Dactylfungins and Tetralones: Bioactive Metabolites from a Nematode-Associated Laburnicola nematophila
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural
Grant support
P40 OD010440
NIH HHS - United States
PubMed
39012621
PubMed Central
PMC11287750
DOI
10.1021/acs.jnatprod.4c00623
Knihovny.cz E-resources
- MeSH
- Antifungal Agents pharmacology chemistry MeSH
- Microbial Sensitivity Tests MeSH
- Molecular Structure MeSH
- Tetralones * pharmacology chemistry MeSH
- Tylenchoidea drug effects MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Antifungal Agents MeSH
- Tetralones * MeSH
A chemical investigation of Laburnicola nematophila, isolated from cysts of the plant parasitic nematode Heterodera filipjevi, affored three dactylfungin derivatives (1-3) and three tetralone congeners (4-6). Dactylfungin C (1), laburnicolin (4), and laburnicolenone (5) are previously undescribed natural products. Chemical structures of the isolated compounds were determined based on 1D and 2D NMR spectroscopic analyses together with HR-ESI-MS spectrometry and comparison with data reported in the literature. The relative configurations of compounds 1, 2, and 4-6 were determined based on their ROESY data and analysis of their coupling constants (J values). The absolute configurations of 4-6 were determined through the comparison of their measured and calculated TDDFT-ECD spectra. Compounds 1-3 were active against azole-resistant Aspergillus fumigatus.
Department of Organic Chemistry University of Debrecen P O Box 400 4002 Debrecen Hungary
Department of Pharmacognosy Faculty of Pharmacy Ain Shams University Cairo 11566 Egypt
Institute of Microbiology Czech Academy of Science Vídeňská 1083 14220 Prague Czech Republic
See more in PubMed
Atanasov A. G.; Zotchev S. B.; Dirsch V. M.; Orhan I. E.; Banach M.; Rollinger J. M.; Barreca D.; Weckwerth W.; Bauer R.; Bayer E. A.; et al. Nat. Rev. Drug Discovery 2021, 20, 200–216. 10.1038/s41573-020-00114-z. PubMed DOI PMC
Miethke M.; Pieroni M.; Weber T.; Brönstrup M.; Hammann P.; Halby L.; Arimondo P. B.; Glaser P.; Aigle B.; Bode H. B.; et al. Nat. Rev. Chem. 2021, 5, 726–749. 10.1038/s41570-021-00313-1. PubMed DOI PMC
Mapook A.; Hyde K. D.; Hassan K.; Kemkuignou B. M.; Čmoková A.; Surup F.; Kuhnert E.; Paomephan P.; Cheng T.; de Hoog S.; et al. Fungal Divers. 2022, 116, 547–614. 10.1007/s13225-022-00510-3. PubMed DOI PMC
Hyde K. D.; Al-Hatmi A. M. S.; Andersen B.; Boekhout T.; Buzina W.; Dawson T. L.; Eastwood D. C.; Jones E. B. G.; de Hoog S.; Kang Y.; et al. Fungal Divers. 2018, 93, 161–194. 10.1007/s13225-018-0413-9. DOI
WHO Releases First-Ever List of Health-Threatening Fungi; 2022; Vol. 43; ISBN 9789240060241. PubMed PMC
Kwon-Chung K. J.; Fraser J. A.; Doering T. L.; Wang Z. A.; Janbon G.; Idnurm A.; Bahn Y.-S. Cold Spring Harb. Perspect. Med. 2018, 4, a019760–a019760. 10.1101/cshperspect.a019760. PubMed DOI PMC
Kosmidis C.; Denning D. W. Thorax 2015, 70, 270–277. 10.1136/thoraxjnl-2014-206291. PubMed DOI
Szalewski D. A.; Hinrichs V. S.; Zinniel V. K.; Barletta R. G. Can. J. Microbiol. 2018, 64, 439–453. 10.1139/cjm-2017-0749. PubMed DOI
Verweij P. E.; Lucas J. A.; Arendrup M. C.; Bowyer P.; Brinkmann A. J.; Denning D. W.; et al. Fungal Biol. Rev. 2020, 34 (4), 202–214. 10.1016/j.fbr.2020.10.003. DOI
Wanasinghe D. N.; Jones E. B. G.; Camporesi E.; Dissanayake A. J.; Kamolhan S.; Mortimer P. E.; Xu J.; Abd-Elsalam K. A.; Hyde K. D. Fungal Biol. 2016, 120, 1354–1373. 10.1016/j.funbio.2016.06.006. PubMed DOI
Zhang Y.; Crous P. W.; Schoch C. L.; Hyde K. D. Fungal Divers. 2012, 53, 1–221. 10.1007/s13225-011-0117-x. PubMed DOI PMC
Knapp D. G.; Akhmetova G. K.; Kovács G. M.; Dababat A. A.; Maier W.; Ashrafi S. Mycol. Prog. 2022, 21, 99.10.1007/s11557-022-01849-2. DOI
Ashrafi S.; Knapp D. G.; Blaudez D.; Chalot M.; Maciá-Vicente J. G.; Zagyva I.; Dababat A. A.; Maier W.; Kovács G. M. Mycologia 2018, 110, 286–299. 10.1080/00275514.2018.1448167. PubMed DOI
Ashrafi S.; Wennrich J. P.; Becker Y.; Maciá-Vicente J. G.; Brißke-Rode A.; Daub M.; Thünen T.; Dababat A. A.; Finckh M. R.; Stadler M.; et al.. IMA Fungus 2023, 14,10.1186/s43008-023-00113-w. PubMed DOI PMC
Wennrich J.-P.; Sepanian E.; Ebada S. S.; Llanos-Lopez N. A.; Ashrafi S.; Maier W.; Kurtán T.; Stadler M. Antibiotics 2023, 12, 1273.10.3390/antibiotics12081273. PubMed DOI PMC
Xaio J.-Z.; Kumazawa S.; Yoshikawa N.; Mikawa T.; Sato Y. J. Antibiot. 1993, 46, 48–55. 10.7164/antibiotics.46.48. PubMed DOI
Nagai K.; Kamigiri K.; Matsumoto H.; Kawano Y.; Yamaoka M.; Shimoi H.; Watanabe M.; Suzuki K. J. Antibiot. 2002, 55 (12), 1036–1041. 10.7164/antibiotics.55.1036. PubMed DOI
Li W.-S.; Yan R.-J.; Yu Y.; Shi Z.; Mándi A.; Shen L.; Kurtán T.; Wu J. Angew. Chem., Int. Ed. 2020, 59, 13028–13036. 10.1002/anie.202004358. PubMed DOI
Jiang Z.-P.; Sun S.-H.; Yu Y.; Mándi A.; Luo J.-Y.; Yang M.-H.; Kurtán T.; Chen W.-H.; Shen L.; Wu J. Chem. Sci. 2021, 12, 10197.10.1039/D1SC02810C. PubMed DOI PMC
Charria-Girón E.; Stchigel A. M.; Čmoková A.; Kolařík M.; Surup F.; Marin-Felix Y. J. Fungi 2023, 9, 463.10.3390/jof9040463. PubMed DOI PMC
Meingassner J. G.; Thirring K.. 2005. WO2005097771A1.
Li K.-K.; Lu Y.-J.; Song X.-H.; She Z.-G.; Wu X.-W.; An L.-K.; Ye C.-X.; Lin Y.-C. Bioorg. Med. Chem. Lett. 2010, 20, 3326–3328. 10.1016/j.bmcl.2010.04.036. PubMed DOI
Cai R.; Wu Y.; Chen S.; Cui H.; Liu Z.; Li C.; She Z. J. Nat. Prod. 2018, 81 (6), 1376–1383. 10.1021/acs.jnatprod.7b01018. PubMed DOI
Saepua S.; Kornsakulkarn J.; Somyong W.; Laksanacharoen P.; Isaka M.; Thongpanchang C. Tetrahedron 2018, 74 (8), 859–866. 10.1016/j.tet.2018.01.004. DOI
Savi D. C.; Shaaban K. A.; Mitra P.; Ponomareva L. V.; Thorson J. S.; Glienke C.; Rohr J. J. Antibiot. 2019, 72, 306–310. 10.1038/s41429-019-0154-3. PubMed DOI PMC
Padula D.; Pescitelli G. Molecules 2018, 23, 128.10.3390/molecules23010128. PubMed DOI PMC
Bakowies D.; von Lilienfeld O. A. J. Chem. Theory Comput. 2021, 17, 4872–4890. 10.1021/acs.jctc.1c00474. PubMed DOI PMC
Superchi S.; Scafato P.; Górecki M.; Pescitelli G. Curr. Med. Chem. 2018, 25, 287–320. 10.2174/0929867324666170310112009. PubMed DOI
Mándi A.; Kurtán T. Nat. Prod. Rep. 2019, 36, 889–918. 10.1039/C9NP00002J. PubMed DOI
Snatzke G.; Znatzke F.; Tõkés A. L.; Rákosi M.; Bognár R. Tetrahedron 1973, 29, 909–912. 10.1016/0040-4020(73)80037-7. DOI
Kurtán T.; Antus S.; Pescitelli G.. Electronic CD of benzene and other aromatic chromophores for determination of absolute configuration. In Comprehensive Chiroptical Spectroscopy; John Wiley & Sons Inc.: Hoboken, NJ, 2012; Vol. 2, pp 73–114.
Laurent D.; Guella G.; Mancini I.; Roquebert M. F.; Farinole F.; Pietra F. Tetrahedron 2002, 58, 9163–9167. 10.1016/S0040-4020(02)01222-X. PubMed DOI
Couche E.; Fkyerat A.; Tabacchi R. Helv. Chim. Acta 2003, 86, 210–221. 10.1002/hlca.200390014. DOI
Chen Y. L.; Tan C. H.; Tan J. J.; Qu S. J.; Jiang S. H.; Zhu D. Y. Planta Med. 2008, 74, 1826–1828. 10.1055/s-0028-1088328. PubMed DOI
Abdelwahab M. F.; Kurtán T.; Mándi A.; Müller W. E. G.; Fouad M. A.; Kamel M. S.; Liu Z.; Ebrahim W.; Daletos G.; Proksch P. Tetrahedron Lett. 2018, 59, 2647–2652. 10.1016/j.tetlet.2018.05.067. DOI
Machida K.; Matsuoka E.; Kasahara T.; Kikuchi M. Chem. Pharm. Bull. 2005, 53, 934–937. 10.1248/cpb.53.934. PubMed DOI
Liu L.; Li A. L.; Zhao M. B.; Tu P. F. Chem. Biodivers. 2007, 4, 2932–2937. 10.1002/cbdv.200790242. PubMed DOI
Fukami A.; Nakamura T.; Kim Y. P.; Shiomi K.; Hayashi M.; Nagai T.; Yamada H.; Komiyama K.; Omura S. J. Antibiot. 2000, 53, 1215–1258. 10.7164/antibiotics.53.1215. PubMed DOI
Klyne W.; Stokes W. M. J. Chem. Soc. 1954, 1954, 1979–1988. 10.1039/jr9540001979. DOI
McLean S. Can. J. Chem. 1964, 42, 191–195. 10.1139/v64-035. DOI
Tanaka K.; Hirayama K.; Yonezawa H.; Sato G.; Toriyabe A.; Kudo H.; Hashimoto A.; Matsumura M.; Harada Y.; Kurihara Y.; et al. Stud. Mycol. 2015, 82, 75–136. 10.1016/j.simyco.2015.10.002. PubMed DOI PMC
Štěpánek O.; Čmoková A.; Procházková E.; Grobárová V.; Černý J.; Slapničková M.; Zíková A.; Kolařík M.; Baszczyňski O.. ChemMedChem 2022, 17,10.1002/cmdc.202200385. PubMed DOI
Arendrup M. C.; Friberg N.; Mares M.; Kahlmeter G.; Meletiadis J.; Guinea J.; Arendrup M. C.; Meletiadis J.; Guinea J.; Friberg N.; et al. Clin. Microbiol. Infect. 2020, 26, 1464–1472. 10.1016/j.cmi.2020.06.007. PubMed DOI
Phutthacharoen K.; Toshe R.; Khalid S. J.; Llanos-López N. A.; Wennrich J.-P.; Schrey H.; Ebada S. S.; Hyde K. D.; Stadler M. Chem. Biodivers. 2024, 21, e20240038510.1002/cbdv.202400385. PubMed DOI
MacroModel; Schrödinger LLC, 2015. Available online: http://www.schrodinger.com/MacroModel (accessed 10 May 2023).
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Mennucci B.; Petersson G. A.; et al.Gaussian 16, Revision C.02; Gaussian Inc.: Wallingford CT, USA, 2019.
Stephens P. J.; Harada N. Chirality 2010, 22, 229–233. 10.1002/chir.20733. PubMed DOI
Varetto U.MOLEKEL, 5.4; Swiss National Supercomputing Centre: Manno, Switzerland, 2009.