A prostate-specific membrane antigen activated molecular rotor for real-time fluorescence imaging

. 2021 Sep 15 ; 12 (1) : 5460. [epub] 20210915

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34526506

Grantová podpora
DOC 130 Austrian Science Fund FWF - Austria
R01 CA134675 NCI NIH HHS - United States

Odkazy

PubMed 34526506
PubMed Central PMC8443597
DOI 10.1038/s41467-021-25746-6
PII: 10.1038/s41467-021-25746-6
Knihovny.cz E-zdroje

Surgery is an efficient way to treat localized prostate cancer (PCa), however, it is challenging to demarcate rapidly and accurately the tumor boundary intraoperatively, as existing tumor detection methods are seldom performed in real-time. To overcome those limitations, we develop a fluorescent molecular rotor that specifically targets the prostate-specific membrane antigen (PSMA), an established marker for PCa. The probes have picomolar affinity (IC50 = 63-118 pM) for PSMA and generate virtually instantaneous onset of robust fluorescent signal proportional to the concentration of the PSMA-probe complex. In vitro and ex vivo experiments using PCa cell lines and clinical samples, respectively, indicate the utility of the probe for biomedical applications, including real-time monitoring of endocytosis and tumor staging. Experiments performed in a PCa xenograft model reveal suitability of the probe for imaging applications in vivo.

Zobrazit více v PubMed

Sebesta EM, Anderson CB. The surgical management of prostate cancer. Semin. Oncol. 2017;44:347–357. doi: 10.1053/j.seminoncol.2018.01.003. PubMed DOI

Litwin MS, Tan HJ. The diagnosis and treatment of prostate cancer: a review. JAMA. 2017;317:2532–2542. doi: 10.1001/jama.2017.7248. PubMed DOI

Bostwick DG, Pacelli A, Blute M, Roche P, Murphy GP. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer. 1998;82:2256–2261. doi: 10.1002/(SICI)1097-0142(19980601)82:11<2256::AID-CNCR22>3.0.CO;2-S. PubMed DOI

Silver DA, Pellicer I, Fair WR, Heston WDW, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res. 1997;3:81–85. PubMed

Chen Y, et al. A low molecular weight PSMA-based fluorescent imaging agent for cancer. Biochem. Biophys. Res. Commun. 2009;390:624–629. doi: 10.1016/j.bbrc.2009.10.017. PubMed DOI PMC

Cho SY, et al. Biodistribution, tumor detection, and radiation dosimetry of 18 F-DCFBC, a low-molecular-weight inhibitor of prostate- specific membrane antigen, in patients with metastatic prostate cancer. J. Nucl. Med. 2012;53:1883–1891. doi: 10.2967/jnumed.112.104661. PubMed DOI PMC

Eder M, et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug. Chem. 2012;23:688–697. doi: 10.1021/bc200279b. PubMed DOI

Banerjee SR, et al. Synthesis and evaluation of GdIII-based magnetic resonance contrast agents for molecular imaging of prostate-specific membrane antigen. Angew. Chem. Int. Ed. 2015;54:10778–10782. doi: 10.1002/anie.201503417. PubMed DOI PMC

Benesová M, et al. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J. Nucl. Med. 2015;56:914–920. doi: 10.2967/jnumed.114.147413. PubMed DOI

Yang X, et al. [18F]Fluorobenzoyllysinepentanedioic acid carbamates: new scaffolds for positron emission tomography (PET) imaging of prostate-specific membrane antigen (PSMA) J. Med. Chem. 2016;59:206–218. doi: 10.1021/acs.jmedchem.5b01268. PubMed DOI PMC

Fendler WP, Rahbar K, Herrmann K, Kratochwil C, Eiber M. 177Lu-PSMA radioligand therapy for prostate cancer. J. Nucl. Med. 2017;58:1196–1200. doi: 10.2967/jnumed.117.191023. PubMed DOI

Duan, X. et al. (S)-3-(Carboxyformamido)-2-(3-(carboxymethyl)ureido)propanoic acid as a novel PSMA targeting scaffold for prostate cancer imaging. J. Med. Chem.63, 3563–3576 (2020). PubMed

Hensbergen AW, et al. Image-guided surgery: are we getting the most out of small-molecule prostate-specific-membrane-antigen-targeted tracers? Bioconjug. Chem. 2020;31:375–395. doi: 10.1021/acs.bioconjchem.9b00758. PubMed DOI PMC

Chen Y, et al. Synthesis and biological evaluation of low molecular weight fluorescent imaging agents for the prostate-specific membrane antigen. Bioconjug. Chem. 2012;23:2377–2385. doi: 10.1021/bc3003919. PubMed DOI PMC

Watanabe R, et al. Minibody-indocyanine green based activatable optical imaging probes: the role of short polyethylene glycol linkers. ACS Med. Chem. Lett. 2014;5:411–415. doi: 10.1021/ml400533y. PubMed DOI PMC

Nakajima T, et al. Targeted, activatable, in vivo fluorescence imaging of prostate-specific membrane antigen (PSMA)-positive tumors using the quenched humanized J591 antibody-ICG conjugate. Bioconjug. Chem. 2011;22:1700–1705. doi: 10.1021/bc2002715. PubMed DOI PMC

Kawatani M, et al. Fluorescence detection of prostate cancer by an activatable fluorescence probe for PSMA carboxypeptidase activity. J. Am. Chem. Soc. 2019;141:10409–10416. doi: 10.1021/jacs.9b04412. PubMed DOI

Haidekker MA, Theodorakis EA. Molecular rotors-fluorescent biosensors for viscosity and flow. Org. Biomol. Chem. 2007;5:1669–1678. doi: 10.1039/B618415D. PubMed DOI

Kuimova MK. Mapping viscosity in cells using molecular rotors. Phys. Chem. Chem. Phys. 2012;14:12671–12686. doi: 10.1039/c2cp41674c. PubMed DOI

Lee SC, et al. Fluorescent molecular rotors for viscosity sensors. Chem. Eur. J. 2018;24:13706–13718. doi: 10.1002/chem.201801389. PubMed DOI

Haidekker MA, Theodorakis EA. Environment-sensitive behavior of fluorescent molecular rotors. J. Biol. Eng. 2010;4:1–14. doi: 10.1186/1754-1611-4-11. PubMed DOI PMC

Liu HW, et al. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem. Soc. Rev. 2018;47:7140–7180. doi: 10.1039/C7CS00862G. PubMed DOI

Haidekker MA, Brady TP, Lichlyter D, Theodorakis EA. A ratiometric fluorescent viscosity sensor. J. Am. Chem. Soc. 2006;128:398–399. doi: 10.1021/ja056370a. PubMed DOI

Haidekker MA, et al. New fluorescent probes for the measurement of cell membrane viscosity. Chem. Biol. 2001;8:123–131. doi: 10.1016/S1074-5521(00)90061-9. PubMed DOI

Kuimova MK, Yahioglu G, Levitt JA, Suhling K. Molecular rotor measures viscosity of live cells via fluorescence lifetime imaging. J. Am. Chem. Soc. 2008;130:6672–6673. doi: 10.1021/ja800570d. PubMed DOI

Lo´pez-Duarte I, Vu TT, Izquierdo MA, Bull JA, Kuimova MK. A molecular rotor for measuring viscosity in plasma membranes of live cells. Chem. Commun. 2014;50:5282–5284. doi: 10.1039/C3CC47530A. PubMed DOI

Sherin PS, et al. Visualising the membrane viscosity of porcine eye lens cells using molecular rotors. Chem. Sci. 2017;8:3523–3528. doi: 10.1039/C6SC05369F. PubMed DOI PMC

Kuimova MK, et al. Imaging intracellular viscosity of a single cell during photoinduced cell death. Nat. Chem. 2009;1:69–73. doi: 10.1038/nchem.120. PubMed DOI

Mukherjee T, et al. Near infrared emitting molecular rotor based on merocyanine for probing the viscosity of cellular lipid environments. Mater. Chem. Front. 2021;5:2459–2469. doi: 10.1039/D0QM00872A. DOI

Kummer S, et al. Fluorescence imaging of influenza H1N1 mRNA in living infected cells using single-chromophore FIT-PNA. Angew. Chem. Int. Ed. 2011;50:1931–1934. doi: 10.1002/anie.201005902. PubMed DOI

Paige JS, Wu K, Jaffrey SR. RNA mimics of green fluorescent protein. Science. 2011;333:642–646. doi: 10.1126/science.1207339. PubMed DOI PMC

Goh WL, et al. Molecular rotors as conditionally fluorescent labels for rapid detection of biomolecular interactions. J. Am. Chem. Soc. 2014;136:6159–6162. doi: 10.1021/ja413031h. PubMed DOI

Dziuba D, Jurkiewicz P, Cebecauer M, Hof M, Hocek M. A rotational BODIPY nucleotide: an environment-sensitive fluorescence-lifetime probe for DNA interactions and applications in live-cell microscopy. Angew. Chem. Int. Ed. 2016;55:174–178. doi: 10.1002/anie.201507922. PubMed DOI

Karimi A, Börner R, Mata G, Luedtke NW. A highly fluorescent nucleobase molecular rotor. J. Am. Chem. Soc. 2020;142:14422–14426. doi: 10.1021/jacs.0c05180. PubMed DOI

Ye S, Zhang H, Fei J, Wolstenholme CH, Zhang X. A general strategy to control viscosity sensitivity of molecular rotor-based fluorophores. Angew. Chem. Int. Ed. 2021;60:1339–1346. doi: 10.1002/anie.202011108. PubMed DOI PMC

Telmer CA, et al. Rapid, specific, no-wash, far-red fluorogen activation in subcellular compartments by rargeted fluorogen activating proteins. ACS Chem. Biol. 2015;10:1239–1246. doi: 10.1021/cb500957k. PubMed DOI PMC

Hsu YP, et al. Fluorogenic D-amino acids enable real-time monitoring of peptidoglycan biosynthesis and high-throughput transpeptidation assays. Nat. Chem. 2019;11:335–341. doi: 10.1038/s41557-019-0217-x. PubMed DOI PMC

Karpenko IA, et al. Push-pull dioxaborine as fluorescent molecular rotor: far-red fluorogenic probe for ligand-receptor interactions. J. Mater. Chem. C. 2016;4:3002–3009. doi: 10.1039/C5TC03411F. PubMed DOI PMC

Kopka K, Benešová M, Bařinka C, Haberkorn U, Babich J. Glu-ureido-based inhibitors of prostate-specific membrane antigen: lessons learned during the development of a novel class of low-molecular-weight theranostic radiotracers. J. Nucl. Med. 2017;58:17S–26S. doi: 10.2967/jnumed.116.186775. PubMed DOI

Bařinka C, et al. Amino acids at the N- and C-termini of human glutamate carboxypeptidase II are required for enzymatic activity and proper folding. Eur. J. Biochem. 2004;271:2782–2790. doi: 10.1111/j.1432-1033.2004.04209.x. PubMed DOI

Bařinka C, et al. Interactions between human glutamate carboxypeptidase II and urea-based inhibitors: structural characterization. J. Med. Chem. 2008;51:7737–7743. doi: 10.1021/jm800765e. PubMed DOI PMC

Bařinka C, et al. Structural basis of interactions between human glutamate carboxypeptidase II and its substrate analogs. J. Mol. Biol. 2008;376:1438–1450. doi: 10.1016/j.jmb.2007.12.066. PubMed DOI PMC

Pavlicek J, Ptacek J, Bařinka C. Glutamate carboxypeptidase II: an overview of structural studies and their importance for structure-based drug design and deciphering the reaction mechanism of the enzyme. Curr. Med. Chem. 2012;19:1300–1309. doi: 10.2174/092986712799462667. PubMed DOI

Grabowski ZR, Rotkiewicz K, Rettig W. Structural changes accompanying intramolecular electron transfer: Focus on twisted intramolecular charge-transfer states and structures. Chem. Rev. 2003;103:3899–4031. doi: 10.1021/cr940745l. PubMed DOI

Mesters JR, et al. Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. EMBO J. 2006;25:1375–1384. doi: 10.1038/sj.emboj.7600969. PubMed DOI PMC

Hernandez-Hoyos G, et al. MOR209/ES414, a novel bispecific antibody targeting PSMA for the treatment of metastatic castration-resistant prostate cancer. Mol. Cancer Ther. 2016;15:2155–2165. doi: 10.1158/1535-7163.MCT-15-0242. PubMed DOI

Kiess AP, et al. Auger radiopharmaceutical therapy targeting prostate-specific membrane antigen. J. Nucl. Med. 2015;56:1401–1407. doi: 10.2967/jnumed.115.155929. PubMed DOI PMC

Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the MTT assay. Cold Spring Harb. Protoc. 2018;2018:469–471. PubMed

Olszewski RT, et al. NAAG peptidase inhibition reduces locomotor activity and some stereotypes in the PCP model of schizophrenia via group II mGluR. J. Neurochem. 2004;89:876–885. doi: 10.1111/j.1471-4159.2004.02358.x. PubMed DOI

Inoue Y, et al. Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted. J. Virol. 2007;81:8722–8729. doi: 10.1128/JVI.00253-07. PubMed DOI PMC

Stuart ES, Webley WC, Norkin LC. Lipid rafts, caveolae, caveolin-1, and entry by chlamydiae into host cells. Exp. Cell Res. 2003;287:67–78. doi: 10.1016/S0014-4827(03)00059-4. PubMed DOI

Commisso C, Flinn RJ, Bar-Sagi D. Determining the macropinocytic index of cancer cells through a quantitative image-based assay. Nat. Protoc. 2014;9:182–192. doi: 10.1038/nprot.2014.004. PubMed DOI PMC

Huang CT, et al. Development of 5D3-DM1: a novel anti-prostate-specific membrane antigen antibody-drug conjugate for PSMA-positive prostate cancer therapy. Mol. Pharm. 2020;17:3392–3402. doi: 10.1021/acs.molpharmaceut.0c00457. PubMed DOI PMC

Liu H, et al. Constitutive and antibody-induced internalization of prostate-specific membrane antigen. Cancer Res. 1998;58:4055–4060. PubMed

Matthias J, et al. Cytoplasmic localization of prostate-specific membrane antigen inhibitors may confer advantages for targeted cancer therapies. Cancer Res. 2021;81:2234–2245. doi: 10.1158/0008-5472.CAN-20-1624. PubMed DOI

McEnaney PJ, et al. Chemically synthesized molecules with the targeting and effector functions of antibodies. J. Am. Chem. Soc. 2014;136:18034–18043. doi: 10.1021/ja509513c. PubMed DOI PMC

Zhang, J. M. et al. Fluorescence staining of prostate cancer sample using a PSMA-activated molecular rotor. Protoc. Exch. 10.21203/rs.3.pex1603/v1 (2021).

Flock ST, Jacques SL, Wilson BC, Star WM, van Gemert MJC. Optical properties of intralipid: a phantom medium for light propagation studies. Lasers Surg. Med. 1992;12:510–519. doi: 10.1002/lsm.1900120510. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...