Effect of Hot Isostatic Pressing on Porosity and Mechanical Properties of 316 L Stainless Steel Prepared by the Selective Laser Melting Method
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008407
European Regional Development Fund
PubMed
33019587
PubMed Central
PMC7579382
DOI
10.3390/ma13194377
PII: ma13194377
Knihovny.cz E-zdroje
- Klíčová slova
- 316 L steel, X-ray computed micro-tomography, additive manufacturing, hot isostatic pressing, porosity, selective laser melting, tensile strength,
- Publikační typ
- časopisecké články MeSH
The manufacturing route primarily determines the properties of materials prepared by additive manufacturing methods. In this work, the microstructural features and mechanical properties of 316 L stainless steel prepared by the selective laser method have been determined. Three types of samples, (i) selective laser melted (SLM), (ii) selective laser melted and hot isostatic pressed (HIP) and (iii) selective laser melted and heat treated (HT), were characterized. Microstructural analysis revealed that SLM samples were formed by melt pool boundaries with fine cellular-dendritic-type microstructure. This type of microstructure disappeared after HT or HIP and material were formed by larger grains and sharply defined grain boundaries. The SLM-prepared samples contained different levels of porosity depending on the preparation conditions. The open interconnected LOF (lack of fusion) pores were observed in the samples, which were prepared with using of scanning speed 1200 mm/s. The blowhole and keyhole type of porosity were observed in the samples prepared by lower scanning speeds. The HIP caused a significant decrease in internal closed porosity to 0.1%, and a higher pressure of 190 MPa was more effective than the usually used pressure of 140 MPa, but for samples with open porosity, HIP was not effective. The relatively high yield strength of 570 MPa, tensile strength of 650 MPa and low ductility of 30-34% were determined for SLM samples with the lower porosity content than 1.3%. The samples after HIP showed lower yield strengths than after SLM (from 290 to 325 MPa) and relatively high ductility of 47.8-48.5%, regardless of the used SLM conditions.
5 NASS a s Halasova 2938 1a 703 00 Ostrava Vítkovice Czech Republic
Faculty of Mechanical Engineering VSB Technical University of Ostrava 70800 Ostrava Czech Republic
Zobrazit více v PubMed
Hitzler L., Hirsch J., Heine B., Merkel M., Hall W., Ochsner A. On the anisotropic mechanical properties of selective laser-melted stainless steel. Materials. 2017;10:1136. doi: 10.3390/ma10101136. PubMed DOI PMC
Lavery N.P., Cherry J., Mehmood S., Davies H., Girling B., Sackett E., Brown S.G.R., Sienz J. Effect of hot isostatic pressing on the elastic modulus and tensile properties of 316 L parts made by powder bed laser fusion. Mater. Sci. Eng. A. 2017;693:186–213. doi: 10.1016/j.msea.2017.03.100. DOI
Yusuf S.M., Chen Y., Boardman R., Yang S., Gao N. Investigation on porosity and microhardness of 316 L stainless steel fabricated by selective laser melting. Metals. 2017;7:64. doi: 10.3390/met7020064. DOI
Rottger A., Geenen K., Windmann M., Binner F., Theisen W. Comparison of microstructure and mechanical properties of 316 L austenitic steel processed by selective laser melting with hot-isostatic pressed and cast material. Mater. Sci. Eng. A. 2016;678:365–376. doi: 10.1016/j.msea.2016.10.012. DOI
Montero-Sistiaga M.L., Godino-Martinez M., Boschmans K., Kruth J.P., Van Humbeeck J., Vanmeensel K. Microstructure evolution of 316 L produced by HP-SLM (high power selective melting) Addit. Manuf. 2018;23:402–410.
De Terris T., Andreau O., Peyre P., Adamski F., Koutiri I., Gorny C., Dupuy C. Optimization and comparison of porosity rate measurement methods of selective laser melted metallic parts. Addit. Manuf. 2019;28:802–813. doi: 10.1016/j.addma.2019.05.035. DOI
Qi T., Zhu H., Zhang H., Yin J., Ke L., Zeng X. Selective laser melting of Al7050 powder: Melting mode transition and comparison of the characteristics between the keyhole and conduction mode. Mater. Des. 2017;135:257–266. doi: 10.1016/j.matdes.2017.09.014. DOI
Fabbro R. Melt pool and keyhole behavior analysis for deep penetration laser welding. J. Phys. D Appl. Phys. 2010;43:445501. doi: 10.1088/0022-3727/43/44/445501. DOI
Deev A.A. Anisotropy of Mechanical Properties and its Correlation with the Structure of the Stainless Steel 316 L Produced by the SLM Method. Phys. Procedia. 2016;83:789–796. doi: 10.1016/j.phpro.2016.08.081. DOI
Atkinson H.V., Davies S. Fundamental aspects of hot isostatic pressing: An overview. Met. Mater. Trans. A. 2000;31:2981. doi: 10.1007/s11661-000-0078-2. DOI
Essa K., Jamshidi P., Zou J., Attalah M.M., Hassanin H. Porosity control in 316 L stainless steel using cold and hot isostatic pressing. Mater. Des. 2018;138:21–29. doi: 10.1016/j.matdes.2017.10.025. DOI
Chadha K., Tian Y., Spray J.G., Aranas C. Effect of annealing heat treatment on the microstructural evolution and mechanical properties of hot isostatic pressed 316 L stainless steel fabricated by laser powder bed fusion. Metals. 2020;10:753. doi: 10.3390/met10060753. DOI
Yadollahi A., Shamsaei N., Thompson S.M., Seely D.W. Effect of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316 L stainless steel. Mater. Sci. Eng. A. 2015;644:171–183. doi: 10.1016/j.msea.2015.07.056. DOI
Blinn B., Klein M., Glasner C., Smaga M., Aurich J.C., Beck T. An investigation of the microstructure and fatigue behavior of additively manufactured AISI 316 L stainless steel with regard to the influence of heat treatment. Metals. 2018;8:220. doi: 10.3390/met8040220. DOI
Riemer A., Leuders S., Thone M., Richard H.A., Troster T., Niendorf T. On the fatigue crack growth behavior in 316 L stainless steel manufactured by selective laser melting. Eng. Fract. Mech. 2014;120:15. doi: 10.1016/j.engfracmech.2014.03.008. DOI
Casati R., Lemke J., Vedani M. Microstructure and fracture behavior of 316 L austenitic stainless steel produced by selective laser melting. J. Mater. Sci. Technol. 2016;32:738. doi: 10.1016/j.jmst.2016.06.016. DOI
Puichaud A.-H., Flament C., Chniouel A., Lomello F., Rouesne E., Giroux P.-F., Maskrot H., Schuster F., Bechade J.-L. Microstructure and mechanical properties relationship of additively manufactured 316 L stainless steel by selective laser melting. EPJ Nucl. Sci. Technol. 2019;5:23. doi: 10.1051/epjn/2019051. DOI
Atkinson A., Donev A.N., Tobias R.D. Optimum Experimental Designs, with SAS. Oxford University Press; Oxford, UK: 2007.
Yang E., Leary M., Lozanovski B. Effect of geometry on the mechanical properties of Ti-6Al-4V Gyroid structures fabricated via SLM: A numerical study. Mater. Des. 2019;184:108165. doi: 10.1016/j.matdes.2019.108165. DOI
Carter J.K. Additive Manufacturing of Bioinspired Bulk Gradient Structures to Enhance Mechanical Performance. Undergraduate Research Scholars Program. Department of Engineering Technology and Industrial Distribution, Texas AM University; College Station, TX, USA: 2018.
Hajnys J., Pagáč M., Měsíček J., Petru J., Król M. Influence of Scanning Strategy Parameters on Residual Stress in the SLM Process According to the Bridge Curvature Method for AISI 316 L Stainless Steel. Materials. 2020;13:1659. doi: 10.3390/ma13071659. PubMed DOI PMC
Irukuvarghula S., Hassanin H., Cayron C., Aristizabal M., Attallah M.M. Effect of powder characteristics and oxygen content on modifications to the microstructural topology during hot isostatic pressing of an austenitic steel. Acta Mater. 2019;172:6–17. doi: 10.1016/j.actamat.2019.03.038. DOI
Cherry J.A., Davies H.M., Mehmood S., Lavery N.P., Brown S.G.R., Sienz J. Investigation into the effect of process parameters on microstructural and physical properties of 316 L stainless steel parts by selective laser melting. Int. J. Adv. Manuf. Technol. 2014;76:869–879. doi: 10.1007/s00170-014-6297-2. DOI
Yasa E., Kruth J.P. Microstructural investigation of Selective Laser Melting 316 L stainless steel parts exposed to laser re-melting. Procedia Eng. 2011;19:389–395. doi: 10.1016/j.proeng.2011.11.130. DOI
Lou X., Andresen P., Rebak R.B. Oxide inclusions in laser additive manufactured stainless steel and their effect on impact toughness and stress corrosion cracking behaviour. J. Nucl. Mater. 2018;499:182–190. doi: 10.1016/j.jnucmat.2017.11.036. DOI
Volume Graphics GmbH, VG Studio Max 3.3 Reference manual, Heidelberg. [(accessed on 18 June 2020)];2019 Available online: https://www.volumegraphics.com/en/products/vgstudio-max.html.
Saeidi K. Ph.D. Thesis. Stockholm University; Stockholm, Sweden: 2016. Stainless Steels Fabricated by Laser Melting.
Stress Relieving Heat Treatment of 316L Stainless Steel Made by Additive Manufacturing Process