BACKGROUND: Ozonated water (O3 wat) soil drench and/or foliar spray applications were evaluated for their potential to control the root-knot nematode Meloidogyne incognita (RKN) and the airborne pathogen Tomato spotted wilt virus (TSWV) in tomato. We investigated how O3 wat modulates the salicylic acid/jasmonic acid/ethylene (SA/JA/ET) signalling network in the host, locally and systemically, to induce resistance to nematode and virus. RESULTS: The application as soil drench was effective in reducing the number of galls and egg masses, but did not reduce the incidence and severity of TSWV infection. Conversely, O3 wat applied by foliar spray decreased TSWV disease incidence and severity (-20%), but was not able to control M. incognita infection. SA-related genes were generally upregulated in both locally treated and systemically reached tissues, showing a positive action of the O3 wat treatment on SA signalling. Neither O3 wat application method significantly altered JA-related gene expression in either direction. ET-related genes were differentially regulated by root or leaf treatments, indicating that O3 wat may have different effects on ET-mediated signalling in different organs. JA/ET/SA related pathways were differentially modulated by O3 wat in the presence of either RKN or TSWV. CONCLUSION: O3 wat had a higher efficacy when applied directly to organs challenged by the pathogens, although it was potentially able to stimulate defence responses through the activation of SA signalling. Owing to its safety and effectiveness in controlling nematode and virus infections, O3 wat can be considered as a possible alternative tool for sustainable disease management practices. © 2019 Society of Chemical Industry.
- MeSH
- imunita rostlin * účinky léků MeSH
- nemoci rostlin parazitologie prevence a kontrola virologie MeSH
- ozon aplikace a dávkování MeSH
- regulátory růstu rostlin fyziologie MeSH
- signální transdukce účinky léků MeSH
- Solanum lycopersicum účinky léků fyziologie MeSH
- Tospovirus fyziologie MeSH
- Tylenchoidea fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The entomopathogenic fungus Lecanicillium muscarium (Petch) Zare and Gams is currently being developed as a biocontrol agent against insect pests, as well as some plant-pathogenic fungi and bacteria. Data about its activity against plant-parasitic nematodes exist, but are relatively limited. To expand this understanding, we investigated the biocontrol efficiency of three isolates of L. muscarium (Lm) against the root knot nematode, Meloidogyne incognita, in both in vitro and in vivo conditions. In our experiments, the maximum number of nematode eggs, juveniles (J2s), females, and egg masses that were parasitized were quantified after a 72-h exposure to the fungus. The isolate Lm1 was designated as the best biocontrol agent against nematode eggs as well as J2s. It showed the highest colonization of eggs and significantly decreased egg hatching events. The results from two additional isolates, Lm2 and Lm3, were also significant (P = 0.05) but less pronounced than those observed with Lm1. L. muscarium treatments had significant (P = 0.05) positive effects on plant shoot and root growth compared with the growth of control plants. These results suggest the effectiveness of the fungus may be due to either the infection of eggs and J2s, or the production of secondary metabolites that induced plant defense mechanisms and lead to systemic resistance. Our study demonstrates that L. muscarium could be used as a potential biocontrol agent against root knot nematodes.
The potato cyst nematodes Globodera pallida and G. rostochiensis are economically important plant pathogens causing losses to UK potato harvests estimated at £50 m/ year. Implications of climate change on their future pest status have not been fully considered. Here, we report growth of female G. pallida and G. rostochiensis over the range 15 to 25°C. Females per plant and their fecundity declined progressively with temperatures above 17.5°C for G. pallida, whilst females per plant were optimal between 17.5 and 22.5°C for G. rostochiensis. Relative reproductive success with temperature was confirmed on two potato cultivars infected with either species at 15, 22.5 and 25°C. The reduced reproductive success of G. pallida at 22.5°C relative to 15°C was also recorded for a further seven host cultivars studied. The differences in optimal temperatures for reproductive success may relate to known differences in the altitude of their regions of origin in the Andes. Exposure of G. pallida to a diurnal temperature stress for one week during female growth significantly suppressed subsequent growth for one week at 17.5°C but had no effect on G. rostochiensis. However, after two weeks of recovery, female size was not significantly different from that for the control treatment. Future soil temperatures were simulated for medium- and high-emission scenarios and combined with nematode growth data to project future implications of climate change for the two species. Increased soil temperatures associated with climate change may reduce the pest status of G. pallida but benefit G. rostochiensis especially in the southern United Kingdom. We conclude that plant breeders may be able to exploit the thermal limits of G. pallida by developing potato cultivars able to grow under future warm summer conditions. Existing widely deployed resistance to G. rostochiensis is an important characteristic to retain for new potato cultivars.
- MeSH
- klimatické změny * MeSH
- půda MeSH
- Solanum tuberosum parazitologie MeSH
- Tylenchoidea fyziologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Spojené království MeSH
Above- and belowground plant parts are simultaneously attacked by different pests and pathogens. The host mediates these interactions and physiologically reacts, e.g. with local and systemic alterations of endogenous hormone levels coupled with coordinated transcriptional changes. This in turn affects attractiveness and susceptibility of the plant to subsequent attackers. Here, the model plant Arabidopsis thaliana is used to study stress hormone-based systemic responses triggered by simultaneous root parasitism by the cyst nematode Heterodera schachtii and shoot herbivory by the thrips Frankliniella occidentalis and the spider mite Tetranychus urticae. First, HPLC/MS and quantitative reverse transcriptase PCR are used to show that nematode parasitism strongly affects stress hormone levels and expression of hormone marker genes in shoots. Previous nematode infection is then demonstrated to affect the behavioural and life history performance of both arthropods. While thrips explicitly avoid nematode-infected plants, spider mites prefer them. In addition, the life history performance of T. urticae is significantly enhanced by nematode infection. Finally, systemic changes triggered by shoot-feeding F. occidentalis but not T. urticae are shown to make the roots more attractive for H. schachtii. This work emphasises the importance of above- and belowground signalling and contributes to a better understanding of plant systemic defence mechanisms against plant-parasitic nematodes.
- MeSH
- Arabidopsis imunologie parazitologie MeSH
- býložravci * MeSH
- kořeny rostlin imunologie parazitologie MeSH
- mezibuněčná komunikace MeSH
- regulátory růstu rostlin fyziologie MeSH
- rostlinné buňky metabolismus MeSH
- Tetranychidae fyziologie MeSH
- Thysanoptera fyziologie MeSH
- Tylenchoidea fyziologie MeSH
- výhonky rostlin imunologie parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Heterodera schachtii, a plant-parasitic cyst nematode, invades host roots and induces a specific syncytial feeding structure, from which it withdraws all required nutrients, causing severe yield losses. The system H. schachtii-Arabidopsis is an excellent research model for investigating plant defence mechanisms. Such responses are suppressed in well-established syncytia, whereas they are induced during early parasitism. However, the mechanisms by which the defence responses are modulated and the role of phytohormones are largely unknown. The aim of this study was to elucidate the role of hormone-based defence responses at the onset of nematode infection. First, concentrations of main phytohormones were quantified and the expression of several hormone-related genes was analysed using quantitative real-time (qRT)-PCR or GeneChip. Further, the effects of individual hormones were evaluated via nematode attraction and infection assays using plants with altered endogenous hormone concentrations. Our results suggest a pivotal and positive role for ethylene during nematode attraction, whereas jasmonic acid triggers early defence responses against H. schachtii. Salicylic acid seems to be a negative regulator during later syncytium and female development. We conclude that nematodes are able to impose specific changes in hormone pools, thus modulating hormone-based defence and signal transduction in strict dependence on their parasitism stage.
- MeSH
- Arabidopsis účinky léků genetika parazitologie fyziologie MeSH
- biotest MeSH
- cyklopentany farmakologie MeSH
- fyziologický stres * účinky léků genetika MeSH
- genetická transkripce účinky léků MeSH
- hmotnostní spektrometrie MeSH
- imunita rostlin * účinky léků MeSH
- kořeny rostlin účinky léků parazitologie MeSH
- kyselina salicylová farmakologie MeSH
- nemoci rostlin parazitologie MeSH
- oxylipiny farmakologie MeSH
- paraziti fyziologie MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostlinné geny MeSH
- Tylenchoidea účinky léků fyziologie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- Ascophyllum chemie imunologie MeSH
- betain * chemie MeSH
- hlístice chemie patogenita růst a vývoj MeSH
- hmyz chemie patogenita růst a vývoj MeSH
- houby chemie patogenita růst a vývoj MeSH
- imunita rostlin * imunologie účinky léků MeSH
- interakce hostitele a patogenu * imunologie účinky léků MeSH
- paraziti chemie růst a vývoj účinky léků MeSH
- rostlinné extrakty MeSH
- rostliny MeSH
- sloučeniny draslíku MeSH
- statistika jako téma MeSH
- Tylenchoidea růst a vývoj účinky léků MeSH