Amesia hispanica sp. nov., Producer of the Antifungal Class of Antibiotics Dactylfungins
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
HZI POF IV Cooperativity and Creativity Project Call
Helmholtz Centre for Infection Research
Project-ID 490821847
Deutsche Forschungsgemeinschaft
MSCA-RISE grant no. 101008129, Acronym: MYCOBIOMICS
European Union's H2020 Research and Innovation Staff Exchange program
SEA-Europe Grant number JFS20ST-127, Acronym: Antiviralfun
Southeast Asia - Europe Joint Funding Scheme
PubMed
37108917
PubMed Central
PMC10141101
DOI
10.3390/jof9040463
PII: jof9040463
Knihovny.cz E-zdroje
- Klíčová slova
- Chaetomiaceae, Sordariales, antifungals, fungal secondary metabolites, metabolomics,
- Publikační typ
- časopisecké články MeSH
During a study of the diversity of soilborne fungi from Spain, a strain belonging to the family Chaetomiaceae (Sordariales) was isolated. The multigene phylogenetic inference using five DNA loci showed that this strain represents an undescribed species of the genus Amesia, herein introduced as A. hispanica sp. nov. Investigation of its secondary metabolome led to the isolation of two new derivatives (2 and 3) of the known antifungal antibiotic dactylfungin A (1), together with the known compound cochliodinol (4). The planar structures of 1-4 were determined by ultrahigh performance liquid chromatography coupled with diode array detection and ion mobility tandem mass spectrometry (UHPLC-DAD-IM-MS/MS) and extensive 1D and 2D nuclear magnetic resonance (NMR) spectroscopy after isolation by HPLC. All isolated secondary metabolites were tested for their antimicrobial and cytotoxic activities. Dactylfungin A (1) showed selective and strong antifungal activity against some of the tested human pathogens (Aspergillus fumigatus and Cryptococcus neoformans). The additional hydroxyl group in 2 resulted in the loss of activity against C. neoformans but still retained the inhibition of As. fumigatus in a lower concentration than that of the respective control, without showing any cytotoxic effects. In contrast, 25″-dehydroxy-dactylfungin A (3) exhibited improved activity against yeasts (Schizosaccharomyces pombe and Rhodotorula glutinis) than 1 and 2, but resulted in the appearance of slight cytotoxicity. The present study exemplifies how even in a well-studied taxonomic group such as the Chaetomiaceae, the investigation of novel taxa still brings chemistry novelty, as demonstrated in this first report of this antibiotic class for chaetomiaceous and sordarialean taxa.
Institute of Microbiology Czech Academy of Sciences Vídeňská 1083 14220 Prague Czech Republic
Mycology Unit Medical School Universitat Rovira i Virgili C Sant Llorenç 21 43201 Tarragona Spain
Zobrazit více v PubMed
Hyde K.D., Xu J., Rapior S., Jeewon R., Lumyong S., Niego A.G.T., Abeywickrama P.D., Aluthmuhandiram J.V.S., Brahamanage R.S., Brooks S., et al. The Amazing Potential of Fungi: 50 Ways We Can Exploit Fungi Industrially. Fungal Divers. 2019;97:1–136. doi: 10.1007/s13225-019-00430-9. DOI
Atanasov A.G., Zotchev S.B., Dirsch V.M., Orhan I.E., Banach M., Rollinger J.M., Barreca D., Weckwerth W., Bauer R., Bayer E.A., et al. Natural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug Discov. 2021;20:200–216. doi: 10.1038/s41573-020-00114-z. PubMed DOI PMC
Mapook A., Hyde K.D., Hassan K., Kemkuignou B.M., Čmoková A., Surup F., Kuhnert E., Paomephan P., Cheng T., de Hoog S., et al. Ten Decadal Advances in Fungal Biology Leading towards Human Well-Being. Fungal Divers. 2022;116:547–614. doi: 10.1007/s13225-022-00510-3. PubMed DOI PMC
Miethke M., Pieroni M., Weber T., Brönstrup M., Hammann P., Halby L., Arimondo P.B., Glaser P., Aigle B., Bode H.B., et al. Towards the Sustainable Discovery and Development of New Antibiotics. Nat. Rev. Chem. 2021;5:726–749. doi: 10.1038/s41570-021-00313-1. PubMed DOI PMC
Alastruey-Izquierdo A., Mellado E., Peláez T., Pemán J., Zapico S., Alvarez M., Rodríguez-Tudela J.L., Cuenca-Estrella M. Population-Based Survey of Filamentous Fungi and Antifungal Resistance in Spain (FILPOP Study) Antimicrob. Agents Chemother. 2013;57:3380–3387. doi: 10.1128/AAC.00383-13. PubMed DOI PMC
Lestrade P.P.A., Meis J.F., Melchers W.J.G., Verweij P.E. Triazole Resistance in Aspergillus fumigatus: Recent Insights and Challenges for Patient Management. Clin. Microbiol. Infect. 2019;25:799–806. doi: 10.1016/j.cmi.2018.11.027. PubMed DOI
Dannaoui E. Antifungal Resistance in Mucorales. Int. J. Antimicrob. Agents. 2017;50:617–621. doi: 10.1016/j.ijantimicag.2017.08.010. PubMed DOI
Bermas A., Geddes-McAlister J. Combatting the Evolution of Antifungal Resistance in Cryptococcus neoformans. Mol. Microbiol. 2020;114:721–734. doi: 10.1111/mmi.14565. PubMed DOI
Harms K., Milic A., Stchigel A.M., Stadler M., Surup F., Marin-Felix Y. Three New Derivatives of Zopfinol from Pseudorhypophila mangenotii Gen. Et Comb. Nov. J. Fungi. 2021;7:181. doi: 10.3390/jof7030181. PubMed DOI PMC
Harms K., Surup F., Stadler M., Stchigel A.M., Marin-felix Y. Morinagadepsin, a Depsipeptide from the Fungus Morinagamyces vermicularis Gen. Et Comb. Nov. Microorganisms. 2021;9:1191. doi: 10.3390/microorganisms9061191. PubMed DOI PMC
Shao L., Marin-Felix Y., Surup F., Stchigel A.M., Stadler M. Seven New Cytotoxic and Antimicrobial Xanthoquinodins from Jugulospora vestita. J. Fungi. 2020;6:188. doi: 10.3390/jof6040188. PubMed DOI PMC
Charria-Girón E., Surup F., Marin-Felix Y. Diversity of Biologically Active Secondary Metabolites in the Ascomycete Order Sordariales. Mycol. Prog. 2022;21:43. doi: 10.1007/s11557-022-01775-3. DOI
Ibrahim S.R.M., Mohamed S.G.A., Sindi I.A., Mohamed G.A. Biologically Active Secondary Metabolites and Biotechnological Applications of Species of the Family Chaetomiaceae (Sordariales): An Updated Review from 2016 to 2021. Mycol. Prog. 2021;20:595–639. doi: 10.1007/s11557-021-01704-w. DOI
Wang X.W., Houbraken J., Groenewald J.Z., Meijer M., Andersen B., Nielsen K.F., Crous P.W., Samson R.A. Diversity and Taxonomy of Chaetomium and Chaetomium-like Fungi from Indoor Environments. Stud. Mycol. 2016;84:145–224. doi: 10.1016/j.simyco.2016.11.005. PubMed DOI PMC
García D., Stchigel A.M., Guarro J. A New Species of Poroconiochaeta from Russian Soils. Mycologia. 2003;95:525–529. doi: 10.1080/15572536.2004.11833099. PubMed DOI
The Royal Horticultural Society London R.H.S. Colour Chart. The Royal Horticultural Society; London, UK: 1996.
White T.J., Bruns T., Lee S., Taylor J. PCR Protocols. Elsevier; Amsterdam, The Netherlands: 1990. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics; pp. 315–322.
Vilgalys R., Hester M. Rapid Genetic Identification and Mapping of Enzymatically Amplified Ribosomal DNA from Several Cryptococcus Species. J. Bacteriol. 1990;172:4238–4246. doi: 10.1128/jb.172.8.4238-4246.1990. PubMed DOI PMC
Miller A.N., Huhndorf S.M. Multi-Gene Phylogenies Indicate Ascomal Wall Morphology Is a Better Predictor of Phylogenetic Relationships than Ascospore Morphology in the Sordariales (Ascomycota, Fungi) Mol. Phylogenet. Evol. 2005;35:60–75. doi: 10.1016/j.ympev.2005.01.007. PubMed DOI
O’Donnell K., Cigelnik E. Two Divergent Intragenomic RDNA ITS2 Types within a Monophyletic Lineage of the Fungus Fusarium Are Nonorthologous. Mol. Phylogenet. Evol. 1997;7:103–116. doi: 10.1006/mpev.1996.0376. PubMed DOI
Groenewald J.Z., Nakashima C., Nishikawa J., Shin H.D., Park J.H., Jama A.N., Groenewald M., Braun U., Crous P.W. Species Concepts in Cercospora: Spotting the Weeds among the Roses. Stud. Mycol. 2013;75:115–170. doi: 10.3114/sim0012. PubMed DOI PMC
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., et al. Geneious Basic: An Integrated and Extendable Desktop Software Platform for the Organization and Analysis of Sequence Data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Katoh K., Standley D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Mason-Gamer R.J., Kellogg E.A. Testing for Phylogenetic Conflict Among Molecular Data Sets in the Tribe Triticeae (Gramineae) Syst. Biol. 1996;45:524–545. doi: 10.1093/sysbio/45.4.524. DOI
Wiens J.J. Testing Phylogenetic Methods with Tree Congruence: Phylogenetic Analysis of Polymorphic Morphological Characters in Phrynosomatid Lizards. Syst. Biol. 1998;47:427–444. doi: 10.1080/106351598260806. DOI
Alfaro M.E., Zoller S., Lutzoni F. Bayes or Bootstrap? A Simulation Study Comparing the Performance of Bayesian Markov Chain Monte Carlo Sampling and Bootstrapping in Assessing Phylogenetic Confidence. Mol. Biol. Evol. 2003;20:255–266. doi: 10.1093/molbev/msg028. PubMed DOI
de Hoog G.S., Ahmed S.A., Najafzadeh M.J., Sutton D.A., Keisari M.S., Fahal A.H., Eberhardt U., Verkleij G.J., Xin L., Stielow B., et al. Phylogenetic Findings Suggest Possible New Habitat and Routes of Infection of Human Eumyctoma. PLoS Negl. Trop. Dis. 2013;7:e2229. doi: 10.1371/journal.pntd.0002229. PubMed DOI PMC
Vu D., Groenewald M., de Vries M., Gehrmann T., Stielow B., Eberhardt U., Al-Hatmi A., Groenewald J.Z., Cardinali G., Houbraken J., et al. Large-Scale Generation and Analysis of Filamentous Fungal DNA Barcodes Boosts Coverage for Kingdom Fungi and Reveals Thresholds for Fungal Species and Higher Taxon Delimitation. Stud. Mycol. 2019;92:135–154. doi: 10.1016/j.simyco.2018.05.001. PubMed DOI PMC
Wang X.W., Han P.J., Bai F.Y., Luo A., Bensch K., Meijer M., Kraak B., Han D.Y., Sun B.D., Crous P.W., et al. Taxonomy, Phylogeny and Identification of Chaetomiaceae with Emphasis on Thermophilic Species. Stud. Mycol. 2022;101:121–243. doi: 10.3114/sim.2022.101.03. PubMed DOI PMC
Safi A., Mehrabi-Koushki M., Farokhinejad R. Amesia khuzestanica and Curvularia iranica Spp. Nov. from Iran. Mycol. Prog. 2020;19:935–945. doi: 10.1007/s11557-020-01612-5. DOI
Ahmed S.A., Khan Z., Wang X., Moussa T.A.A., Al-Zahrani H.S., Almaghrabi O.A., Sutton D.A., Ahmad S., Groenewald J.Z., Alastruey-Izquierdo A., et al. Chaetomium-like Fungi Causing Opportunistic Infections in Humans: A Possible Role for Extremotolerance. Fungal Divers. 2016;76:11–26. doi: 10.1007/s13225-015-0338-5. DOI
van den Brink J., Facun K., de Vries M., Stielow J.B. Thermophilic Growth and Enzymatic Thermostability Are Polyphyletic Traits within Chaetomiaceae. Fungal Biol. 2015;119:1255–1266. doi: 10.1016/j.funbio.2015.09.011. PubMed DOI
Cedeño-sanchez M., Charria-Girón E., Lambert C., Luangsa-ard J.J., Decock C., Franke R. Segregation of the Genus Parahypoxylon (Hypoxylaceae, Xylariales) from Hypoxylon by a Polyphasic Taxonomic Approach. MycoKeys. 2023;95:131–162. doi: 10.3897/mycokeys.95.98125. PubMed DOI PMC
Nothias L.F., Petras D., Schmid R., Dührkop K., Rainer J., Sarvepalli A., Protsyuk I., Ernst M., Tsugawa H., Fleischauer M., et al. Feature-Based Molecular Networking in the GNPS Analysis Environment. Nat. Methods. 2020;17:905–908. doi: 10.1038/s41592-020-0933-6. PubMed DOI PMC
Wang M., Carver J.J., Phelan V.V., Sanchez L.M., Garg N., Peng Y., Nguyen D.D., Watrous J., Kapono C.A., Luzzatto-Knaan T., et al. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016;34:828–837. doi: 10.1038/nbt.3597. PubMed DOI PMC
Štěpánek O., Čmoková A., Procházková E., Grobárová V., Černý J., Slapničková M., Zíková A., Kolařík M., Baszczyňski O. Piperazine-Modified Ketoconazole Derivatives Show Increased Activity against Fungal and Trypanosomatid Pathogens. ChemMedChem. 2022;17:e202200385. doi: 10.1002/cmdc.202200385. PubMed DOI
Arendrup M.C., Friberg N., Mares M., Kahlmeter G., Meletiadis J., Guinea J., Arendrup M.C., Meletiadis J., Guinea J., Friberg N., et al. How to Interpret MICs of Antifungal Compounds According to the Revised Clinical Breakpoints v. 10.0 European Committee on Antimicrobial Susceptibility Testing (EUCAST) Clin. Microbiol. Infect. 2020;26:1464–1472. doi: 10.1016/j.cmi.2020.06.007. PubMed DOI
Réblová M., Hernández-Restrepo M., Sklenář F., Nekvindová J., Réblová K., Kolařík M. Consolidation of Chloridium: New Classification into Eight Sections with 37 Species and Reinstatement of the Genera Gongromeriza and Psilobotrys. Stud. Mycol. 2022;103:86–211. doi: 10.3114/sim.2022.103.04. PubMed DOI PMC
Větrovský T., Morais D., Kohout P., Lepinay C., Algora C., Awokunle Hollá S., Bahnmann B.D., Bílohnědá K., Brabcová V., D’Alò F., et al. GlobalFungi, a Global Database of Fungal Occurrences from High-Throughput-Sequencing Metabarcoding Studies. Sci. Data. 2020;7:228. doi: 10.1038/s41597-020-0567-7. PubMed DOI PMC
Aggarwal R., Kharbikar L. Phylogenetic Relationships of Chaetomium Isolates Based on the Internal Transcribed Spacer Region of the RRNA Gene Cluster. Afr. J. Biotechnol. 2013;12:914–920. doi: 10.5897/AJB12.2633. DOI
Núñez A., Amo de Paz G., Rastrojo A., Ferencova Z., Gutiérrez-Bustillo A.M., Alcamí A., Moreno D.A., Guantes R. Temporal Patterns of Variability for Prokaryotic and Eukaryotic Diversity in the Urban Air of Madrid (Spain) Atmos. Environ. 2019;217:116972. doi: 10.1016/j.atmosenv.2019.116972. DOI
Zheng Y., Maitra P., Gan H.-Y., Chen L., Li S., Tu T., Chen L., Mi X., Gao C., Zhang D., et al. Soil Fungal Diversity and Community Assembly: Affected by Island Size or Type? FEMS Microbiol. Ecol. 2021;97:fiab062. doi: 10.1093/femsec/fiab062. PubMed DOI
Malhotra G., Mukerji K.G. Fungi of Delhi XXIX. Three New Species of Chaetomium from Decaying Wood. Rev. Mycol. 1976;40:179–184.
Arx J.A., Guarro J., Figueras M.J. The Ascomycete Genus Chaetomium. 9783443510053Hedwigia. 1986;79:662.
Xaio J.Z., Shigenori K., Nobuji Y., Takashi M., Yoshikazu S. Dactylfungins, Novel Antifungal Antibiotics Produced By Dactylaria parvispora. J. Antibiot. 1992;46:48–55. doi: 10.7164/antibiotics.46.48. PubMed DOI
Xu G.B., He G., Bai H.H., Yang T., Zhang G.L., Wu L.W., Li G.Y. Indole Alkaloids from Chaetomium globosum. J. Nat. Prod. 2015;78:1479–1485. doi: 10.1021/np5007235. PubMed DOI
McGlacken G.P., Fairlamb I.J.S. 2-Pyrone Natural Products and Mimetics: Isolation, Characterisation and Biological Activity. Nat. Prod. Rep. 2005;22:369. doi: 10.1039/b416651p. PubMed DOI
Lee J. Recent Advances in the Synthesis of 2-Pyrones. Mar. Drugs. 2015;13:1581–1620. doi: 10.3390/md13031581. PubMed DOI PMC
Evidente A., Conti L., Altomare C., Bottalico A., Sindona G., Segre A.L., Logrieco A., Chirnico-agrarie D.S., Federico N., Studi U., et al. Fusapyrone and Deoxyfusapyrone, Two Antifungal Alpha-pyrones From Fusarfum semitectum. Nat. Toxins. 1994;2:4–13. doi: 10.1002/nt.2620020103. PubMed DOI
Altomare C., Pengue R., Favilla M., Evidente A., Visconti A. Structure−Activity Relationships of Derivatives of Fusapyrone, an Antifungal Metabolite of Fusarium semitectum. J. Agric. Food Chem. 2004;52:2997–3001. doi: 10.1021/jf035233z. PubMed DOI
Nagai K., Kamigiri K., Matsumoto H., Kawano Y., Yamaoka M., Shimoi H., Watanabe M., Suzuki K. YM-202204, a New Antifungal Antibiotic Produced by Marine Fungus Phoma sp. J. Antibiot. 2002;55:1036–1041. doi: 10.7164/antibiotics.55.1036. PubMed DOI
Furumoto T., Fukuyama K., Hamasaki T., Nakajima H. Neovasipyrones and Neovasifuranones: Four New Metabolites Related to Neovasinin, a Phytotoxin of the Fungus, Neocosmospora vasinfecta. Phytochemistry. 1995;40:745–751. doi: 10.1016/0031-9422(95)00356-C. DOI
Hiramatsu F., Miyajima T., Murayama T., Takahashi K., Koseki T., Shiono Y. Isolation and Structure Elucidation of Neofusapyrone from a Marine-Derived Fusarium Species, and Structural Revision of Fusapyrone and Deoxyfusapyrone. J. Antibiot. 2006;59:704–709. doi: 10.1038/ja.2006.94. PubMed DOI
Honma M., Kudo S., Takada N., Tanaka K., Miura T., Hashimoto M. Novel Neofusapyrones Isolated from Verticillium dahliae as Potent Antifungal Substances. Bioorg. Med. Chem. Lett. 2010;20:709–712. doi: 10.1016/j.bmcl.2009.11.063. PubMed DOI
Atanasoff-Kardjalieff A.K., Lünne F., Kalinina S., Strauss J., Humpf H.-U., Studt L. Biosynthesis of Fusapyrone Depends on the H3K9 Methyltransferase, FmKmt1, in Fusarium mangiferae. Front. Fungal Biol. 2021;2:671796. doi: 10.3389/ffunb.2021.671796. PubMed DOI PMC