A Comparative Investigation of Properties of Metallic Parts Additively Manufactured through MEX and PBF-LB/M Technologies

. 2023 Jul 24 ; 16 (14) : . [epub] 20230724

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37512473

Grantová podpora
DZRO Military Autonomous and robotic systems University of Defence
Miniatura 6 no. DEC-2022/06/X/ST8/00049 National Science Centre (NCN) in Poland

In this study, the research on 316L steel manufactured additively using two commercially available techniques, Material Extrusion (MEX) and Laser Powder Bed Fusion of Metals (PBF-LB/M), were compared. The additive manufacturing (AM) process based on powder bed synthesis is of great interest in the production of metal parts. One of the most interesting alternatives to PBF-LB/M, are techniques based on material extrusion due to the significant initial cost reduction. Therefore, the paper compares these two different methods of AM technologies for metals. The investigations involved determining the density of the printed samples, assessing their surface roughness in two printing planes, examining their microstructures including determining their porosity and density, and measuring their hardness. The tests carried out make it possible to determine the durability, and quality of the obtained sample parts, as well as to assess their strength. The conducted research revealed that samples fabricated using the PBF-LB/M technology exhibited approximately 3% lower porosity compared to those produced using the MEX technology. Additionally, it was observed that the hardness of PBF-LB/M samples was more than twice as high as that of the samples manufactured using the MEX technology.

Zobrazit více v PubMed

Alzahrani M., Alhumade H., Simon L., Yetilmezsoy K., Madhuranthakam C.M.R., Elkamel A. Additive Manufacture of Recycled Poly(Ethylene Terephthalate) Using Pyromellitic Dianhydride Targeted for FDM 3D-Printing Applications. Sustainability. 2023;15:5004. doi: 10.3390/su15065004. DOI

Lavecchia F., Pellegrini A., Galantucci L.M. Comparative study on the properties of 17-4 PH stainless steel parts made by metal fused filament fabrication process and atomic diffusion additive manufacturing. Rapid Prototyp. J. 2022;29:393–407. doi: 10.1108/rpj-12-2021-0350. DOI

Obadimu S.O., Kasha A., Kourousis K.I. Tensile performance and plastic anisotropy of material extrusion steel 316L: Influence of primary manufacturing parameters. Addit. Manuf. 2022;60:103297. doi: 10.1016/j.addma.2022.103297. DOI

Ait-Mansour I., Kretzschmar N., Chekurov S., Salmi M., Rech J. Design-dependent shrinkage compensation modeling and mechanical property targeting of metal FFF. Prog. Addit. Manuf. 2020;5:51–57. doi: 10.1007/s40964-020-00124-8. DOI

Jirsák P., Brunet-Thornton R. Perspectives of operational additive manufacturing: Case Studies from the Czech aerospace industry. J. East. Eur. Central Asian Res. 2019;6:179–190. doi: 10.15549/jeecar.v6i1.273. DOI

Costa S., Duarte F., Covas J. Thermal conditions affecting heat transfer in FDM/FFE: A contribution towards the numerical modelling of the process: This paper investigates convection, conduction and radiation phenomena in the filament deposition process. Virtual Phys. Prototyp. 2014;10:35–46. doi: 10.1080/17452759.2014.984042. DOI

Spiller S., Berto F., Razavi N. Mechanical behavior of Material Extrusion Additive Manufactured components: An overview. Procedia Struct. Integr. 2022;41:158–174. doi: 10.1016/j.prostr.2022.05.018. DOI

Jiang D., Ning F. Anisotropic deformation of 316L stainless steel overhang structures built by material extrusion based additive manufacturing. Addit. Manuf. 2021;50:102545. doi: 10.1016/j.addma.2021.102545. DOI

Pace M., Guarnaccio A., Dolce P., Mollica D., Parisi G., Lettino A., Medici L., Summa V., Ciancio R., Santagata A. 3D additive manufactured 316L components microstructural features and changes induced by working life cycles. Appl. Surf. Sci. 2017;418:437–445. doi: 10.1016/j.apsusc.2017.01.308. DOI

Spiller S., Kolstad S.O., Razavi N. Fabrication and characterization of 316L stainless steel components printed with material extrusion additive manufacturing. Procedia Struct. Integr. 2022;42:1239–1248. doi: 10.1016/j.prostr.2022.12.158. DOI

Cui L., Jiang F., Deng D., Xin T., Sun X., Mousavian R.T., Peng R.L., Yang Z., Moverare J. Cyclic response of additive manufactured 316L stainless steel: The role of cell structures. Scr. Mater. 2021;205:114190. doi: 10.1016/j.scriptamat.2021.114190. DOI

Suwanpreecha C., Songkuea S., Linjee S., Muengto S., Bumrungpon M., Manonukul A. Tensile and axial fatigue properties of AISI 316 L stainless steel fabricated by materials extrusion additive manufacturing. Mater. Today Commun. 2023;35:105667. doi: 10.1016/j.mtcomm.2023.105667. DOI

Bernevig-Sava M.A., Stamate C., Lohan N.-M., Baciu A.M., Postolache I., Baciu C., Baciu E.-R. Considerations on the surface roughness of SLM processed metal parts and the effects of subsequent sandblasting. IOP Conf. Ser. Mater. Sci. Eng. 2019;572:012071. doi: 10.1088/1757-899x/572/1/012071. DOI

Qin Q., Chen G.X. Microstructure and Mechanical Property Analysis of the Metal Part by SLM. Appl. Mech. Mater. 2013;423–426:693–698. doi: 10.4028/www.scientific.net/amm.423-426.693. DOI

Lu Y., Wu S., Gan Y., Zhang S., Guo S., Lin J., Lin J. Microstructure, mechanical property and metal release of As-SLM CoCrW alloy under different solution treatment conditions. J. Mech. Behav. Biomed. Mater. 2016;55:179–190. doi: 10.1016/j.jmbbm.2015.10.019. PubMed DOI

Tian C., Li X., Zhang S., Guo G., Wang L., Rong Y. Study on design and performance of metal-bonded diamond grinding wheels fabricated by selective laser melting (SLM) Mater. Des. 2018;156:52–61. doi: 10.1016/j.matdes.2018.06.029. DOI

Zhang Q., Yan D., Zhang K., Hu G. Pattern Transformation of Heat-Shrinkable Polymer by Three-Dimensional (3D) Printing Technique. Sci. Rep. 2015;5:srep08936. doi: 10.1038/srep08936. PubMed DOI PMC

Kong D., Dong C., Ni X., Zhang L., Yao J., Man C., Cheng X., Xiao K., Li X. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes. J. Mater. Sci. Technol. 2019;35:1499–1507. doi: 10.1016/j.jmst.2019.03.003. DOI

Sun Z., Tan X., Tor S.B., Chua C.K. Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting. NPG Asia Mater. 2018;10:127–136. doi: 10.1038/s41427-018-0018-5. DOI

Bartolomeu F., Buciumeanu M., Pinto E., Alves N., Carvalho O., Silva F.S., Miranda G. 316L stainless steel mechanical and tribological behavior—A comparison between selective laser melting, hot pressing and conventional casting. Addit. Manuf. 2017;16:81–89. doi: 10.1016/j.addma.2017.05.007. DOI

Kong D.C., Ni X.Q., Dong C.F., Lei X.W., Zhang L., Man C., Yao J.Z., Cheng X.Q., Li X.G. Bio-functional and anti-corrosive 3D printing 316L stainless steel fabricated by selective laser melting. Mater. Des. 2018;152:88–101. doi: 10.1016/j.matdes.2018.04.058. DOI

Liverani E., Toschi S., Ceschini L., Fortunato A. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel. J. Mater. Process. Technol. 2017;249:255–263. doi: 10.1016/j.jmatprotec.2017.05.042. DOI

Cegan T., Pagac M., Jurica J., Skotnicova K., Hajnys J., Horsak L., Soucek K., Krpec P. Effect of Hot Isostatic Pressing on Porosity and Mechanical Properties of 316 L Stainless Steel Prepared by the Selective Laser Melting Method. Materials. 2020;13:4377. doi: 10.3390/ma13194377. PubMed DOI PMC

Rubies E., Palacín J. Design and FDM/FFF Implementation of a Compact Omnidirectional Wheel for a Mobile Robot and Assessment of ABS and PLA Printing Materials. Robotics. 2020;9:43. doi: 10.3390/robotics9020043. DOI

Wikła G., Grabowik C., Kalinowski K., Paprocka I., Ociepka P. Proceedings of the IOP Conference Series: Materials Science and Engineering. Volume 227. IOP Publishing; Bristol, UK: 2017. The Influence of Printing Parameters on Selected Mechanical Properties of FDM/FFF 3D-Printed Parts; p. 012033.

Oskolkov A.A., Trushnikov D.N., Bezukladnikov I.I. Application of induction heating in the FDM/FFF 3D manufacturing. J. Phys. Conf. Ser. 2021;1730:012005. doi: 10.1088/1742-6596/1730/1/012005. DOI

Przekop R.E., Kujawa M., Pawlak W., Dobrosielska M., Sztorch B., Wieleba W. Graphite Modified Polylactide (PLA) for 3D Printed (FDM/FFF) Sliding Elements. Polymers. 2020;12:1250. doi: 10.3390/polym12061250. PubMed DOI PMC

Sadaf M., Bragaglia M., Nanni F. A simple route for additive manufacturing of 316L stainless steel via Fused Filament Fabrication. J. Manuf. Process. 2021;67:141–150. doi: 10.1016/j.jmapro.2021.04.055. DOI

Kurose T., Abe Y., Santos M.V.A., Kanaya Y., Ishigami A., Tanaka S., Ito H. Influence of the Layer Directions on the Properties of 316L Stainless Steel Parts Fabricated through Fused Deposition of Metals. Materials. 2020;13:2493. doi: 10.3390/ma13112493. PubMed DOI PMC

Jansa J., Volodarskaja A., Hlinka J., Zárybnická L., Polzer S., Kraus M., Hajnyš J., Schwarz D., Pagáč M. Corrosion and material properties of 316L stainless steel produced by material extrusion technology. J. Manuf. Process. 2023;88:232–245. doi: 10.1016/j.jmapro.2023.01.035. DOI

Kedziora S., Decker T., Museyibov E., Morbach J., Hohmann S., Huwer A., Wahl M. Strength Properties of 316L and 17-4 PH Stainless Steel Produced with Additive Manufacturing. Materials. 2022;15:6278. doi: 10.3390/ma15186278. PubMed DOI PMC

Metallic Materials—Vickers Hardness Test—Part 1: Test Method. ISO; Geneva, Switzerland: 2018.

Kluczyński J., Śnieżek L., Grzelak K., Oziębło A., Perkowski K., Torzewski J., Szachogłuchowicz I., Gocman K., Wachowski M., Kania B. Comparison of Different Heat Treatment Processes of Selective Laser Melted 316L Steel Based on Analysis of Mechanical Properties. Materials. 2020;13:3805. doi: 10.3390/ma13173805. PubMed DOI PMC

Gong H., Snelling D., Kardel K., Carrano A. Comparison of Stainless Steel 316L Parts Made by FDM- and SLM-Based Additive Manufacturing Processes. JOM. 2018;71:880–885. doi: 10.1007/s11837-018-3207-3. DOI

Kogo B., Xu C., Wang B., Chizari M., Kashyzadeh K.R., Ghorbani S. An Experimental Analysis to Determine the Load-Bearing Capacity of 3D Printed Metals. Materials. 2022;15:4333. doi: 10.3390/ma15124333. PubMed DOI PMC

Kluczynski J., Sniezek L., Grzelak K., Oziebło A., Perkowski K., Torzewski J., Szachogłuchowicz I., Gocman K., Wachowski M., Kania B. Hot isostatic pressing influence on the mechanical properties of selectively laser-melted 316L steel. Bull. Pol. Acad. Sci. Tech. Sci. 2020;68:1413–1424. doi: 10.24425/bpasts.2020.135396. DOI

Grzelak K., Kluczyński J., Szachogłuchowicz I., Łuszczek J., Śnieżek L., Torzewski J. Modification of Structural Properties Using Process Parameters and Surface Treatment of Monolithic and Thin-Walled Parts Obtained by Selective Laser Melting. Materials. 2020;13:5662. doi: 10.3390/ma13245662. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...