A Comparative Investigation of Properties of Metallic Parts Additively Manufactured through MEX and PBF-LB/M Technologies
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
DZRO Military Autonomous and robotic systems
University of Defence
Miniatura 6 no. DEC-2022/06/X/ST8/00049
National Science Centre (NCN) in Poland
PubMed
37512473
PubMed Central
PMC10383166
DOI
10.3390/ma16145200
PII: ma16145200
Knihovny.cz E-zdroje
- Klíčová slova
- 316L steel, Fused Deposition Modelling, Fused Filament Fabrication, Laser Beam Powder Bed Fusion of Metals, material extrusion, selective laser melting,
- Publikační typ
- časopisecké články MeSH
In this study, the research on 316L steel manufactured additively using two commercially available techniques, Material Extrusion (MEX) and Laser Powder Bed Fusion of Metals (PBF-LB/M), were compared. The additive manufacturing (AM) process based on powder bed synthesis is of great interest in the production of metal parts. One of the most interesting alternatives to PBF-LB/M, are techniques based on material extrusion due to the significant initial cost reduction. Therefore, the paper compares these two different methods of AM technologies for metals. The investigations involved determining the density of the printed samples, assessing their surface roughness in two printing planes, examining their microstructures including determining their porosity and density, and measuring their hardness. The tests carried out make it possible to determine the durability, and quality of the obtained sample parts, as well as to assess their strength. The conducted research revealed that samples fabricated using the PBF-LB/M technology exhibited approximately 3% lower porosity compared to those produced using the MEX technology. Additionally, it was observed that the hardness of PBF-LB/M samples was more than twice as high as that of the samples manufactured using the MEX technology.
Zobrazit více v PubMed
Alzahrani M., Alhumade H., Simon L., Yetilmezsoy K., Madhuranthakam C.M.R., Elkamel A. Additive Manufacture of Recycled Poly(Ethylene Terephthalate) Using Pyromellitic Dianhydride Targeted for FDM 3D-Printing Applications. Sustainability. 2023;15:5004. doi: 10.3390/su15065004. DOI
Lavecchia F., Pellegrini A., Galantucci L.M. Comparative study on the properties of 17-4 PH stainless steel parts made by metal fused filament fabrication process and atomic diffusion additive manufacturing. Rapid Prototyp. J. 2022;29:393–407. doi: 10.1108/rpj-12-2021-0350. DOI
Obadimu S.O., Kasha A., Kourousis K.I. Tensile performance and plastic anisotropy of material extrusion steel 316L: Influence of primary manufacturing parameters. Addit. Manuf. 2022;60:103297. doi: 10.1016/j.addma.2022.103297. DOI
Ait-Mansour I., Kretzschmar N., Chekurov S., Salmi M., Rech J. Design-dependent shrinkage compensation modeling and mechanical property targeting of metal FFF. Prog. Addit. Manuf. 2020;5:51–57. doi: 10.1007/s40964-020-00124-8. DOI
Jirsák P., Brunet-Thornton R. Perspectives of operational additive manufacturing: Case Studies from the Czech aerospace industry. J. East. Eur. Central Asian Res. 2019;6:179–190. doi: 10.15549/jeecar.v6i1.273. DOI
Costa S., Duarte F., Covas J. Thermal conditions affecting heat transfer in FDM/FFE: A contribution towards the numerical modelling of the process: This paper investigates convection, conduction and radiation phenomena in the filament deposition process. Virtual Phys. Prototyp. 2014;10:35–46. doi: 10.1080/17452759.2014.984042. DOI
Spiller S., Berto F., Razavi N. Mechanical behavior of Material Extrusion Additive Manufactured components: An overview. Procedia Struct. Integr. 2022;41:158–174. doi: 10.1016/j.prostr.2022.05.018. DOI
Jiang D., Ning F. Anisotropic deformation of 316L stainless steel overhang structures built by material extrusion based additive manufacturing. Addit. Manuf. 2021;50:102545. doi: 10.1016/j.addma.2021.102545. DOI
Pace M., Guarnaccio A., Dolce P., Mollica D., Parisi G., Lettino A., Medici L., Summa V., Ciancio R., Santagata A. 3D additive manufactured 316L components microstructural features and changes induced by working life cycles. Appl. Surf. Sci. 2017;418:437–445. doi: 10.1016/j.apsusc.2017.01.308. DOI
Spiller S., Kolstad S.O., Razavi N. Fabrication and characterization of 316L stainless steel components printed with material extrusion additive manufacturing. Procedia Struct. Integr. 2022;42:1239–1248. doi: 10.1016/j.prostr.2022.12.158. DOI
Cui L., Jiang F., Deng D., Xin T., Sun X., Mousavian R.T., Peng R.L., Yang Z., Moverare J. Cyclic response of additive manufactured 316L stainless steel: The role of cell structures. Scr. Mater. 2021;205:114190. doi: 10.1016/j.scriptamat.2021.114190. DOI
Suwanpreecha C., Songkuea S., Linjee S., Muengto S., Bumrungpon M., Manonukul A. Tensile and axial fatigue properties of AISI 316 L stainless steel fabricated by materials extrusion additive manufacturing. Mater. Today Commun. 2023;35:105667. doi: 10.1016/j.mtcomm.2023.105667. DOI
Bernevig-Sava M.A., Stamate C., Lohan N.-M., Baciu A.M., Postolache I., Baciu C., Baciu E.-R. Considerations on the surface roughness of SLM processed metal parts and the effects of subsequent sandblasting. IOP Conf. Ser. Mater. Sci. Eng. 2019;572:012071. doi: 10.1088/1757-899x/572/1/012071. DOI
Qin Q., Chen G.X. Microstructure and Mechanical Property Analysis of the Metal Part by SLM. Appl. Mech. Mater. 2013;423–426:693–698. doi: 10.4028/www.scientific.net/amm.423-426.693. DOI
Lu Y., Wu S., Gan Y., Zhang S., Guo S., Lin J., Lin J. Microstructure, mechanical property and metal release of As-SLM CoCrW alloy under different solution treatment conditions. J. Mech. Behav. Biomed. Mater. 2016;55:179–190. doi: 10.1016/j.jmbbm.2015.10.019. PubMed DOI
Tian C., Li X., Zhang S., Guo G., Wang L., Rong Y. Study on design and performance of metal-bonded diamond grinding wheels fabricated by selective laser melting (SLM) Mater. Des. 2018;156:52–61. doi: 10.1016/j.matdes.2018.06.029. DOI
Zhang Q., Yan D., Zhang K., Hu G. Pattern Transformation of Heat-Shrinkable Polymer by Three-Dimensional (3D) Printing Technique. Sci. Rep. 2015;5:srep08936. doi: 10.1038/srep08936. PubMed DOI PMC
Kong D., Dong C., Ni X., Zhang L., Yao J., Man C., Cheng X., Xiao K., Li X. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes. J. Mater. Sci. Technol. 2019;35:1499–1507. doi: 10.1016/j.jmst.2019.03.003. DOI
Sun Z., Tan X., Tor S.B., Chua C.K. Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting. NPG Asia Mater. 2018;10:127–136. doi: 10.1038/s41427-018-0018-5. DOI
Bartolomeu F., Buciumeanu M., Pinto E., Alves N., Carvalho O., Silva F.S., Miranda G. 316L stainless steel mechanical and tribological behavior—A comparison between selective laser melting, hot pressing and conventional casting. Addit. Manuf. 2017;16:81–89. doi: 10.1016/j.addma.2017.05.007. DOI
Kong D.C., Ni X.Q., Dong C.F., Lei X.W., Zhang L., Man C., Yao J.Z., Cheng X.Q., Li X.G. Bio-functional and anti-corrosive 3D printing 316L stainless steel fabricated by selective laser melting. Mater. Des. 2018;152:88–101. doi: 10.1016/j.matdes.2018.04.058. DOI
Liverani E., Toschi S., Ceschini L., Fortunato A. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel. J. Mater. Process. Technol. 2017;249:255–263. doi: 10.1016/j.jmatprotec.2017.05.042. DOI
Cegan T., Pagac M., Jurica J., Skotnicova K., Hajnys J., Horsak L., Soucek K., Krpec P. Effect of Hot Isostatic Pressing on Porosity and Mechanical Properties of 316 L Stainless Steel Prepared by the Selective Laser Melting Method. Materials. 2020;13:4377. doi: 10.3390/ma13194377. PubMed DOI PMC
Rubies E., Palacín J. Design and FDM/FFF Implementation of a Compact Omnidirectional Wheel for a Mobile Robot and Assessment of ABS and PLA Printing Materials. Robotics. 2020;9:43. doi: 10.3390/robotics9020043. DOI
Wikła G., Grabowik C., Kalinowski K., Paprocka I., Ociepka P. Proceedings of the IOP Conference Series: Materials Science and Engineering. Volume 227. IOP Publishing; Bristol, UK: 2017. The Influence of Printing Parameters on Selected Mechanical Properties of FDM/FFF 3D-Printed Parts; p. 012033.
Oskolkov A.A., Trushnikov D.N., Bezukladnikov I.I. Application of induction heating in the FDM/FFF 3D manufacturing. J. Phys. Conf. Ser. 2021;1730:012005. doi: 10.1088/1742-6596/1730/1/012005. DOI
Przekop R.E., Kujawa M., Pawlak W., Dobrosielska M., Sztorch B., Wieleba W. Graphite Modified Polylactide (PLA) for 3D Printed (FDM/FFF) Sliding Elements. Polymers. 2020;12:1250. doi: 10.3390/polym12061250. PubMed DOI PMC
Sadaf M., Bragaglia M., Nanni F. A simple route for additive manufacturing of 316L stainless steel via Fused Filament Fabrication. J. Manuf. Process. 2021;67:141–150. doi: 10.1016/j.jmapro.2021.04.055. DOI
Kurose T., Abe Y., Santos M.V.A., Kanaya Y., Ishigami A., Tanaka S., Ito H. Influence of the Layer Directions on the Properties of 316L Stainless Steel Parts Fabricated through Fused Deposition of Metals. Materials. 2020;13:2493. doi: 10.3390/ma13112493. PubMed DOI PMC
Jansa J., Volodarskaja A., Hlinka J., Zárybnická L., Polzer S., Kraus M., Hajnyš J., Schwarz D., Pagáč M. Corrosion and material properties of 316L stainless steel produced by material extrusion technology. J. Manuf. Process. 2023;88:232–245. doi: 10.1016/j.jmapro.2023.01.035. DOI
Kedziora S., Decker T., Museyibov E., Morbach J., Hohmann S., Huwer A., Wahl M. Strength Properties of 316L and 17-4 PH Stainless Steel Produced with Additive Manufacturing. Materials. 2022;15:6278. doi: 10.3390/ma15186278. PubMed DOI PMC
Metallic Materials—Vickers Hardness Test—Part 1: Test Method. ISO; Geneva, Switzerland: 2018.
Kluczyński J., Śnieżek L., Grzelak K., Oziębło A., Perkowski K., Torzewski J., Szachogłuchowicz I., Gocman K., Wachowski M., Kania B. Comparison of Different Heat Treatment Processes of Selective Laser Melted 316L Steel Based on Analysis of Mechanical Properties. Materials. 2020;13:3805. doi: 10.3390/ma13173805. PubMed DOI PMC
Gong H., Snelling D., Kardel K., Carrano A. Comparison of Stainless Steel 316L Parts Made by FDM- and SLM-Based Additive Manufacturing Processes. JOM. 2018;71:880–885. doi: 10.1007/s11837-018-3207-3. DOI
Kogo B., Xu C., Wang B., Chizari M., Kashyzadeh K.R., Ghorbani S. An Experimental Analysis to Determine the Load-Bearing Capacity of 3D Printed Metals. Materials. 2022;15:4333. doi: 10.3390/ma15124333. PubMed DOI PMC
Kluczynski J., Sniezek L., Grzelak K., Oziebło A., Perkowski K., Torzewski J., Szachogłuchowicz I., Gocman K., Wachowski M., Kania B. Hot isostatic pressing influence on the mechanical properties of selectively laser-melted 316L steel. Bull. Pol. Acad. Sci. Tech. Sci. 2020;68:1413–1424. doi: 10.24425/bpasts.2020.135396. DOI
Grzelak K., Kluczyński J., Szachogłuchowicz I., Łuszczek J., Śnieżek L., Torzewski J. Modification of Structural Properties Using Process Parameters and Surface Treatment of Monolithic and Thin-Walled Parts Obtained by Selective Laser Melting. Materials. 2020;13:5662. doi: 10.3390/ma13245662. PubMed DOI PMC