H, Drucker DG, Germonpré M, Lázničková M, Naito WI, Wissing C, Brůžek J, Oliva M. Reconstruction of the Gravettian food-web at Předmostí I using multi-isotopic tracking (13C, 15N, 34S) of bone collagen. Quat Int. 2015;359-360:211–228. doi: 10.1016/j.quaint.2014.09.044. DOI

Bottrell S, Novák M. Sulphur isotopic study of two pristine Sphagnum Bogs in the Western British Isles. J Ecol. 1997;85(2):125–132.

Brock F, Higham TFG, Ditchfield P, Bronk Ramsey C. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU) Radiocarbon. 2010;52(1):103–112.

Bronk Ramsey C. OxCal 4.4. Oxford: Oxford Radiocarbon Accelerator Unit; 2020.

Bronk Ramsey C, Hedges REM. Hybrid ion sources: radiocarbon measurements from microgram to milligram. Nucl Instr Meth Phys Res B. 1997;123(1-4):539–545.

Bronk Ramsey C, Humm MJ. On-line combustion of samples for AMS and ion source developments at ORAU. Nucl Instr Meth Phys Res B. 2000;172:242–246.

Bronk Ramsey C, Higham T, Leach P. Towards high-precision AMS: progress and limitations. Radiocarbon. 2004;46(1):17–24. doi: 10.1017/S0033822200039308. DOI

Bronk Ramsey C, Albert P, Blockley S, Hardiman M, Lane C, Macleod A, Matthews IP, Muscheler R, Palmer A, Staff RA. Integrating timescales with time-transfer functions: a practical approach for an INTIMATE database. Quat Sci Rev. 2014;106:67–80.

Bronk Ramsey C, Blaauw M, Kearney R, Staff RA. The importance of Open Access to chronological information: The IntChron initiative. Radiocarbon. 2019;61(5):1121–1131.

Brooks JR, Flanagan LB, Buchman N, Ehleringer JR. Carbon isotope composition of boreal plants: functional grouping of life forms. Oecologia. 1997;110:301–311. PubMed

Buckley M, Collins M, Thomas-Oates J, Wilson JC. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2009;23:3843–3854. doi: 10.1002/rcm.4316. PubMed DOI

Buckley M, Collins M. Collagen survival and its use for species identification in Holocene-lower Pleistocene bone fragments from British archaeological and paleontological sites. Antiqua. 2011;1:e1. doi: 10.4081/antiqua.2011.e1. DOI

Craine JM, Elmore AJ, Wang L, Augusto L, Baisden WT, Brookshire ENJ, Cramer MD, Hasselquist NJ, Hobbie EA, Kahmen A, Koba K, Kranabetter JM, Mack MC, Marin-Spiotta E, Mayor JR, McLauchlan KK, Michelsen A, Nardoto GB, Oliveira RS, Perakis SS, Peri PL, Quesada CA, Richter A, Schipper LA, Stevenson BA, Turner BL, Viani RAG, Wanek W, Zeller B. Convergence of soil nitrogen isotopes across global climate gradients. Sci Report. 2015;5:8280. doi: 10.1038/srep08280. PubMed DOI PMC

Craine JM, Brookshire ENJ, Cramer MD, Hasselquist NJ, Koba K, Marin-Spiotta E, Wang L. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil. 2015;396:1–26. doi: 10.1007/s11104-015-2542-1. DOI

Dee M, Bronk Ramsey C. Refinement of graphite target production at ORAU. Nucl Instrum Meth B. 2000;172(1-4):449–453.

DeNiro MJ. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature. 1985;317:806–809. doi: 10.1038/317806a0. DOI

Drucker DG, Bridault A, Hobson KA, Szuma E, Bocherens H. Can carbon-13 in large herbivores reflect the canopy effect in temperate and boreal ecosystems? Evidence from modern and ancient ungulates. Palaeogeogr Palaeocl. 2008;266(1-2):69–82. doi: 10.1016/j.palaeo.2008.03.020. DOI

Drucker DG, Hobson KA, Ouellet J-P, Courtois R. Influence of forage preferences and habitat use on 13C and 15N abundance in wild caribou (Rangifer tarandus caribou) and moose (Alces alces) from Canada. Isot Environ Healt S. 2010;46(1):107–121. PubMed

Drucker DG, Bridault A, Cupillard C, Hujic A, Bocherens H. Evolution of habitat and environment of red deer (Cervus elaphus) during the Late-glacial and early Holocene in eastern France (French Jura and the western Alps) using multi-isotope analysis (δ13C, δ15N, δ18O, δ34S) of archaeological remains. Quat Int. 2011;245(2):268–278. doi: 10.1016/j.quaint.2011.07.019. DOI

Drucker DG, Bridault A, Cupillard C. Environmental context of the Magdalenian settlement in the Jura Mountains using stable isotope tracking (13C, 15N, 34S) of bone collagen from reindeer (Rangifer tarandus) Quat Int. 2012;272-273:322–332. doi: 10.1016/j.quaint.2012.05.040. DOI

Drucker DG, Stevens RE, Germonpré M, Sablin MV, Bocherens H. Collagen stable isotopes provide insights into the end of the mammoth steppe in the central East European plains during the Epigravettian. Quat Res. 2018;90(3):457–469. doi: 10.1017/qua.2018.40. DOI

Engel Z, Nývlt D, Křížek M, Treml V, Jankovská V, Lisá L. Sedimentary evidence of landscape and climate history since the end of MIS 3 in the Krkonoše Mountains, Czech Republic. Quat Sci Rev. 2010;29(7-8):913–927.

Fry B, Scalan RS, Winters JK, Parker PL. Sulphur uptake by salt grasses, mangroves, and seagrasses in anaerobic sediments. Geochim Cosmochim Ac. 1982;46(6):1121–1124. doi: 10.1016/0016-7037(82)90063-1. DOI

Fu Q, Posth C, Hajdinjak M, Petr M, Mallick S, Fernandes D, Furtwängler A, Haak W, Meyer M, Mittnik A, Nickel B, Peltzer A, Rohland N, Slon V, Talamo S, Lazaridis I, Lipson M, Mathieson I, Schiffels S, Skoglund P, Derevianko AP, Drozdov N, Slavinsky V, Tsybankov A, Cremonesi RG, Mallegni F, Gély B, Vacca E, Morales MRG, Straus LG, Neugebauer-Maresch C, Teschler-Nicola M, Constantin S, Moldovan OT, Benazzi S, Peresani M, Coppola D, Lari M, Ricci S, Ronchitelli A, Valentin F, Thevenet C, Wehrberger K, Grigorescu D, Rougier H, Crevecoeur I, Flas D, Semal P, Mannino MA, Cupillard C, Bocherens H, Conard NJ, Harvati K, Moiseyev V, Drucker DG, Svoboda J, Richards MP, Caramelli D, Pinhasi R, Kelso J, Patterson N, Krause J, Pääbo S, Reich D. The genetic history of Ice Age Europe. Nature. 2016;534(7606):200–205. PubMed PMC

Heaton THE. Spatial, Species, and Temporal Variations in the13C/12C Ratios of C3 Plants: Implications for Palaeodiet Studies. J Archaeol Sci. 1999;26(6):637–649. doi: 10.1006/jasc.1998.0381. DOI

Higham TG, Jacobi RM, Bronk Ramsey C. AMS Radiocarbon Dating of Ancient Bone Using Ultrafiltration. Radiocarbon. 2006;48(2):179–195. doi: 10.1017/S0033822200066388. DOI

Hobbie EA, Jumpponen A, Trappe J. Foliar and fungal 15 N:14 N ratios reflect development of mycorrhizae and nitrogen supply during primary succession: testing analytical models. Oecologia. 2005;146:258–268. doi: 10.1007/s00442-005-0208-z. PubMed DOI

Hošek J, Pokorný P, Kubovčík V, Horáček I, Žáčková P, Kadlec J, Rojik F, Lisá L, Bučkuliaková S. Late glacial climatic and environmental changes in eastern-central Europe: Correlation of multiple biotic and abiotic proxies from the Lake Švarcenberk, Czech Republic. Palaeogeogr Palaeocl. 2014;396:155–172.

Hošek J, Pokorný P, Prach J, Lisá L, Grygar TM, Knésl I, Trubač J. Late Glacial erosion and pedogenesis dynamics: Evidence from high-resolution lacustrine archives and paleosols in south Bohemia (Czech Republic) Catena. 2017;150:261–278.

Hošek J, Prach J, Křížek M, Šída P, Moska P, Pokorný P. Buried Late Weichselian thermokarst landscape discovered in the Czech Republic, central Europe. Boreas. 2019;48(4):988–1005.

Hughes PD, Gibbard PL. A stratigraphical basis for the Last Glacial Maximum (LGM) Quat Int. 2015;383:174–185.

Huijzer B, Vandenberghe J. Climatic reconstruction of the Weichselian Pleniglacial in northwestern and central Europe. J Quat Sci. 1998;13(5):391–417.

Jochim M, Herhahm C, Starr H. The Magdalenian colonization of Southern Germany. Am Anthropol. 1999;101(1):129–142.

Jones JR, Richards MP, Reade H, de Quiros FB, Marin-Arroyo AB. Multi-Isotope investigations of ungulate bones and teeth from El Castillo and Covalejos caves (Cantabria, Spain): implications for paleoenvironment reconstructions across the Middle-Upper Palaeolithic transition. J Archaeol Sci Rep. 2018;23:1029–1042. doi: 10.1016/j.jasrep.2018.04.014. DOI

Jürgensen J, Drucker DG, Stuart AJ, Schneider M, Buuveibaatar B, Bocherens H. Diet and habitat of the saiga antelope during the late Quaternary using stable carbon and nitrogen isotope ratios. Quat Sci Rev. 2017;160(15):150–161.

Kadlec J, Kocurek G, Mohrig D, Shinde DP, Murari MK, Varma V, Stehlík F, Beneš V, Singhvi AK. Response of fluvial, aeolian, and lacustrine systems to late Pleistocene to Holocene climate change, Lower Moravian Basin, Czech Republic. Geomorphology. 2015;232:193–208. doi: 10.1016/j.geomorph.2014.12.030. DOI

Kohn MJ. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. PNatlAcad Sci USA. 2010;107(46):19691–19695. doi: 10.1073/pnas.1004933107. PubMed DOI PMC

Kovács J, Moracová M, Újvári G, Pintér AG. Reconstructing the paleoenvironment of East Central Europe in the Late Pleistocene using the oxygen and carbon isotopic signal of tooth in large mammal remains. Quat Int. 2012;276-277:145–154.

Kuneš P, Abraham V. History of Czech vegetation since the Late Pleistocene. In: Pyšek P, Kaplan Z, Chytrý M, Danihelka J, editors. Flora and vegetation of the Czech Republic. 1. Berlin: Springer; 2017. pp. 193–227.

Kuneš P, Svobodobá-Svitavská H, Kolář J, Hajnalová M, Abraham V, Macek M, Tkáč P, Szabó P. The origin of grasslands in the temperate forest zone of east-central Europe: Long-term legacy of climate and human impact. Quat Sci Rev. 2015;116:15–27. PubMed PMC

Longin R. New Method of Collagen Extraction for Radiocarbon Dating. Nature. 1971;230(5291):241–242. doi: 10.1038/230241a0. PubMed DOI

Ložek V, Cílek V. Late Weichselian-Holocene sediments and soils in mid-European calcareous areas. Anthropozoikum. 1995;22:87–112.

Maier A. The Central European Magdalenian: Regional Diversity and Internal Variability. Dordrecht: Springer Netherlands; 2015.

Maier A, Liebermann C, Pfeifer SJ. Beyond the Alps and Tatra Mountains—the 20–14 ka Repopulation of the Northern Mid-latitudes as Inferred from Palimpsests Deciphered with Keys from Western and Central Europe. J Paleo Arch. 2020;3:398–452. doi: 10.1007/s41982-019-00045-1. DOI

Mandernack KW, Lynch L, Krouse HR, Morgan MD. Sulfur cycling in wetland peat of the New Jersey Pinelands and its effect on stream water chemistry. Geochim Cosmochim Ac. 2000;64(23):3949–3964. doi: 10.1016/S0016-7037(00)00491-9. DOI

Mol J, Vandenberghe J, Kasse C. River response to variations of periglacial climate in mid-latitude Europe. Geomorphology. 2000;33(3-4):131–148.

Moník M. Pozdní paleolit v Čechách a na Moravě. PhD Thesis. Prague: Univerzita Karlova; 2014.

Moník M, Pankowská A. Settlement Patterns of the Late Palaeolithic in Bohemia and Moravia. In: Grimm S, Weber MJ, Mevel L, Sobkowiak-Tabaka I, editors. From the Atlantic to beyond the Bug River. Finding and Defining the Federmesser-Gruppen/Azilian. Heidelberg: Propylaeum, Universitätsbibliothek Heidelberg / Römisch-Germanisches Zentralmuseum, Mainz; 2020. pp. 79–90.

Mook WG. Radiocarbon-Daten aus der Kůlna-Höhle. In: Valoch K, editor. Die Erforschung der Kůlna-Höhle 1961-1976. Brno: Moravské zemské muzeum; 1988. pp. 285–286.

Muscheler R, Adolphi F, Heaton TJ, Ramsey CB, Svensson A, Van Der Plicht J, Reimer PJ. Testing and improving the IntCal20 calibration curve with independent records. Radiocarbon. 2020;62(4):1079–1094.

Nehlich O. The application of sulphur isotope analyses in archaeological research: A review. Earth-Sci Rev. 2015;142:1–17. doi: 10.1016/j.earscirev.2014.12.002. DOI

Nehlich O, Richards MP. Establishing quality criteria for sulphur isotope analysis of archaeological bone collagen. Archaeol Anthropol Sci. 2009;1:59–75. doi: 10.1007/s12520-009-0003-6. DOI

Neruda P, Nerudová Z. New radiocarbon data from Micoquian layers of the Kůlna Cave (Czech Republic) Quat Int. 2014;326-327:157–167. doi: 10.1016/j.quaint.2013.10.015. DOI

Neruda P, Valoch K. Palaeolithic people and Moravian Caves. Scripta Fac Sci Nat Univ Masaryk Brun. 2007;35(2005):65–76.

Nerudová Z (2010) Jeskyně Balcarka v Moravském krasu. Anthropos 31 (N.S.23), Moravské zemské muzeum, Brno.

Nerudová Z, Moník M. The Epigravettian of Kůlna Cave? A revision of artefacts. Archeologické rozhledy. 2019;71(4):567–588.

Nerudová Z, Neruda P. Chronology of the Upper Palaeolithic sequence in the Kůlna Cave (okr. Blansko/CZ) Archäologisches Korrespondenzblatt. 2014;44(3):307–324.

Nerudová Z, Neruda P. Moravia between Gravettian and Magdalenian. In: Sázelová S, Novák M, Mizerová A, editors. Forgotten times and spaces: New perspectives in paleoanthropological, paleoetnological and archaeological studies. Brno: Institute of Archaeology of the Czech Academy of Sciences; 2015. pp. 378–394.

Nerudová Z, Fišáková MN, Míková J. Palaeoenvironmental analyses of animal remains from the Kůlna Cave (Moravian Karst, Czech Republic) Quartär. 2014;61:147–157.

Nerudová Z, Doláková N, Novák J. New information augmenting the picture of local environment at the LGM/LGT in the context of the Middle Danube region. The Holocene. 2016;26(9):1345–1354.

Nerudová Z, Neruda P, Hamrozi P (2020) Statistical and geographical modelling of Moravian (Czech Republic) Late Upper Palaeolithic occupation. Quat Int. 10.1016/j.quaint.2020.07.003

Nitsch EK, Lamb AL, Heaton THE, Vaiglova P, Fraser R, Hartman G, Moreno-Jiménex L-PA, Peña-Abades D, Fairbairn A, Eriksen J, Bogaard A. The Preservation and Interpretation of δ34S Values in Charred Archaeobotanical Remains. Archaeometry. 2019;61(1):161–178. doi: 10.1111/arcm.12388. DOI

Petr L, Novák J. High vegetation and environmental diversity during the Late Glacial and Early Holocene on the example of lowlands in the Czech Republic. Biologia. 2014;69(7):847–862.

Płóciennik M, Self A, Birks HJB, Brooks SJ. Chironomidae (Insecta: Diptera) succession in Żabieniec bog and its palaeo-lake (central Poland) through the Late Weichselian and Holocene. Palaeogeogr Palaeoclimatol Palaeoecol. 2011;307(1-4):150–167. doi: 10.1016/j.palaeo.2011.05.010. DOI

Połtowicz-Bobak M. Eastern border of the Magdalenian Culture – an area of settlement or resource gathering? Anthropologie (Brno) 2020;58(2-3):215–226. doi: 10.26720/anthro.20.03.20.1. DOI

Pokorný P. A high-resolution record of Late-Glacial and Early-Holocene climatic and environmental change in the Czech Republic. Quat Int. 2002;91(1):101–122. doi: 10.1016/S1040-6182(01)00105-7. DOI

Pokorný P, Jankovská V. Long-term vegetation dynamics and the infilling process of a former lake (Švarcenberk, Czech Republic) Folia Geobotanica. 2000;35:433–457.

Posth C, Renaud G, Mittnik A, Drucker DG, Rougier H, Cupillard C, Valentin F, Thevenet C, Furtwängler A, Wißing C, Francken M, Malina M, Bolus M, Lari M, Gigli E, Capecchi G, Crevecoeur I, Beauval C, Flas D, Germonpré M, van der Plicht J, Cottiaux R, Gély B, Ronchitelli A, Wehrberger K, Grigorescu D, Svoboda J, Semal P, Caramelli D, Bocherens H, Harvati K, Conard NJ, Haak W, Powell A, Krause J. Pleistocene mitochondrial genomes suggest a single major dispersal of Non-Africans and a Late Glacial Population Turnover in Europe. Curr Biol. 2016;26(6):827–833. doi: 10.1016/j.cub.2016.01.037. PubMed DOI

Rabanus-Wallace MT, Wooler MJ, Zazula GD, Shute E, Jahren AH, Kosintsev P, Burns JA, Breen J, Llamas B, Cooper A. Megafaunal isotopes reveal role of increased moisture on rangeland during late Pleistocene extinctions. Nat Ecol Evol. 2017;1:0125. doi: 10.1038/s41559-017-0125. PubMed DOI

Rasmussen SO, Bigler M, Blockley SP, Blunier T, Buchardt SL, Clausen HB, Cvijanovic I, Dahl-Jensen D, Johnsen SJ, Fischer H, Gkinis V, Guillevic M, Hoek WZ, Lowe JJ, Pedro JB, Popp T, Seierstad IK, Steffensen JP, Svensson AM, Vallelonga P, Vinther BM, Walker MJC, Wheatley JJ, Winstrup M. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat Sci Rev. 2014;106:14–28. doi: 10.1016/j.quascirev.2014.09.007. DOI

Reade H, Tripp JA, Charlton S, Grimm SB, Sayle KL, Fensome A, Higham TFG, Barnes I, Stevens RES. Radiocarbon chronology and environmental context of Last Glacial Maximum human occupation in Switzerland. Sci Rep. 2020;10:4694. doi: 10.1038/s41598-020-61448-7. PubMed DOI PMC

Reade H, Tripp JA, Charlton S, Grimm SB, Leesch D, Müller W, Sayle KL, Fensome A, Higham TFG, Barnes I, Stevens RE. Dynamic deglacial landscapes and the Late Upper Palaeolithic of Switzerland. 2020.

Reimer PJ, Austin WEN, Bard E, Bayliss A, Blackwell PG, Bronk Ramsey C, Butzin M, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kromer B, Manning SW, Muscheler R, Palmer JG, Pearson C, van der Plicht J, Reimer RW, Richards DA, Scott EM, Southon JR, Turney CSM, Wacker L, Adolphi F, Büntgen U, Capano M, Fahrni SM, Fogtmann-Schulz A, Friedrich R, Köhler P, Kudsk S, Miyake F, Olsen J, Reinig F, Sakamoto M, Sookdeo A, Talamo S. The IntCal20 northern hemisphere radiocarbon ge cilbration curve (0-55 cal kBP) Radiocarbon. 2020;62(4):725–757. doi: 10.1017/RDC.2020.41. DOI

Sayle KL, Brodie CR, Cook GT, Hamilton WD. Sequential measurement of δ15N, δ13C and δ34S values in archaeological bone collagen at the Scottish Universities Environmental Research Centre (SUERC): A new analytical frontier. Rapid Commun Mass Spectrom. 2019;33(15):1258–1266. doi: 10.1002/rcm.8462. PubMed DOI

Sealy J, Johnson M, Richards MP, Nehlich O. Comparison of two methods of extracting bone collagen for stable carbon and nitrogen analysis: comparing whole bone demineralization with gelatinization and ultrafiltration. J Archaeol Sci. 2014;47:64–69. doi: 10.1016/j.jas.2014.04.011. DOI

Seitl L. Jeskyně Barová (Sobolova), její osídlení a savčí fauna ze závěru posledního glaciálu. Acta Musei Moraviae, Scientiae naturales. 1988;73:89–95.

Seitl L, Svoboda J, Ložek V, Přichystal A, Svobodová H. Das Spätglazial in der Barová-Höhle im Mährischen Karst. Archäologisches Korrespondenzblatt. 1986;16:393–398.

Šolcová A, Jamrichová E, Horsák M, Pařil P, Petr L, Heiri O, Květoň J, Křížek M, Hartvich F, Hájek M, Hájková P. Abrupt vegetation and environmental change since the MIS 2: a unique paleorecord from Slovakia (Central Europe) Quat Sci Rev. 2020;230:106170.

Stevens RE, Hedges REM. Carbon and nitrogen stable isotope analysis of northwest European horse bone and tooth collagen, 40,000 BP-present: Palaeoclimatic interpretations. Quat Sci Rev. 2004;23:977–991. doi: 10.1016/j.quascirev.2003.06.024. DOI

Stevens RE, Jacobi R, Street M, Germonpré M, Conard NJ, Münzel SC, Hedges REM. Nitrogen isotope analyses of reindeer (Rangifer tarandus), 45,000 BP to 9,000 BP: Palaeoenvironmental reconstructions. Palaeogeogr Palaeocl. 2008;262(1-2):32–45. doi: 10.1016/j.palaeo.2008.01.019. DOI

Svensson A, Andersen KK, Bigler M, Clausen HB, Dahl-Jensen D, Davies SM, Johnsen SJ, Muscheler R, Rasmussen SO, Röthlisberger R. The Greenland Ice Core Chronology 2005, 15-42 ka. Part 2: comparison to other records. Quat Sci Rev. 2006;25(13-24):3258–3267. doi: 10.1016/j.quascirev.2006.08.003. DOI

Svoboda J. Paleolit Moravy a Slezska, Dolnovesonické studies volume 1. Brno: Archeologicky ústav AV, Czech Republic; 1994.

Svoboda J. The Neandertal extinction in eastern Central Europe. Quat Int. 2005;137(1):69–75. doi: 10.1016/j.quaint.2004.11.020. DOI

Svoboda J, Novák J, Novák M, Sázelová S, Demek J, Hladilová Š, Peša V. Palaeolithic/Mesolithic Stratigraphic Sequences at Údolí Samoty and Janova Zátoka Rock Shelters (Northern Bohemia) Archäologisches Korrespondenzblatt. 2013;43:469–488.

Svoboda J, Pokorný P, Horáček I, Sázelová S, Abraham V, Divišová M, Ivanov M, Kozáková R, Novák J, Šída P, Perri A. Late Glacial and Holocene sequences in rockshelters and adjacent wetlands of Northern Bohemia, Czech Republic: Correlation of environmental and archaeological records. Quat Int. 2018;465:234–250. doi: 10.1016/j.quaint.2017.05.009. DOI

Svobodová H. Pollenanalytische Untersuchung des Schichtkomplexes 6–1 vor der Kůlna- Höhle. In: Valoch K, editor. Die Erforschung der Kůlna Höhle 1961–1976. Anthropos 24 (N. S. 16) Brno: Moravské zemské muzeum; 1988. pp. 205–210.

Szabó P, Kuneš P, Svobodová-Svitavská H, Švarcová MG, Křížová L, Suchánková S, Müllerová J, Hédl R. Using historical ecology to reassess the conservation status of coniferous forests in Central Europe. Conserv Biol. 2017;31(1):150–160. PubMed PMC

Szpak P, Metcalfe JZ, Macdonald RA. Best practices for calibrating and reporting stable isotope measurements in archaeology. J Archaeol Sci Rep. 2017;13:609–616. doi: 10.1016/j.jasrep.2017.05.007. DOI

Thode HG. Sulphur isotopes in nature and the environment: an overview. In: Krouse HR, Grinenko VA, editors. Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment. Chichester: John Wiley and Sons; 1991. pp. 1–26.

Valoch K. Die Erforschung der Kůlna-Höhle 1961-1976. Brno: Anthropos Institut, Moravské Museum; 1988.

Valoch K. Le Paléolithique en Tchéquie et en Slovaquie. Jérôme Millon, Grenoble 1996. Préhistoire d'Europe.

Valoch K. Das Magdalénien in Mähren. 130 Jahre seiner Erforschung. Jahrbuch des Römisch-Germanischen Zentralmuseums Mainz. 2001;48:103–159.

Valoch K. Europäische Beziehungen des mährischen Magdalénien. In: Poltowicz-Bobak M, Bobak D, editors. The Magdalenian in Central Europe. New Finds and Concepts. Rzeszów: Mitel; 2010. pp. 9–21.

Valoch K, Neruda P. On the chronology of the Moravian Magdalenian. Archeologické rozhledy. 2005;57(3):459–476.

Valoch K, Kovanda J, Musil R, Opravil E, Pelìšek J (1969) Die Erforschung der Kůlna Höhle bei Sloup in Mährischen Karst (Tschechoslovakei). Quartär, Bd. 20, 1-45, Bonn.

Vencl S. Late Upper and Late Palaeolithic in the Czech Republic. Folia Quaternaria. 1999;70:289–296.

Vencl S. Pozdní paleolit. In: Vencl S, editor. Archeologie pravěkých Čech /2. Paleolit a mezolit. Praha: Archeologický ústav AV ČR Praha, v.v.i; 2007. pp. 104–123.

Verpoorte A. Limiting factors on early modern human dispersals: the human biogeography of late Pleniglacial Europe. Quat Int. 2009;201(1-2):77–85.

Vočadlová K, Petr L, Žáčková P, Křížek M, Křížová L, Hutchinson SM, Šobr M. The Lateglacial and Holocene in Central Europe: a multi-proxy environmental record from the Bohemian Forest, Czech Republic. Boreas. 2015;44(4):769–784. doi: 10.1111/bor.12126. DOI

Wißing C, Rougier H, Baumann C, Comeyne A, Crevecoeur I, Drucker DG, Gaudzinski-Windheuser S, Germonpré M, Gómez-Olivencia A, Krause J, Matthies T, Naito YI, Posth C, Semal P, Street M, Bocherens H. Stable isotopes reveal patterns of diet and mobility in the last Neandertals and first modern humans in Europe. Sci Rep. 2019;9:4433. doi: 10.1038/s41598-019-41033-3. PubMed DOI PMC

Wood RE, Bronk Ramsey C, Higham TFG. Refining background corrections for radiocarbon dating of bone collagen at ORAU. Radiocarbon. 2010;52(2):600–611.

Žák K, Richter DK, Filippi M, Živor R, Deininger M, Mangini A, Scholz D. Coarsely crystalline cryogenic cave carbonate-a new archive to estimate the Last Glacial minimum permafrost depth in Central Europe. Clim Past. 2012;8(6):1821–1837. doi: 10.5194/cp-8-1821-2012. DOI

Zelinková M. Osteologický materiál z vnitřních prostor jeskyně Kůlny (Osteological material from the inside parts of the Kůlna cave). Acta Mus. Moraviae. Sci geol. 1998;83:147–157.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Evidence for hunter-gatherer impacts on raven diet and ecology in the Gravettian of Southern Moravia

. 2023 Aug ; 7 (8) : 1302-1314. [epub] 20230622

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...