• This record comes from PubMed

Stress Relieving Heat Treatment of 316L Stainless Steel Made by Additive Manufacturing Process

. 2023 Sep 28 ; 16 (19) : . [epub] 20230928

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
APVV-21-0228 Slovak Research and Development Agency
VEGA 1/0391/22 Ministry of Education, Science, Research and Sport of the Slovak Republic
KEGA 017TUKE-4/2023 Ministry of Education, Science, Research and Sport of the Slovak Republic
ITMS: 313011BWN5 European Regional Development Fund

Residual stress occurs in the materials after different methods of processing due to the application of pressure and/or thermal gradient. The occurrence of residual stresses can be observed in both subtractive and additive-manufactured (AM) materials and objects. However, pressure residual stresses are considered, in some cases, to have a positive effect; there are applications where the neutral stress state is required. As there is a lack of standards describing the heat treatment of AM materials, there is a need for experimental research in this field. The objective of this article is to determine the heat treatment thermal regime to achieve close to zero stress state in the subsurface layer of additively manufactured AM316L stainless steel. The presented objective leads to the long-term goal of neutral etalons for eddy current residual stress testing preparation. A semi-product intended for the experiment was prepared using the Selective Laser Melting (SLM) process and subsequently cut, using Abrasive Water Jet (AWJ) technology, into experimental specimens, which were consequently heat-treated in combination with four temperatures and three holding times. Residual stresses were measured using X-ray diffraction (XRD), and microstructure variations were observed and examined. A combination of higher temperature and longer duration of heat treatment caused more significant stress relaxation, and the original stress state of the material influenced a degree of this relaxation. The microstructure formed of cellular grains changed slightly in the form of grain growth with randomly occurring unmolten powder particles, porosity, and inclusion precipitation.

See more in PubMed

Ahmed N. Direct metal fabrication in rapid prototyping: A review. J. Manuf. Process. 2019;42:167–191. doi: 10.1016/j.jmapro.2019.05.001. DOI

Schmidleithner C., Deepak M.K. Stereolithography. IntechOpen; London, UK: 2018. pp. 1–22. DOI

Popescu D., Zapciu A., Amza C., Baciu F., Marinescu R. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polym. Test. 2018;69:157–166. doi: 10.1016/j.polymertesting.2018.05.020. DOI

Li N., Huang S., Zhang G., Qin R., Liu W., Xiong H., Shi G., Blackburn J. Progress in additive manufacturing on new materials: A review. J. Mater. Sci. Technol. 2019;35:242–269. doi: 10.1016/j.jmst.2018.09.002. DOI

Rani K.U., Kumar R., Mahapatra M.M., Mulik R.S., Świerczyńska A., Fydrych D., Pandey C. Wire Arc Additive Manufactured Mild Steel and Austenitic Stainless Steel Components: Microstructure, Mechanical Properties and Residual Stresses. Materials. 2022;15:7094. doi: 10.3390/ma15207094. PubMed DOI PMC

Additive Manufacturing—General Principles—Fundamentals and Vocabulary. ASTM International; West Conshohocken, PA, USA: 2021.

Jia H., Sun H., Wang H., Wu Y., Wang H. Scanning strategy in selective laser melting (SLM): A review. Int. J. Adv. Manuf. Technol. 2021;113:2413–2435. doi: 10.1007/s00170-021-06810-3. DOI

Malekipour E., El-Mounayri H. Common defects and contributing parameters in powder bed fusion AM process and their classification for online monitoring and control: A review. Int. J. Adv. Manuf. Technol. 2018;95:527–550. doi: 10.1007/s00170-017-1172-6. DOI

Zhang B., Li Y., Bai Q. Defect formation mechanisms in selective laser melting: A review. Chin. J. Mech. Eng. 2017;30:515–527. doi: 10.1007/s10033-017-0121-5. DOI

Chen J., Hou W., Wang X., Chu S., Yang Z. Microstructure, porosity and mechanical properties of selective laser melted AlSi10Mg. Chin. J. Aeronaut. 2020;33:2043–2054. doi: 10.1016/j.cja.2019.08.017. DOI

Kalentics N., Sohrabi N., Tabasi H.G., Griffiths S., Jhabvala J., Leinenbach C., Burn A., Logé R.E. Healing cracks in selective laser melting by 3D laser shock peening. Addit. Manuf. 2019;30:100881. doi: 10.1016/j.addma.2019.100881. DOI

DebRoy T., Wei H.L., Zuback J.S., Mukherjee T., Elmer J.W., Milewski J.O., Beese A.M., Wilson-Heid A., De A., Zhang W. Additive manufacturing of metallic components–process, structure and properties. Prog. Mater. Sci. 2018;92:112–224. doi: 10.1016/j.pmatsci.2017.10.001. DOI

Davim J.P., editor. Surface Integrity in Machining. Springer; London, UK: 2010. DOI

Withers P.J., Bhadeshia H.K.D.H. Residual stress. Part 2–Nature and origins. Mater. Sci. Technol. 2001;17:366–375. doi: 10.1179/026708301101510087. DOI

Fang Z.C., Wu Z.L., Huang C.G., Wu C.W. Review on residual stress in selective laser melting additive manufacturing of alloy parts. Opt. Laser. Technol. 2020;129:106283. doi: 10.1016/j.optlastec.2020.106283. DOI

Mugwagwa L., Yadroitsev I., Matope S. Effect of process parameters on residual stresses, distortions, and porosity in selective laser melting of maraging steel 300. Metals. 2019;9:1042. doi: 10.3390/met9101042. DOI

Wang L., Jiang X., Zhu Y., Zhu X., Sun J., Yan B. An approach to predict the residual stress and distortion during the selective laser melting of AlSi10Mg parts. Int. J. Adv. Manuf. Technol. 2018;97:3535–3546. doi: 10.1007/s00170-018-2207-3. DOI

Balbaa M., Mekhiel S., Elbestawi M., McIsaac J. On selective laser melting of Inconel 718: Densification, surface roughness, and residual stresses. Mater. Des. 2020;193:108818. doi: 10.1016/j.matdes.2020.108818. DOI

Wang D., Wu S., Yang Y., Dou W., Deng S., Wang Z., Li S. The effect of a scanning strategy on the residual stress of 316L steel parts fabricated by selective laser melting (SLM) Materials. 2018;11:1821. doi: 10.3390/ma11101821. PubMed DOI PMC

Mugwagwa L., Dimitrov D., Matope S., Yadroitsev I. Evaluation of the impact of scanning strategies on residual stresses in selective laser melting. Int. J. Adv. Manuf. Technol. 2019;102:2441–2450. doi: 10.1007/s00170-019-03396-9. DOI

Zhang W., Guo D., Wang L., Davies C.M., Mirihanage W., Tong M., Harrison N.M. X-ray diffraction measurements and computational prediction of residual stress mitigation scanning strategies in powder bed fusion additive manufacturing. Addit. Manuf. 2023;61:103275. doi: 10.1016/j.addma.2022.103275. DOI

Mercelis P., Kruth J.P. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2006;12:254–265. doi: 10.1108/13552540610707013. DOI

Vrancken B., Wauthlé R., Kruth J.P., Humbeeck J.V. Study of the influence of material properties on residual stress in selective laser melting; Proceedings of the Solid Free Fabrication Symposium, KU Leuven; Austin, TX, USA. 2–14 August 2013; pp. 1–15. DOI

Liu Y., Yang Y., Wang D. A study on the residual stress during selective laser melting (SLM) of metallic powder. Int. J. Adv. Manuf. Technol. 2016;87:647–656. doi: 10.1007/s00170-016-8466-y. DOI

Lodh A., Thool K., Samajdar I. X-ray diffraction for the determination of residual stress of crystalline material: An overview. T. Indian I. Met. 2022;75:983–995. doi: 10.1007/s12666-022-02540-6. DOI

Song W., Xu C., Pan Q., Song J. Nondestructive testing and characterization of residual stress field using an ultrasonic method. Chin. J. Mech. Eng. 2016;29:365–371. doi: 10.3901/CJME.2015.1023.126. DOI

Sadeghi S., Karimi Z.N., Fotouhi M., Hasani M., Najafabadi A.M., Pavlović A. Residual stress evaluation in friction stir welding of aluminum plates by means of acoustic emission and ultrasonic waves. FME Trans. 2018;46:230–237. doi: 10.5937/fmet1802230S. DOI

Guo J., Fu H., Pan B., Kang R. Recent progress of residual stress measurement methods: A review. Chin. J. Aeronaut. 2021;34:54–78. doi: 10.1016/j.cja.2019.10.010. DOI

Matsumoto T., Uchimoto T., Takagi T., Dobmann G., Ducharne B., Oozono S., Yuya H. Investigation of electromagnetic nondestructive evaluation of residual strain in low carbon steels using the eddy current magnetic signature (EC-MS) method. J. Magn. Magn. Mater. 2019;479:212–221. doi: 10.1016/j.jmmm.2019.01.103. DOI

Jimenez J.A., García V., Boyero C. Handheld Solution for Measurement of Residual Stresses on Railway Wheels using EMATs; Proceedings of the European Congress Non-Destructive Testing; Munich, Germany. 13–17 June 2016; [(accessed on 18 September 2023)]. pp. 1–8. Available online: http://ndt.net/?id=19503.

Taraphdar P.K., Thakare J.G., Pandey C., Mahapatra M.M. Novel residual stress measurement technique to evaluate through thickness residual stress fields. Mater. Let. 2020;277:128347. doi: 10.1016/j.matlet.2020.128347. DOI

Chen Y., Sun H., Li Z., Wu Y., Xiao Y., Chen Z., Zhong S., Wang H. Strategy of residual stress determination on selective laser melted Al alloy using XRD. Materials. 2020;13:451. doi: 10.3390/ma13020451. PubMed DOI PMC

Kim J., Ju S.H., Nam J., Kuttolamadom M., Lee C. Non-destructive surface and subsurface characterization of the machined parts by using fiber optic Eddy current sensor. J. Manuf. Process. 2023;95:492–496. doi: 10.1016/j.jmapro.2023.04.039. DOI

Acevedo R., Sedlak P., Kolman R., Fredel M. Residual stress analysis of additive manufacturing of metallic parts using ultrasonic waves: State of the art review. J. Mater. Res. Technol. 2020;9:9457–9477. doi: 10.1016/j.jmrt.2020.05.092. DOI

Zhan Y., Liu C., Zhang J., Mo G., Liu C. Measurement of residual stress in laser additive manufacturing TC4 titanium alloy with the laser ultrasonic technique. Mater. Sci. Eng. A-Struct. 2019;762:138093. doi: 10.1016/j.msea.2019.138093. DOI

Waqar S., Guo K., Sun J. Evolution of residual stress behavior in selective laser melting (SLM) of 316L stainless steel through preheating and in-situ re-scanning techniques. Opt. Laser Technol. 2022;149:107806. doi: 10.1016/j.optlastec.2021.107806. DOI

Qutaba S., Asmelash M., Saptaji K., Azhari A. A review on peening processes and its effect on surfaces. Int. J. Adv. Manuf. Technol. 2022;120:4233–4270. doi: 10.1007/s00170-022-09021-6. DOI

Chao Q., Thomas S., Birbilis N., Cizek P., Hodgson P.D., Fabijanic D. The effect of post-processing heat treatment on the microstructure, residual stress and mechanical properties of selective laser melted 316L stainless steel. Mater. Sci. Eng. A-Struct. 2021;821:141611. doi: 10.1016/j.msea.2021.141611. DOI

Cruz V., Chao Q., Birbilis N., Fabijanic D., Hodgson P.D., Thomas S. Electrochemical studies on the effect of residual stress on the corrosion of 316L manufactured by selective laser melting. Corros. Sci. 2020;164:108314. doi: 10.1016/j.corsci.2019.108314. DOI

Santa-Aho S., Kiviluoma M., Jokiaho T., Gundgire T., Honkanen M., Lindgren M., Vippola M. Additive manufactured 316l stainless-steel specimens: Microstructure, residual stress and corrosion characteristics after post-processing. Metals. 2021;11:182. doi: 10.3390/met11020182. DOI

Kong D., Ni X., Dong C., Zhang L., Man C., Yao J., Xiao K., Li X. Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells. Electrochim. Acta. 2018;276:293–303. doi: 10.1016/j.electacta.2018.04.188. DOI

Lou X., Song M., Emigh P.W., Othon M.A., Andresen P.L. On the stress corrosion crack growth behaviour in high temperature water of 316L stainless steel made by laser powder bed fusion additive manufacturing. Corros. Sci. 2017;128:140–153. doi: 10.1016/j.corsci.2017.09.017. DOI

Riabov D., Leicht A., Ahlström J., Hryha E. Investigation of the strengthening mechanism in 316L stainless steel produced with laser powder bed fusion. Mater. Sci. Eng. A-Struct. 2021;822:141699. doi: 10.1016/j.msea.2021.141699. DOI

Data Sheet: SS 316L-0407 Powder for Additive Manufacturing. [(accessed on 20 July 2023)]. Available online: https://www.renishaw.com/resourcecentre/en/details/data-sheet-ss-316l-0407-powder-for-additive-manufacturing--90802.

Gu D., Shen Y. Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. Mater. Des. 2009;30:2903–2910. doi: 10.1016/j.matdes.2009.01.013. DOI

Contact-Free Cutting—Water Jet Cutting-Geometrical Specification and Quality. Swiss Standards-Vereiningung; Zurich, Switzerland: 2013.

Fitzpatrick M.E., Fry A.T., Holdway P., Kandil F. Determination of Residual Stresses by X-ray Diffraction. National Physical Laboratory; Teddington, UK: 2005.

Cegan T., Pagac M., Jurica J., Skotnicova K., Hajnys J., Horsak L., Soucek K., Krpec P. Effect of hot isostatic pressing on porosity and mechanical properties of 316 l stainless steel prepared by the selective laser melting method. Materials. 2020;13:4377. doi: 10.3390/ma13194377. PubMed DOI PMC

Shin W.S., Son B., Song W., Sohn H., Jang H., Kim Y.J., Park C. Heat treatment effect on the microstructure, mechanical properties, and wear behaviors of stainless steel 316L prepared via selective laser melting. Mater. Sci. Eng. A-Struct. 2021;806:140805. doi: 10.1016/j.msea.2021.140805. DOI

Kurian S., Mirzaeifar R. Deformation mechanisms of the subgranular cellular structures in selective laser melted 316L stainless steel. Mech. Mater. 2020;148:103478. doi: 10.1016/j.mechmat.2020.103478. DOI

Wang D., Song C., Yang Y., Bai Y. Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts. Mater. Design. 2016;100:291–299. doi: 10.1016/j.matdes.2016.03.111. DOI

Saeidi K., Gao X., Zhong Y., Shen Z.J. Hardened austenite steel with columnar sub-grain structure formed by laser melting. Mater. Sci. Eng. A-Struct. 2015;625:221–229. doi: 10.1016/j.msea.2014.12.018. DOI

Yang D., Kan X., Gao P., Zhao Y., Yin Y., Zhao Z., Sun J. Influence of porosity on mechanical and corrosion properties of SLM 316L stainless steel. Appl. Phys. A-Mater. 2022;128:51. doi: 10.1007/s00339-021-05191-4. DOI

Morozova I., Kehm C., Obrosov A., Yang Y., Mohammad Miah K.U., Uludintceva E., Fritzsche S., Weiß S., Michailov V. On the Heat Treatment of Selective-Laser-Melted 316L. J. Mater. Eng. Perform. 2023;32:4295–4305. doi: 10.1007/s11665-022-07404-0. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...