Stress Relieving Heat Treatment of 316L Stainless Steel Made by Additive Manufacturing Process
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
APVV-21-0228
Slovak Research and Development Agency
VEGA 1/0391/22
Ministry of Education, Science, Research and Sport of the Slovak Republic
KEGA 017TUKE-4/2023
Ministry of Education, Science, Research and Sport of the Slovak Republic
ITMS: 313011BWN5
European Regional Development Fund
PubMed
37834599
PubMed Central
PMC10573550
DOI
10.3390/ma16196461
PII: ma16196461
Knihovny.cz E-resources
- Keywords
- X-ray diffraction, heat treatment, microstructure, residual stress, selective laser melting, stainless steel,
- Publication type
- Journal Article MeSH
Residual stress occurs in the materials after different methods of processing due to the application of pressure and/or thermal gradient. The occurrence of residual stresses can be observed in both subtractive and additive-manufactured (AM) materials and objects. However, pressure residual stresses are considered, in some cases, to have a positive effect; there are applications where the neutral stress state is required. As there is a lack of standards describing the heat treatment of AM materials, there is a need for experimental research in this field. The objective of this article is to determine the heat treatment thermal regime to achieve close to zero stress state in the subsurface layer of additively manufactured AM316L stainless steel. The presented objective leads to the long-term goal of neutral etalons for eddy current residual stress testing preparation. A semi-product intended for the experiment was prepared using the Selective Laser Melting (SLM) process and subsequently cut, using Abrasive Water Jet (AWJ) technology, into experimental specimens, which were consequently heat-treated in combination with four temperatures and three holding times. Residual stresses were measured using X-ray diffraction (XRD), and microstructure variations were observed and examined. A combination of higher temperature and longer duration of heat treatment caused more significant stress relaxation, and the original stress state of the material influenced a degree of this relaxation. The microstructure formed of cellular grains changed slightly in the form of grain growth with randomly occurring unmolten powder particles, porosity, and inclusion precipitation.
See more in PubMed
Ahmed N. Direct metal fabrication in rapid prototyping: A review. J. Manuf. Process. 2019;42:167–191. doi: 10.1016/j.jmapro.2019.05.001. DOI
Schmidleithner C., Deepak M.K. Stereolithography. IntechOpen; London, UK: 2018. pp. 1–22. DOI
Popescu D., Zapciu A., Amza C., Baciu F., Marinescu R. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polym. Test. 2018;69:157–166. doi: 10.1016/j.polymertesting.2018.05.020. DOI
Li N., Huang S., Zhang G., Qin R., Liu W., Xiong H., Shi G., Blackburn J. Progress in additive manufacturing on new materials: A review. J. Mater. Sci. Technol. 2019;35:242–269. doi: 10.1016/j.jmst.2018.09.002. DOI
Rani K.U., Kumar R., Mahapatra M.M., Mulik R.S., Świerczyńska A., Fydrych D., Pandey C. Wire Arc Additive Manufactured Mild Steel and Austenitic Stainless Steel Components: Microstructure, Mechanical Properties and Residual Stresses. Materials. 2022;15:7094. doi: 10.3390/ma15207094. PubMed DOI PMC
Additive Manufacturing—General Principles—Fundamentals and Vocabulary. ASTM International; West Conshohocken, PA, USA: 2021.
Jia H., Sun H., Wang H., Wu Y., Wang H. Scanning strategy in selective laser melting (SLM): A review. Int. J. Adv. Manuf. Technol. 2021;113:2413–2435. doi: 10.1007/s00170-021-06810-3. DOI
Malekipour E., El-Mounayri H. Common defects and contributing parameters in powder bed fusion AM process and their classification for online monitoring and control: A review. Int. J. Adv. Manuf. Technol. 2018;95:527–550. doi: 10.1007/s00170-017-1172-6. DOI
Zhang B., Li Y., Bai Q. Defect formation mechanisms in selective laser melting: A review. Chin. J. Mech. Eng. 2017;30:515–527. doi: 10.1007/s10033-017-0121-5. DOI
Chen J., Hou W., Wang X., Chu S., Yang Z. Microstructure, porosity and mechanical properties of selective laser melted AlSi10Mg. Chin. J. Aeronaut. 2020;33:2043–2054. doi: 10.1016/j.cja.2019.08.017. DOI
Kalentics N., Sohrabi N., Tabasi H.G., Griffiths S., Jhabvala J., Leinenbach C., Burn A., Logé R.E. Healing cracks in selective laser melting by 3D laser shock peening. Addit. Manuf. 2019;30:100881. doi: 10.1016/j.addma.2019.100881. DOI
DebRoy T., Wei H.L., Zuback J.S., Mukherjee T., Elmer J.W., Milewski J.O., Beese A.M., Wilson-Heid A., De A., Zhang W. Additive manufacturing of metallic components–process, structure and properties. Prog. Mater. Sci. 2018;92:112–224. doi: 10.1016/j.pmatsci.2017.10.001. DOI
Davim J.P., editor. Surface Integrity in Machining. Springer; London, UK: 2010. DOI
Withers P.J., Bhadeshia H.K.D.H. Residual stress. Part 2–Nature and origins. Mater. Sci. Technol. 2001;17:366–375. doi: 10.1179/026708301101510087. DOI
Fang Z.C., Wu Z.L., Huang C.G., Wu C.W. Review on residual stress in selective laser melting additive manufacturing of alloy parts. Opt. Laser. Technol. 2020;129:106283. doi: 10.1016/j.optlastec.2020.106283. DOI
Mugwagwa L., Yadroitsev I., Matope S. Effect of process parameters on residual stresses, distortions, and porosity in selective laser melting of maraging steel 300. Metals. 2019;9:1042. doi: 10.3390/met9101042. DOI
Wang L., Jiang X., Zhu Y., Zhu X., Sun J., Yan B. An approach to predict the residual stress and distortion during the selective laser melting of AlSi10Mg parts. Int. J. Adv. Manuf. Technol. 2018;97:3535–3546. doi: 10.1007/s00170-018-2207-3. DOI
Balbaa M., Mekhiel S., Elbestawi M., McIsaac J. On selective laser melting of Inconel 718: Densification, surface roughness, and residual stresses. Mater. Des. 2020;193:108818. doi: 10.1016/j.matdes.2020.108818. DOI
Wang D., Wu S., Yang Y., Dou W., Deng S., Wang Z., Li S. The effect of a scanning strategy on the residual stress of 316L steel parts fabricated by selective laser melting (SLM) Materials. 2018;11:1821. doi: 10.3390/ma11101821. PubMed DOI PMC
Mugwagwa L., Dimitrov D., Matope S., Yadroitsev I. Evaluation of the impact of scanning strategies on residual stresses in selective laser melting. Int. J. Adv. Manuf. Technol. 2019;102:2441–2450. doi: 10.1007/s00170-019-03396-9. DOI
Zhang W., Guo D., Wang L., Davies C.M., Mirihanage W., Tong M., Harrison N.M. X-ray diffraction measurements and computational prediction of residual stress mitigation scanning strategies in powder bed fusion additive manufacturing. Addit. Manuf. 2023;61:103275. doi: 10.1016/j.addma.2022.103275. DOI
Mercelis P., Kruth J.P. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2006;12:254–265. doi: 10.1108/13552540610707013. DOI
Vrancken B., Wauthlé R., Kruth J.P., Humbeeck J.V. Study of the influence of material properties on residual stress in selective laser melting; Proceedings of the Solid Free Fabrication Symposium, KU Leuven; Austin, TX, USA. 2–14 August 2013; pp. 1–15. DOI
Liu Y., Yang Y., Wang D. A study on the residual stress during selective laser melting (SLM) of metallic powder. Int. J. Adv. Manuf. Technol. 2016;87:647–656. doi: 10.1007/s00170-016-8466-y. DOI
Lodh A., Thool K., Samajdar I. X-ray diffraction for the determination of residual stress of crystalline material: An overview. T. Indian I. Met. 2022;75:983–995. doi: 10.1007/s12666-022-02540-6. DOI
Song W., Xu C., Pan Q., Song J. Nondestructive testing and characterization of residual stress field using an ultrasonic method. Chin. J. Mech. Eng. 2016;29:365–371. doi: 10.3901/CJME.2015.1023.126. DOI
Sadeghi S., Karimi Z.N., Fotouhi M., Hasani M., Najafabadi A.M., Pavlović A. Residual stress evaluation in friction stir welding of aluminum plates by means of acoustic emission and ultrasonic waves. FME Trans. 2018;46:230–237. doi: 10.5937/fmet1802230S. DOI
Guo J., Fu H., Pan B., Kang R. Recent progress of residual stress measurement methods: A review. Chin. J. Aeronaut. 2021;34:54–78. doi: 10.1016/j.cja.2019.10.010. DOI
Matsumoto T., Uchimoto T., Takagi T., Dobmann G., Ducharne B., Oozono S., Yuya H. Investigation of electromagnetic nondestructive evaluation of residual strain in low carbon steels using the eddy current magnetic signature (EC-MS) method. J. Magn. Magn. Mater. 2019;479:212–221. doi: 10.1016/j.jmmm.2019.01.103. DOI
Jimenez J.A., García V., Boyero C. Handheld Solution for Measurement of Residual Stresses on Railway Wheels using EMATs; Proceedings of the European Congress Non-Destructive Testing; Munich, Germany. 13–17 June 2016; [(accessed on 18 September 2023)]. pp. 1–8. Available online: http://ndt.net/?id=19503.
Taraphdar P.K., Thakare J.G., Pandey C., Mahapatra M.M. Novel residual stress measurement technique to evaluate through thickness residual stress fields. Mater. Let. 2020;277:128347. doi: 10.1016/j.matlet.2020.128347. DOI
Chen Y., Sun H., Li Z., Wu Y., Xiao Y., Chen Z., Zhong S., Wang H. Strategy of residual stress determination on selective laser melted Al alloy using XRD. Materials. 2020;13:451. doi: 10.3390/ma13020451. PubMed DOI PMC
Kim J., Ju S.H., Nam J., Kuttolamadom M., Lee C. Non-destructive surface and subsurface characterization of the machined parts by using fiber optic Eddy current sensor. J. Manuf. Process. 2023;95:492–496. doi: 10.1016/j.jmapro.2023.04.039. DOI
Acevedo R., Sedlak P., Kolman R., Fredel M. Residual stress analysis of additive manufacturing of metallic parts using ultrasonic waves: State of the art review. J. Mater. Res. Technol. 2020;9:9457–9477. doi: 10.1016/j.jmrt.2020.05.092. DOI
Zhan Y., Liu C., Zhang J., Mo G., Liu C. Measurement of residual stress in laser additive manufacturing TC4 titanium alloy with the laser ultrasonic technique. Mater. Sci. Eng. A-Struct. 2019;762:138093. doi: 10.1016/j.msea.2019.138093. DOI
Waqar S., Guo K., Sun J. Evolution of residual stress behavior in selective laser melting (SLM) of 316L stainless steel through preheating and in-situ re-scanning techniques. Opt. Laser Technol. 2022;149:107806. doi: 10.1016/j.optlastec.2021.107806. DOI
Qutaba S., Asmelash M., Saptaji K., Azhari A. A review on peening processes and its effect on surfaces. Int. J. Adv. Manuf. Technol. 2022;120:4233–4270. doi: 10.1007/s00170-022-09021-6. DOI
Chao Q., Thomas S., Birbilis N., Cizek P., Hodgson P.D., Fabijanic D. The effect of post-processing heat treatment on the microstructure, residual stress and mechanical properties of selective laser melted 316L stainless steel. Mater. Sci. Eng. A-Struct. 2021;821:141611. doi: 10.1016/j.msea.2021.141611. DOI
Cruz V., Chao Q., Birbilis N., Fabijanic D., Hodgson P.D., Thomas S. Electrochemical studies on the effect of residual stress on the corrosion of 316L manufactured by selective laser melting. Corros. Sci. 2020;164:108314. doi: 10.1016/j.corsci.2019.108314. DOI
Santa-Aho S., Kiviluoma M., Jokiaho T., Gundgire T., Honkanen M., Lindgren M., Vippola M. Additive manufactured 316l stainless-steel specimens: Microstructure, residual stress and corrosion characteristics after post-processing. Metals. 2021;11:182. doi: 10.3390/met11020182. DOI
Kong D., Ni X., Dong C., Zhang L., Man C., Yao J., Xiao K., Li X. Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells. Electrochim. Acta. 2018;276:293–303. doi: 10.1016/j.electacta.2018.04.188. DOI
Lou X., Song M., Emigh P.W., Othon M.A., Andresen P.L. On the stress corrosion crack growth behaviour in high temperature water of 316L stainless steel made by laser powder bed fusion additive manufacturing. Corros. Sci. 2017;128:140–153. doi: 10.1016/j.corsci.2017.09.017. DOI
Riabov D., Leicht A., Ahlström J., Hryha E. Investigation of the strengthening mechanism in 316L stainless steel produced with laser powder bed fusion. Mater. Sci. Eng. A-Struct. 2021;822:141699. doi: 10.1016/j.msea.2021.141699. DOI
Data Sheet: SS 316L-0407 Powder for Additive Manufacturing. [(accessed on 20 July 2023)]. Available online: https://www.renishaw.com/resourcecentre/en/details/data-sheet-ss-316l-0407-powder-for-additive-manufacturing--90802.
Gu D., Shen Y. Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. Mater. Des. 2009;30:2903–2910. doi: 10.1016/j.matdes.2009.01.013. DOI
Contact-Free Cutting—Water Jet Cutting-Geometrical Specification and Quality. Swiss Standards-Vereiningung; Zurich, Switzerland: 2013.
Fitzpatrick M.E., Fry A.T., Holdway P., Kandil F. Determination of Residual Stresses by X-ray Diffraction. National Physical Laboratory; Teddington, UK: 2005.
Cegan T., Pagac M., Jurica J., Skotnicova K., Hajnys J., Horsak L., Soucek K., Krpec P. Effect of hot isostatic pressing on porosity and mechanical properties of 316 l stainless steel prepared by the selective laser melting method. Materials. 2020;13:4377. doi: 10.3390/ma13194377. PubMed DOI PMC
Shin W.S., Son B., Song W., Sohn H., Jang H., Kim Y.J., Park C. Heat treatment effect on the microstructure, mechanical properties, and wear behaviors of stainless steel 316L prepared via selective laser melting. Mater. Sci. Eng. A-Struct. 2021;806:140805. doi: 10.1016/j.msea.2021.140805. DOI
Kurian S., Mirzaeifar R. Deformation mechanisms of the subgranular cellular structures in selective laser melted 316L stainless steel. Mech. Mater. 2020;148:103478. doi: 10.1016/j.mechmat.2020.103478. DOI
Wang D., Song C., Yang Y., Bai Y. Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts. Mater. Design. 2016;100:291–299. doi: 10.1016/j.matdes.2016.03.111. DOI
Saeidi K., Gao X., Zhong Y., Shen Z.J. Hardened austenite steel with columnar sub-grain structure formed by laser melting. Mater. Sci. Eng. A-Struct. 2015;625:221–229. doi: 10.1016/j.msea.2014.12.018. DOI
Yang D., Kan X., Gao P., Zhao Y., Yin Y., Zhao Z., Sun J. Influence of porosity on mechanical and corrosion properties of SLM 316L stainless steel. Appl. Phys. A-Mater. 2022;128:51. doi: 10.1007/s00339-021-05191-4. DOI
Morozova I., Kehm C., Obrosov A., Yang Y., Mohammad Miah K.U., Uludintceva E., Fritzsche S., Weiß S., Michailov V. On the Heat Treatment of Selective-Laser-Melted 316L. J. Mater. Eng. Perform. 2023;32:4295–4305. doi: 10.1007/s11665-022-07404-0. DOI