A prostate-specific membrane antigen activated molecular rotor for real-time fluorescence imaging
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
DOC 130
Austrian Science Fund FWF - Austria
R01 CA134675
NCI NIH HHS - United States
PubMed
34526506
PubMed Central
PMC8443597
DOI
10.1038/s41467-021-25746-6
PII: 10.1038/s41467-021-25746-6
Knihovny.cz E-zdroje
- MeSH
- antigeny povrchové chemie metabolismus MeSH
- buňky PC-3 MeSH
- endocytóza MeSH
- fluorescenční spektrometrie metody MeSH
- glutamátkarboxypeptidasa II chemie metabolismus MeSH
- lidé MeSH
- molekulární modely MeSH
- molekulární sondy chemie metabolismus MeSH
- myši inbrední BALB C MeSH
- myši nahé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory prostaty diagnóza metabolismus MeSH
- optické zobrazování metody MeSH
- proteinové domény MeSH
- transplantace heterologní MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- antigeny povrchové MeSH
- FOLH1 protein, human MeSH Prohlížeč
- glutamátkarboxypeptidasa II MeSH
- molekulární sondy MeSH
Surgery is an efficient way to treat localized prostate cancer (PCa), however, it is challenging to demarcate rapidly and accurately the tumor boundary intraoperatively, as existing tumor detection methods are seldom performed in real-time. To overcome those limitations, we develop a fluorescent molecular rotor that specifically targets the prostate-specific membrane antigen (PSMA), an established marker for PCa. The probes have picomolar affinity (IC50 = 63-118 pM) for PSMA and generate virtually instantaneous onset of robust fluorescent signal proportional to the concentration of the PSMA-probe complex. In vitro and ex vivo experiments using PCa cell lines and clinical samples, respectively, indicate the utility of the probe for biomedical applications, including real-time monitoring of endocytosis and tumor staging. Experiments performed in a PCa xenograft model reveal suitability of the probe for imaging applications in vivo.
Department of General Surgery Peking University 1st Hospital 100034 Beijing China
Department of Nuclear Medicine Peking University 1st Hospital 100034 Beijing China
Department of Urology Peking University 1st Hospital 100034 Beijing China
Institute of Medical Technology Peking University Health Science Center 100191 Beijing China
National Urological Cancer Center 100034 Beijing China
State Key Laboratory of Natural and Biomimetic Drugs Peking University 100191 Beijing China
The Institute of Urology Peking University 100034 Beijing China
Translational Cancer Research Center Peking University 1st Hospital 100034 Beijing China
Zobrazit více v PubMed
Sebesta EM, Anderson CB. The surgical management of prostate cancer. Semin. Oncol. 2017;44:347–357. doi: 10.1053/j.seminoncol.2018.01.003. PubMed DOI
Litwin MS, Tan HJ. The diagnosis and treatment of prostate cancer: a review. JAMA. 2017;317:2532–2542. doi: 10.1001/jama.2017.7248. PubMed DOI
Bostwick DG, Pacelli A, Blute M, Roche P, Murphy GP. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer. 1998;82:2256–2261. doi: 10.1002/(SICI)1097-0142(19980601)82:11<2256::AID-CNCR22>3.0.CO;2-S. PubMed DOI
Silver DA, Pellicer I, Fair WR, Heston WDW, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res. 1997;3:81–85. PubMed
Chen Y, et al. A low molecular weight PSMA-based fluorescent imaging agent for cancer. Biochem. Biophys. Res. Commun. 2009;390:624–629. doi: 10.1016/j.bbrc.2009.10.017. PubMed DOI PMC
Cho SY, et al. Biodistribution, tumor detection, and radiation dosimetry of 18 F-DCFBC, a low-molecular-weight inhibitor of prostate- specific membrane antigen, in patients with metastatic prostate cancer. J. Nucl. Med. 2012;53:1883–1891. doi: 10.2967/jnumed.112.104661. PubMed DOI PMC
Eder M, et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug. Chem. 2012;23:688–697. doi: 10.1021/bc200279b. PubMed DOI
Banerjee SR, et al. Synthesis and evaluation of GdIII-based magnetic resonance contrast agents for molecular imaging of prostate-specific membrane antigen. Angew. Chem. Int. Ed. 2015;54:10778–10782. doi: 10.1002/anie.201503417. PubMed DOI PMC
Benesová M, et al. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J. Nucl. Med. 2015;56:914–920. doi: 10.2967/jnumed.114.147413. PubMed DOI
Yang X, et al. [18F]Fluorobenzoyllysinepentanedioic acid carbamates: new scaffolds for positron emission tomography (PET) imaging of prostate-specific membrane antigen (PSMA) J. Med. Chem. 2016;59:206–218. doi: 10.1021/acs.jmedchem.5b01268. PubMed DOI PMC
Fendler WP, Rahbar K, Herrmann K, Kratochwil C, Eiber M. 177Lu-PSMA radioligand therapy for prostate cancer. J. Nucl. Med. 2017;58:1196–1200. doi: 10.2967/jnumed.117.191023. PubMed DOI
Duan, X. et al. (S)-3-(Carboxyformamido)-2-(3-(carboxymethyl)ureido)propanoic acid as a novel PSMA targeting scaffold for prostate cancer imaging. J. Med. Chem.63, 3563–3576 (2020). PubMed
Hensbergen AW, et al. Image-guided surgery: are we getting the most out of small-molecule prostate-specific-membrane-antigen-targeted tracers? Bioconjug. Chem. 2020;31:375–395. doi: 10.1021/acs.bioconjchem.9b00758. PubMed DOI PMC
Chen Y, et al. Synthesis and biological evaluation of low molecular weight fluorescent imaging agents for the prostate-specific membrane antigen. Bioconjug. Chem. 2012;23:2377–2385. doi: 10.1021/bc3003919. PubMed DOI PMC
Watanabe R, et al. Minibody-indocyanine green based activatable optical imaging probes: the role of short polyethylene glycol linkers. ACS Med. Chem. Lett. 2014;5:411–415. doi: 10.1021/ml400533y. PubMed DOI PMC
Nakajima T, et al. Targeted, activatable, in vivo fluorescence imaging of prostate-specific membrane antigen (PSMA)-positive tumors using the quenched humanized J591 antibody-ICG conjugate. Bioconjug. Chem. 2011;22:1700–1705. doi: 10.1021/bc2002715. PubMed DOI PMC
Kawatani M, et al. Fluorescence detection of prostate cancer by an activatable fluorescence probe for PSMA carboxypeptidase activity. J. Am. Chem. Soc. 2019;141:10409–10416. doi: 10.1021/jacs.9b04412. PubMed DOI
Haidekker MA, Theodorakis EA. Molecular rotors-fluorescent biosensors for viscosity and flow. Org. Biomol. Chem. 2007;5:1669–1678. doi: 10.1039/B618415D. PubMed DOI
Kuimova MK. Mapping viscosity in cells using molecular rotors. Phys. Chem. Chem. Phys. 2012;14:12671–12686. doi: 10.1039/c2cp41674c. PubMed DOI
Lee SC, et al. Fluorescent molecular rotors for viscosity sensors. Chem. Eur. J. 2018;24:13706–13718. doi: 10.1002/chem.201801389. PubMed DOI
Haidekker MA, Theodorakis EA. Environment-sensitive behavior of fluorescent molecular rotors. J. Biol. Eng. 2010;4:1–14. doi: 10.1186/1754-1611-4-11. PubMed DOI PMC
Liu HW, et al. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem. Soc. Rev. 2018;47:7140–7180. doi: 10.1039/C7CS00862G. PubMed DOI
Haidekker MA, Brady TP, Lichlyter D, Theodorakis EA. A ratiometric fluorescent viscosity sensor. J. Am. Chem. Soc. 2006;128:398–399. doi: 10.1021/ja056370a. PubMed DOI
Haidekker MA, et al. New fluorescent probes for the measurement of cell membrane viscosity. Chem. Biol. 2001;8:123–131. doi: 10.1016/S1074-5521(00)90061-9. PubMed DOI
Kuimova MK, Yahioglu G, Levitt JA, Suhling K. Molecular rotor measures viscosity of live cells via fluorescence lifetime imaging. J. Am. Chem. Soc. 2008;130:6672–6673. doi: 10.1021/ja800570d. PubMed DOI
Lo´pez-Duarte I, Vu TT, Izquierdo MA, Bull JA, Kuimova MK. A molecular rotor for measuring viscosity in plasma membranes of live cells. Chem. Commun. 2014;50:5282–5284. doi: 10.1039/C3CC47530A. PubMed DOI
Sherin PS, et al. Visualising the membrane viscosity of porcine eye lens cells using molecular rotors. Chem. Sci. 2017;8:3523–3528. doi: 10.1039/C6SC05369F. PubMed DOI PMC
Kuimova MK, et al. Imaging intracellular viscosity of a single cell during photoinduced cell death. Nat. Chem. 2009;1:69–73. doi: 10.1038/nchem.120. PubMed DOI
Mukherjee T, et al. Near infrared emitting molecular rotor based on merocyanine for probing the viscosity of cellular lipid environments. Mater. Chem. Front. 2021;5:2459–2469. doi: 10.1039/D0QM00872A. DOI
Kummer S, et al. Fluorescence imaging of influenza H1N1 mRNA in living infected cells using single-chromophore FIT-PNA. Angew. Chem. Int. Ed. 2011;50:1931–1934. doi: 10.1002/anie.201005902. PubMed DOI
Paige JS, Wu K, Jaffrey SR. RNA mimics of green fluorescent protein. Science. 2011;333:642–646. doi: 10.1126/science.1207339. PubMed DOI PMC
Goh WL, et al. Molecular rotors as conditionally fluorescent labels for rapid detection of biomolecular interactions. J. Am. Chem. Soc. 2014;136:6159–6162. doi: 10.1021/ja413031h. PubMed DOI
Dziuba D, Jurkiewicz P, Cebecauer M, Hof M, Hocek M. A rotational BODIPY nucleotide: an environment-sensitive fluorescence-lifetime probe for DNA interactions and applications in live-cell microscopy. Angew. Chem. Int. Ed. 2016;55:174–178. doi: 10.1002/anie.201507922. PubMed DOI
Karimi A, Börner R, Mata G, Luedtke NW. A highly fluorescent nucleobase molecular rotor. J. Am. Chem. Soc. 2020;142:14422–14426. doi: 10.1021/jacs.0c05180. PubMed DOI
Ye S, Zhang H, Fei J, Wolstenholme CH, Zhang X. A general strategy to control viscosity sensitivity of molecular rotor-based fluorophores. Angew. Chem. Int. Ed. 2021;60:1339–1346. doi: 10.1002/anie.202011108. PubMed DOI PMC
Telmer CA, et al. Rapid, specific, no-wash, far-red fluorogen activation in subcellular compartments by rargeted fluorogen activating proteins. ACS Chem. Biol. 2015;10:1239–1246. doi: 10.1021/cb500957k. PubMed DOI PMC
Hsu YP, et al. Fluorogenic D-amino acids enable real-time monitoring of peptidoglycan biosynthesis and high-throughput transpeptidation assays. Nat. Chem. 2019;11:335–341. doi: 10.1038/s41557-019-0217-x. PubMed DOI PMC
Karpenko IA, et al. Push-pull dioxaborine as fluorescent molecular rotor: far-red fluorogenic probe for ligand-receptor interactions. J. Mater. Chem. C. 2016;4:3002–3009. doi: 10.1039/C5TC03411F. PubMed DOI PMC
Kopka K, Benešová M, Bařinka C, Haberkorn U, Babich J. Glu-ureido-based inhibitors of prostate-specific membrane antigen: lessons learned during the development of a novel class of low-molecular-weight theranostic radiotracers. J. Nucl. Med. 2017;58:17S–26S. doi: 10.2967/jnumed.116.186775. PubMed DOI
Bařinka C, et al. Amino acids at the N- and C-termini of human glutamate carboxypeptidase II are required for enzymatic activity and proper folding. Eur. J. Biochem. 2004;271:2782–2790. doi: 10.1111/j.1432-1033.2004.04209.x. PubMed DOI
Bařinka C, et al. Interactions between human glutamate carboxypeptidase II and urea-based inhibitors: structural characterization. J. Med. Chem. 2008;51:7737–7743. doi: 10.1021/jm800765e. PubMed DOI PMC
Bařinka C, et al. Structural basis of interactions between human glutamate carboxypeptidase II and its substrate analogs. J. Mol. Biol. 2008;376:1438–1450. doi: 10.1016/j.jmb.2007.12.066. PubMed DOI PMC
Pavlicek J, Ptacek J, Bařinka C. Glutamate carboxypeptidase II: an overview of structural studies and their importance for structure-based drug design and deciphering the reaction mechanism of the enzyme. Curr. Med. Chem. 2012;19:1300–1309. doi: 10.2174/092986712799462667. PubMed DOI
Grabowski ZR, Rotkiewicz K, Rettig W. Structural changes accompanying intramolecular electron transfer: Focus on twisted intramolecular charge-transfer states and structures. Chem. Rev. 2003;103:3899–4031. doi: 10.1021/cr940745l. PubMed DOI
Mesters JR, et al. Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. EMBO J. 2006;25:1375–1384. doi: 10.1038/sj.emboj.7600969. PubMed DOI PMC
Hernandez-Hoyos G, et al. MOR209/ES414, a novel bispecific antibody targeting PSMA for the treatment of metastatic castration-resistant prostate cancer. Mol. Cancer Ther. 2016;15:2155–2165. doi: 10.1158/1535-7163.MCT-15-0242. PubMed DOI
Kiess AP, et al. Auger radiopharmaceutical therapy targeting prostate-specific membrane antigen. J. Nucl. Med. 2015;56:1401–1407. doi: 10.2967/jnumed.115.155929. PubMed DOI PMC
Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the MTT assay. Cold Spring Harb. Protoc. 2018;2018:469–471. PubMed
Olszewski RT, et al. NAAG peptidase inhibition reduces locomotor activity and some stereotypes in the PCP model of schizophrenia via group II mGluR. J. Neurochem. 2004;89:876–885. doi: 10.1111/j.1471-4159.2004.02358.x. PubMed DOI
Inoue Y, et al. Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted. J. Virol. 2007;81:8722–8729. doi: 10.1128/JVI.00253-07. PubMed DOI PMC
Stuart ES, Webley WC, Norkin LC. Lipid rafts, caveolae, caveolin-1, and entry by chlamydiae into host cells. Exp. Cell Res. 2003;287:67–78. doi: 10.1016/S0014-4827(03)00059-4. PubMed DOI
Commisso C, Flinn RJ, Bar-Sagi D. Determining the macropinocytic index of cancer cells through a quantitative image-based assay. Nat. Protoc. 2014;9:182–192. doi: 10.1038/nprot.2014.004. PubMed DOI PMC
Huang CT, et al. Development of 5D3-DM1: a novel anti-prostate-specific membrane antigen antibody-drug conjugate for PSMA-positive prostate cancer therapy. Mol. Pharm. 2020;17:3392–3402. doi: 10.1021/acs.molpharmaceut.0c00457. PubMed DOI PMC
Liu H, et al. Constitutive and antibody-induced internalization of prostate-specific membrane antigen. Cancer Res. 1998;58:4055–4060. PubMed
Matthias J, et al. Cytoplasmic localization of prostate-specific membrane antigen inhibitors may confer advantages for targeted cancer therapies. Cancer Res. 2021;81:2234–2245. doi: 10.1158/0008-5472.CAN-20-1624. PubMed DOI
McEnaney PJ, et al. Chemically synthesized molecules with the targeting and effector functions of antibodies. J. Am. Chem. Soc. 2014;136:18034–18043. doi: 10.1021/ja509513c. PubMed DOI PMC
Zhang, J. M. et al. Fluorescence staining of prostate cancer sample using a PSMA-activated molecular rotor. Protoc. Exch. 10.21203/rs.3.pex1603/v1 (2021).
Flock ST, Jacques SL, Wilson BC, Star WM, van Gemert MJC. Optical properties of intralipid: a phantom medium for light propagation studies. Lasers Surg. Med. 1992;12:510–519. doi: 10.1002/lsm.1900120510. PubMed DOI