Development of 5D3-DM1: A Novel Anti-Prostate-Specific Membrane Antigen Antibody-Drug Conjugate for PSMA-Positive Prostate Cancer Therapy
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
P41 EB024495
NIBIB NIH HHS - United States
R01 CA209884
NCI NIH HHS - United States
PubMed
32803984
PubMed Central
PMC7957835
DOI
10.1021/acs.molpharmaceut.0c00457
Knihovny.cz E-zdroje
- Klíčová slova
- 5D3 antibody, MCC linker, anti-PSMA antibody, antibody-drug conjugates (ADC), drug delivery, mertansine (DM1), prostate cancer, prostate-specific membrane antigen (PSMA), targeted therapy,
- MeSH
- androsteny farmakologie MeSH
- antagonisté androgenů farmakologie MeSH
- antigeny povrchové metabolismus MeSH
- benzamidy farmakologie MeSH
- buňky PC-3 MeSH
- centrozom metabolismus MeSH
- fenylthiohydantoin farmakologie MeSH
- glutamátkarboxypeptidasa II metabolismus MeSH
- imunokonjugáty farmakologie MeSH
- lidé MeSH
- modulátory tubulinu farmakologie MeSH
- monoklonální protilátky farmakologie MeSH
- myši nahé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory prostaty rezistentní na kastraci farmakoterapie metabolismus MeSH
- nitrily farmakologie MeSH
- xenogenní modely - testy antitumorózní aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- abiraterone MeSH Prohlížeč
- androsteny MeSH
- antagonisté androgenů MeSH
- antigeny povrchové MeSH
- benzamidy MeSH
- enzalutamide MeSH Prohlížeč
- fenylthiohydantoin MeSH
- FOLH1 protein, human MeSH Prohlížeč
- glutamátkarboxypeptidasa II MeSH
- imunokonjugáty MeSH
- modulátory tubulinu MeSH
- monoklonální protilátky MeSH
- nitrily MeSH
Prostate cancer (PC) is a potentially high-risk disease and the most common cancer in American men. It is a leading cause of cancer-related deaths in men in the US, second only to lung and bronchus cancer. Advanced and metastatic PC is initially treated with androgen deprivation therapy (ADT), but nearly all cases eventually progress to castrate-resistant prostate cancer (CRPC). CRPC is incurable in the metastatic stage but can be slowed by some conventional chemotherapeutics and second-generation ADT, such as enzalutamide and abiraterone. Therefore, novel therapeutic strategies are urgently needed. Prostate-specific membrane antigen (PSMA) is overexpressed in almost all aggressive PCs. PSMA is widely used as a target for PC imaging and drug delivery. Anti-PSMA monoclonal antibodies (mAbs) have been developed as bioligands for diagnostic imaging and targeted PC therapy. However, these mAbs are successfully used in PC imaging and only a few have gone beyond phase-I for targeted therapy. The 5D3 mAb is a novel, high-affinity, and fast-internalizing anti-PSMA antibody. Importantly, 5D3 mAb demonstrates a unique pattern of cellular localization to the centrosome after internalization in PSMA(+) PC3-PIP cells. These characteristics make 5D3 mAb an ideal bioligand to deliver tubulin inhibitors, such as mertansine, to the cell centrosome, leading to mitotic arrest and elimination of dividing PC cells. We have successfully developed a 5D3 mAb- and mertansine (DM1)-based antibody-drug conjugate (ADC) and evaluated it in vitro for binding affinity, internalization, and cytotoxicity. The in vivo therapeutic efficacy of 5D3-DM1 ADC was evaluated in PSMA(+) PC3-PIP and PSMA(-) PC3-Flu mouse models of human PC. This therapeutic study has revealed that this new anti-PSMA ADC can successfully control the growth of PSMA(+) tumors without inducing systemic toxicity.
Zobrazit více v PubMed
Siegel RL; Miller KD; Jemal A Cancer Statistics, 2019. Ca—Cancer J. Clin 2019, 69, 7–34. PubMed
Siegel RL; Miller KD; Jemal A Cancer Statistics, 2020. Ca—Cancer J. Clin 2020, 70, 7–30. PubMed
Cho S; Zammarchi F; Williams DG; Havenith CEG; Monks NR; Tyrer P; D’Hooge F; Fleming R; Vashisht K; Dimasi N; et al. Antitumor Activity of Medi3726 (Adct-401), a Pyrrolobenzodiazepine Antibody-Drug Conjugate Targeting Psma, in Preclinical Models of Prostate Cancer. Mol. Cancer Ther 2018, 17, 2176–2186. PubMed
Semenas J; Allegrucci C; Boorjian S; Mongan N; Liao Persson J Overcoming Drug Resistance and Treating Advanced Prostate Cancer. Curr. Drug Targets 2012, 13, 1308–1323. PubMed PMC
Phillips RM; Deek MP; Deweese TL; Tran PT Metastasis-Directed Therapy in Prostate Cancer. Why, When, and How? Oncology, 2019, 33, 394–399. PubMed
Antonarakis ES; Lu C; Wang H; Luber B; Nakazawa M; Roeser JC; Chen Y; Mohammad TA; Chen Y; Fedor HL; et al. Ar-V7 and Resistance to Enzalutamide and Abiraterone in Prostate Cancer. N. Engl. J. Med 2014, 371, 1028–1038. PubMed PMC
Dong L; Zieren RC; Xue W; de Reijke TM; Pienta KJ Metastatic Prostate Cancer Remains Incurable, Why? Asian J. Urol. 2019, 6, 26–41. PubMed PMC
Mangadlao JD; Wang X; McCleese C; Escamilla M; Ramamurthy G; Wang Z; Govande M; Basilion JP; Burda C Prostate-Specific Membrane Antigen Targeted Gold Nanoparticles for Theranostics of Prostate Cancer. ACS Nano 2018, 12, 3714–3725. PubMed PMC
Niaz MO; Sun M; Ramirez-Fort MK; Niaz MJ Prostate-Specific Membrane Antigen Based Antibody-Drug Conjugates for Metastatic Castration-Resistance Prostate Cancer. Cureus 2020, 12, No. e7147. PubMed PMC
Israeli RS; Powell CT; Corr JG; Fair WR; Heston WD Expression of the Prostate-Specific Membrane Antigen. Cancer Res 1994, 54, 1807–1811. PubMed
Lv Q; Yang J; Zhang R; Yang Z; Yang Z; Wang Y; Xu Y; He Z Prostate-Specific Membrane Antigen Targeted Therapy of Prostate Cancer Using a Dupa-Paclitaxel Conjugate. Mol. Pharm 2018, 15, 1842–1852. PubMed
Wright GL Jr.; Mayer Grob B; Haley C; Grossman K; Newhall K; Petrylak D; Troyer J; Konchuba A; Schellhammer PF; Moriarty R Upregulation of Prostate-Specific Membrane Antigen after Androgen-Deprivation Therapy. Urology 1996, 48, 326–334. PubMed
Chang SS Overview of Prostate-Specific Membrane Antigen. Rev. Urol 2004, 6, S13–S18. PubMed PMC
Rajasekaran SA; Anilkumar G; Oshima E; Bowie JU; Liu H; Heston W; Bander NH; Rajasekaran AK A Novel Cytoplasmic Tail Mxxxl Motif Mediates the Internalization of Prostate-Specific Membrane Antigen. Mol. Biol. Cell 2003, 14, 4835–4845. PubMed PMC
Dorff TB; Fanti S; Farolfi A; Reiter RE; Sadun TY; Sartor O The Evolving Role of Prostate-Specific Membrane Antigen-Based Diagnostics and Therapeutics in Prostate Cancer. Am. Soc. Clin. Oncol. Educ. Book 2019, 39, 321–330. PubMed
Giesel FL; Sterzing F; Schlemmer HP; Holland-Letz T; Mier W; Rius M; Afshar-Oromieh A; Kopka K; Debus J; Haberkorn U; et al. Intra-Individual Comparison of (68)Ga-Psma-11-Pet/Ct and Multi-Parametric Mr for Imaging of Primary Prostate Cancer. Eur. J. Nucl. Med. Mol. Imag 2016, 43, 1400–1406. PubMed PMC
Schwarzenboeck SM; Rauscher I; Bluemel C; Fendler WP; Rowe SP; Pomper MG; Asfhar-Oromieh A; Herrmann K; Eiber M Psma Ligands for Pet Imaging of Prostate Cancer. J. Nucl. Med 2017, 58, 1545–1552. PubMed
Kelly J; Amor-Coarasa A; Nikolopoulou A; Kim D; Williams C Jr.; Ponnala S; Babich JW Synthesis and Pre-Clinical Evaluation of a New Class of High-Affinity (18)F-Labeled Psma Ligands for Detection of Prostate Cancer by Pet Imaging. Eur. J. Nucl. Med. Mol. Imag 2017, 44, 647–661. PubMed PMC
Pan M-H; Gao D-W; Feng J; He J; Seo Y; Tedesco J; Wolodzko JG; Hasegawa BH; Franc BL Biodistributions of 177lu- and 111in-Labeled 7e11 Antibodies to Prostate-Specific Membrane Antigen in Xenograft Model of Prostate Cancer and Potential Use of 111in-7e11 as a Pre-Therapeutic Agent for 177lu-7e11 Radioimmunotherapy. Mol. Imag. Biol 2009, 11, 159–166. PubMed PMC
Troyer JK; Beckett ML; Wright GL Jr. Location of Prostate-Specific Membrane Antigen in the Lncap Prostate Carcinoma Cell Line. Prostate 1997, 30, 232–242. PubMed
Horoszewicz JS; Kawinski E; Murphy GP Monoclonal Antibodies to a New Antigenic Marker in Epithelial Prostatic Cells and Serum of Prostatic Cancer Patients. Anticancer Res 1987, 7, 927–935. PubMed
Milowsky MI; Galsky MD; Morris MJ; Crona DJ; George DJ; Dreicer R; Tse K; Petruck J; Webb IJ; Bander NH; et al. Phase 1/2 Multiple Ascending Dose Trial of the Prostate-Specific Membrane Antigen-Targeted Antibody Drug Conjugate Mln2704 in Metastatic Castration-Resistant Prostate Cancer. Urol. Oncol 2016, 34, 530.e515–530.e521. PubMed PMC
Banerjee SR; Kumar V; Lisok A; Plyku D; Nováková Z; Brummet M; Wharram B; Barinka C; Hobbs R; Pomper MG Evaluation of (111)in-Dota-5d3, a Surrogate Spect Imaging Agent for Radioimmunotherapy of Prostate-Specific Membrane Antigen. J. Nucl. Med 2019, 60, 400–406. PubMed PMC
Nováková Z; Foss CA; Copeland BT; Morath V; Baranová P; Havlínová B; Skerra A; Pomper MG; Barinka C Novel Monoclonal Antibodies Recognizing Human Prostate-Specific Membrane Antigen (Psma) as Research and Theranostic Tools. Prostate 2017, 77, 749–764. PubMed PMC
Hapuarachchige S; Huang CT; Donnelly MC; Bařinka C; Lupold SE; Pomper MG; Artemov D Cellular Delivery of Bioorthogonal Pretargeting Therapeutics in Psma-Positive Prostate Cancer. Mol. Pharm 2020, 17, 98–108. PubMed PMC
Kupchan SM; Komoda Y; Court WA; Thomas GJ; Smith RM; Karim A; Gilmore CJ; Haltiwanger RC; Bryan RF Tumor inhibitors. LXXIII. Maytansine, a Novel Antileukemic Ansa Macrolide from Maytenus Ovatus. J. Am. Chem. Soc 1972, 94, 1354–1356. PubMed
Peddi PF; Hurvitz SA Trastuzumab Emtansine: The First Targeted Chemotherapy for Treatment of Breast Cancer. Future Oncol 2013, 9, 319–326. PubMed PMC
Kupchan SM; Komoda Y; Branfman AR; Sneden AT; Court WA; Thomas GJ; Hintz HPJ; Smith RM; Karim A; Howie GA; et al. Tumor inhibitors. 122. The Maytansinoids. Isolation, Structural Elucidation, and Chemical Interrelation of Novel Ansa Macrolides. J. Org. Chem 1977, 42, 2349–2357. PubMed
Lopus M Antibody-Dm1 Conjugates as Cancer Therapeutics. Canc. Lett 2011, 307, 113–118. PubMed PMC
Lopus M; Oroudjev E; Wilson L; Wilhelm S; Widdison W; Chari R; Jordan MA Maytansine and Cellular Metabolites of Antibody-Maytansinoid Conjugates Strongly Suppress Microtubule Dynamics by Binding to Microtubules. Mol. Cancer Ther 2010, 9, 2689–2699. PubMed PMC
Rong L; Zhou S; Liu X; Li A; Jing T; Liu X; Zhang Y; Cai S; Tang X Trastuzumab-Modified Dm1-Loaded Nanoparticles for Her2(+) Breast Cancer Treatment: An in Vitro and in Vivo Study. Artif. Cells, Nanomed., Biotechnol 2018, 46, 1708–1718. PubMed
Zimmerman ME; Meyer AR; Rowe SP; Gorin MA Imaging of Prostate Cancer with Positron Emission Tomography. Clin. Adv. Hematol. Oncol 2019, 17, 455–463. PubMed
Rowe SP; Drzezga A; Neumaier B; Dietlein M; Gorin MA; Zalutsky MR; Pomper MG Prostate-Specific Membrane Antigen-Targeted Radiohalogenated Pet and Therapeutic Agents for Prostate Cancer. J. Nucl. Med 2016, 57, 90S–96S. PubMed PMC
Current K; Meyer C; Magyar CE; Mona CE; Almajano J; Slavik R; Stuparu AD; Cheng C; Dawson DW; Radu CG; et al. Investigating Psma-Targeted Radioligand Therapy Efficacy as a Function of Cellular Psma Levels and Intratumoral Psma Heterogeneity. Clin. Cancer Res 2020, 26, 2946–2955. PubMed PMC
Müller C; Umbricht CA; Gracheva N; Tschan VJ; Pellegrini G; Bernhardt P; Zeevaart JR; Koster U; Schibli R; van der Meulen NP Terbium-161 for Psma-Targeted Radionuclide Therapy of Prostate Cancer. Eur. J. Nucl. Med. Mol. Imag 2019, 46, 1919–1930. PubMed PMC
Phillips GDL; Li G; Dugger DL; Crocker LM; Parsons KL; Mai E; Blattler WA; Lambert JM; Chari RV; Lutz RJ; et al. Targeting Her2-Positive Breast Cancer with Trastuzumab-Dm1, an Antibody-Cytotoxic Drug Conjugate. Cancer Res 2008, 68, 9280–9290. PubMed
Machulkin AE; Ivanenkov YA; Aladinskaya AV; Veselov MS; Aladinskiy VA; Beloglazkina EK; Koteliansky VE; Shakhbazyan AG; Sandulenko YB; Majouga AG Small-Molecule Psma Ligands. Current State, Sar and Perspectives. J. Drug Target 2016, 24, 679–693. PubMed
Hapuarachchige S; Kato Y; Artemov D Bioorthogonal Two-Component Drug Delivery in Her2(+) Breast Cancer Mouse Models. Sci. Rep 2016, 6, 24298. PubMed PMC
Hapuarachchige S; Zhu W; Kato Y; Artemov D Bioorthogonal, Two-Component Delivery Systems Based on Antibody and Drug-Loaded Nanocarriers for Enhanced Internalization of Nanotherapeutics. Biomaterials 2014, 35, 2346–2354. PubMed PMC
Haun JB; Devaraj NK; Hilderbrand SA; Lee H; Weissleder R Bioorthogonal Chemistry Amplifies Nanoparticle Binding and Enhances the Sensitivity of Cell Detection. Nat. Nanotechnol 2010, 5, 660–665. PubMed PMC
Galsky MD; Eisenberger M; Moore-Cooper S; Kelly WK; Slovin SF; DeLaCruz A; Lee Y; Webb IJ; Scher HI Phase I Trial of the Prostate-Specific Membrane Antigen-Directed Immunoconjugate Mln2704 in Patients with Progressive Metastatic Castration-Resistant Prostate Cancer. J. Clin. Oncol 2008, 26, 2147–2154. PubMed
Kobayashi H; Choyke PL Super Enhanced Permeability and Retention (Supr) Effects in Tumors Following near Infrared Photoimmunotherapy. Nanoscale 2016, 8, 12504–12509. PubMed PMC
Nakamura Y; Mochida A; Choyke PL; Kobayashi H Nanodrug Delivery: Is the Enhanced Permeability and Retention Effect Sufficient for Curing Cancer? Bioconjugate Chem. 2016, 27, 2225–2238. PubMed PMC
Lee SY; Ju MK; Jeon HM; Jeong EK; Lee YJ; Kim CH; Park HG; Han SI; Kang HS Regulation of Tumor Progression by Programmed Necrosis. Oxid. Med. Cell. Longevity 2018, 2018, 3537471. PubMed PMC
Tomes L; Emberley E; Niu Y; Troup S; Pastorek J; Strange K; Harris A; Watson PH Necrosis and Hypoxia in Invasive Breast Carcinoma. Breast Canc. Res. Treat 2003, 81, 61–69. PubMed
Cheville JC; Lohse CM; Zincke H; Weaver AL; Blute ML Comparisons of Outcome and Prognostic Features among Histologic Subtypes of Renal Cell Carcinoma. Am. J. Surg. Pathol 2003, 27, 612–624. PubMed
Jin S; DiPaola RS; Mathew R; White E Metabolic Catastrophe as a Means to Cancer Cell Death. J. Cell Sci 2007, 120, 379–383. PubMed PMC
A prostate-specific membrane antigen activated molecular rotor for real-time fluorescence imaging
Engineered Fragments of the PSMA-Specific 5D3 Antibody and Their Functional Characterization