Targeting Prostate Cancer Using Bispecific T-Cell Engagers against Prostate-Specific Membrane Antigen
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37974624
PubMed Central
PMC10644396
DOI
10.1021/acsptsci.3c00159
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Prostate cancer (PCa) tops the list of cancer-related deaths in men worldwide. Prostate-specific membrane antigen (PSMA) is currently the most prominent PCa biomarker, as its expression levels are robustly enhanced in advanced stages of PCa. As such, PSMA targeting is highly efficient in PCa imaging as well as therapy. For the latter, PSMA-positive tumors can be targeted directly by using small molecules or macromolecules with cytotoxic payloads or indirectly by engaging the immune system of the host. Here we describe the engineering, expression, purification, and biological characterization of bispecific T-cell engagers (BiTEs) that enable targeting PSMA-positive tumor cells by host T lymphocytes. To this end, we designed the 5D3-αCD3 BiTE as a fusion of single-chain fragments of PSMA-specific 5D3 and anti-CD3 antibodies. Detailed characterization of BiTE was performed by a combination of size-exclusion chromatography, differential scanning fluorimetry, and flow cytometry. Expressed in insect cells, BiTE was purified in monodisperse form and retained thermal stability of both functional parts and nanomolar affinity to respective antigens. 5D3-αCD3's efficiency and specificity were further evaluated in vitro using PCa-derived cell lines together with peripheral blood mononuclear cells isolated from human blood. Our data revealed that T-cells engaged via 5D3-αCD3 can efficiently eliminate tumor cells already at an 8 pM BiTE concentration in a highly specific manner. Overall, the data presented here demonstrate that the 5D3-αCD3 BiTE is a candidate molecule of high potential for further development of immunotherapeutic modalities for PCa treatment.
Zobrazit více v PubMed
Siegel R. L.; Miller K. D.; Wagle N. S.; Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. 10.3322/caac.21763. PubMed DOI
Sacha P.; Zamecnik J.; Barinka C.; Hlouchova K.; Vicha A.; Mlcochova P.; Hilgert I.; Eckschlager T.; Konvalinka J. Expression of glutamate carboxypeptidase II in human brain. Neuroscience 2007, 144, 1361–1372. 10.1016/j.neuroscience.2006.10.022. PubMed DOI
Sokoloff R. L.; Norton K. C.; Gasior C. L.; Marker K. M.; Grauer L. S. A dual-monoclonal sandwich assay for prostate-specific membrane antigen: Levels in tissues, seminal fluid and urine. Prostate 2000, 43, 150–157. 10.1002/(SICI)1097-0045(20000501)43:2<150::AID-PROS10>3.0.CO;2-B. PubMed DOI
Kinoshita Y.; Kuratsukuri K.; Landas S.; Imaida K.; Rovito P. M. Jr.; Wang C. Y.; Haas G. P. Expression of prostate-specific membrane antigen in normal and malignant human tissues. World J. Surg. 2006, 30, 628–636. 10.1007/s00268-005-0544-5. PubMed DOI
Lopes A. D.; Davis L. W.; Rosenstraus J. M.; Uveges J. A.; Gilman C. S. Immunohistochemical and Pharmacokinetic Characterization of the Site-specific Immunoconjugate CYT-356 Derived from Antiprostate Monoclonal Antibody 7E11-C5. Cancer Res. 1990, 50, 6423–6429. PubMed
Silver A. D.; Pellicer I.; Fair R. W.; Heston D. W.; Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res. 1997, 3, 81–85. PubMed
Bravaccini S.; Puccetti M.; Bocchini M.; Ravaioli S.; Celli M.; Scarpi E.; De Giorgi U.; Tumedei M. M.; Raulli G.; Cardinale L.; Paganelli G. PSMA expression: a potential ally for the pathologist in prostate cancer diagnosis. Sci. Rep. 2018, 8, 425410.1038/s41598-018-22594-1. PubMed DOI PMC
Chang S. S.; Reuter E. V.; Heston W. D. W.; Bander H. N.; Grauer S. L.; Gaudin B. P. Five Different Anti-Prostate-specific Membrane Antigen (PSMA) Antibodies Confirm PSMA Expression in Tumor-associated Neovasculature. Cancer Res. 1999, 59, 3192–3198. PubMed
Milowsky M. I.; Nanus D. M.; Kostakoglu L.; Sheehan C. E.; Vallabhajosula S.; Goldsmith S. J.; Ross J. S.; Bander N. H. Vascular targeted therapy with anti-prostate-specific membrane antigen monoclonal antibody J591 in advanced solid tumors. J. Clin. Oncol. 2007, 25, 540–547. 10.1200/JCO.2006.07.8097. PubMed DOI
Wright L. G.; Haley C.; Beckett L. M.; Schellhammer F. P. Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol. Oncol. 1995, 1, 18–28. 10.1016/1078-1439(95)00002-Y. PubMed DOI
Ptacek J.; Zhang D.; Qiu L.; Kruspe S.; Motlova L.; Kolenko P.; Novakova Z.; Shubham S.; Havlinova B.; Baranova P.; Chen S. J.; Zou X.; Giangrande P.; Barinka C. Structural basis of prostate-specific membrane antigen recognition by the A9g RNA aptamer. Nucleic Acids Res. 2020, 48, 11130–11145. 10.1093/nar/gkaa494. PubMed DOI PMC
Kirkwood J. M.; Butterfield L. H.; Tarhini A. A.; Zarour H.; Kalinski P.; Ferrone S. Immunotherapy of cancer in 2012. CA Cancer J. Clin. 2012, 62, 309–335. 10.3322/caac.20132. PubMed DOI PMC
Kimiz-Gebologlu I.; Gulce-Iz S.; Biray-Avci C. Monoclonal antibodies in cancer immunotherapy. Mol. Biol. Rep. 2018, 45, 2935–2940. 10.1007/s11033-018-4427-x. PubMed DOI
Giraudet A. L.; Kryza D.; Hofman M.; Moreau A.; Fizazi K.; Flechon A.; Hicks R. J.; Tran B. PSMA targeting in metastatic castration-resistant prostate cancer: where are we and where are we going?. Ther. Adv. Med. Oncol. 2021, 13, 175883592110538.10.1177/17588359211053898. PubMed DOI PMC
Barinka C.; Rojas C.; Slusher B.; Pomper M. Glutamate Carboxypeptidase II in Diagnosis and Treatment of Neurologic Disorders and Prostate Cancer. Curr. Med. Chem. 2012, 19, 856–870. 10.2174/092986712799034888. PubMed DOI PMC
Lucaroni L.; Georgiev T.; Prodi E.; Puglioli S.; Pellegrino C.; Favalli N.; Prati L.; Manz M. G.; Cazzamalli S.; Neri D.; Oehler S.; Bassi G. Cross-reactivity to glutamate carboxypeptidase III causes undesired salivary gland and kidney uptake of PSMA-targeted small-molecule radionuclide therapeutics. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 957–961. 10.1007/s00259-022-05982-8. PubMed DOI
Vallabhajosula S.; Nikolopoulou A.; Jhanwar Y. S.; Kaur G.; Tagawa S. T.; Nanus D. M.; Bander N. H.; Goldsmith S. J. Radioimmunotherapy of Metastatic Prostate Cancer with 177Lu-DOTAhuJ591 Anti Prostate Specific Membrane Antigen Specific Monoclonal Antibody. Curr. Radiopharm. 2015, 9, 44–53. 10.2174/1874471008666150313114005. PubMed DOI
Huang C. T.; Guo X.; Barinka C.; Lupold S. E.; Pomper M. G.; Gabrielson K.; Raman V.; Artemov D.; Hapuarachchige S. Development of 5D3-DM1: A Novel Anti-Prostate-Specific Membrane Antigen Antibody-Drug Conjugate for PSMA-Positive Prostate Cancer Therapy. Mol. Pharmaceutics 2020, 17, 3392–3402. 10.1021/acs.molpharmaceut.0c00457. PubMed DOI PMC
Petrylak D. P.; Kantoff P.; Vogelzang N. J.; Mega A.; Fleming M. T.; Stephenson J. J. Jr.; Frank R.; Shore N. D.; Dreicer R.; McClay E. F.; Berry W. R.; Agarwal M.; DiPippo V. A.; Rotshteyn Y.; Stambler N.; Olson W. C.; Morris S. A.; Israel R. J. Phase 1 study of PSMA ADC, an antibody-drug conjugate targeting prostate-specific membrane antigen, in chemotherapy-refractory prostate cancer. Prostate 2019, 79, 604–613. 10.1002/pros.23765. PubMed DOI
Niaz M. O.; Sun M.; Ramirez-Fort M. K.; Niaz M. J. Prostate-specific Membrane Antigen Based Antibody-drug Conjugates for Metastatic Castration-resistance Prostate Cancer. Cureus 2020, 12, e714710.7759/cureus.7147. PubMed DOI PMC
Slaney C. Y.; Wang P.; Darcy P. K.; Kershaw M. H. CARs versus BiTEs: A Comparison between T Cell-Redirection Strategies for Cancer Treatment. Cancer Discovery 2018, 8, 924–934. 10.1158/2159-8290.CD-18-0297. PubMed DOI
Goebeler M. E.; Bargou R. C. T cell-engaging therapies - BiTEs and beyond. Nat. Rev. Clin. Oncol. 2020, 17, 418–434. 10.1038/s41571-020-0347-5. PubMed DOI
Labrijn A. F.; Janmaat M. L.; Reichert J. M.; Parren P. Bispecific antibodies: a mechanistic review of the pipeline. Nat. Rev. Drug Discovery 2019, 18, 585–608. 10.1038/s41573-019-0028-1. PubMed DOI
Huehls A. M.; Coupet T. A.; Sentman C. L. Bispecific T-cell engagers for cancer immunotherapy. Immunol. Cell. Biol. 2015, 93, 290–296. 10.1038/icb.2014.93. PubMed DOI PMC
Wu Z.; Cheung N. V. T cell engaging bispecific antibody (T-BsAb): From technology to therapeutics. Pharmacol. Ther. 2018, 182, 161–175. 10.1016/j.pharmthera.2017.08.005. PubMed DOI PMC
Ellerman D. Bispecific T-cell engagers: Towards understanding variables influencing the in vitro potency and tumor selectivity and their modulation to enhance their efficacy and safety. Methods 2019, 154, 102–117. 10.1016/j.ymeth.2018.10.026. PubMed DOI
Ross S. L.; Sherman M.; McElroy P. L.; Lofgren J. A.; Moody G.; Baeuerle P. A.; Coxon A.; Arvedson T. Bispecific T cell engager (BiTE(R)) antibody constructs can mediate bystander tumor cell killing. PLoS One 2017, 12, e018339010.1371/journal.pone.0183390. PubMed DOI PMC
Mack M.; Riethmuller G.; Kufer P. A small bispecific antibody construct expressed as a functional single-chain molecule with high tumor cell cytotoxicity. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 7021–7025. 10.1073/pnas.92.15.7021. PubMed DOI PMC
Löffler A.; Kufer P.; Lutterbüse R.; Zettl F.; Daniel P. T.; Schwenkenbecher J. M.; Riethmüller G.; Dörken B.; Bargou R. C. A recombinant bispecific single-chain antibody, CD19 × CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood 2000, 95, 2098–2103. 10.1182/blood.V95.6.2098. PubMed DOI
Hipp S.; Tai Y. T.; Blanset D.; Deegen P.; Wahl J.; Thomas O.; Rattel B.; Adam P. J.; Anderson K. C.; Friedrich M. A novel BCMA/CD3 bispecific T-cell engager for the treatment of multiple myeloma induces selective lysis in vitro and in vivo. Leukemia 2017, 31, 1743–1751. 10.1038/leu.2016.388. PubMed DOI
Horn L. A.; Ciavattone N. G.; Atkinson R.; Woldergerima N.; Wolf J.; Clements V. K.; Sinha P.; Poudel M.; Ostrand-Rosenberg S. CD3xPDL1 bi-specific T cell engager (BiTE) simultaneously activates T cells and NKT cells, kills PDL1+ tumor cells, and extends the survival of tumor-bearing humanized mice. Oncotarget 2017, 8, 57964–57980. 10.18632/oncotarget.19865. PubMed DOI PMC
Brischwein K.; Schlereth B.; Guller B.; Steiger C.; Wolf A.; Lutterbuese R.; Offner S.; Locher M.; Urbig T.; Raum T.; Kleindienst P.; Wimberger P.; Kimmig R.; Fichtner I.; Kufer P.; Hofmeister R.; da Silva A. J.; Baeuerle P. A. MT110: a novel bispecific single-chain antibody construct with high efficacy in eradicating established tumors. Mol. Immunol. 2006, 43, 1129–43. 10.1016/j.molimm.2005.07.034. PubMed DOI
Biselli R.; Matricardi P. M.; Amelio R. D.; Fattorossi A. Multiparametric Flow Cytometric Analysis of the Kinetics of Surface Molecule Expression after Polyclonal Activation of Human Peripheral Blood T Lymphocytes. Scand. J. Immunol. 1992, 35, 439–447. 10.1111/j.1365-3083.1992.tb02879.x. PubMed DOI
Cornel A. M.; Mimpen I. L.; Nierkens S. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel) 2020, 12, 1760.10.3390/cancers12071760. PubMed DOI PMC
Kamat N. V.; Yu E. Y.; Lee J. K. BiTE-ing into Prostate Cancer with Bispecific T-cell Engagers. Clin. Cancer Res. 2021, 27, 2675–2677. 10.1158/1078-0432.CCR-21-0355. PubMed DOI PMC
Friedrich M.; Raum T.; Lutterbuese R.; Voelkel M.; Deegen P.; Rau D.; Kischel R.; Hoffmann P.; Brandl C.; Schuhmacher J.; Mueller P.; Finnern R.; Fuergut M.; Zopf D.; Slootstra J. W.; Baeuerle P. A.; Rattel B.; Kufer P. Regression of human prostate cancer xenografts in mice by AMG 212/BAY2010112, a novel PSMA/CD3-Bispecific BiTE antibody cross-reactive with non-human primate antigens. Mol. Cancer Ther. 2012, 11, 2664–2673. 10.1158/1535-7163.MCT-12-0042. PubMed DOI
Novakova Z.; Foss C. A.; Copeland B. T.; Morath V.; Baranova P.; Havlinova B.; Skerra A.; Pomper M. G.; Barinka C. Novel Monoclonal Antibodies Recognizing Human Prostate-Specific Membrane Antigen (PSMA) as Research and Theranostic Tools. Prostate 2017, 77, 749–764. 10.1002/pros.23311. PubMed DOI PMC
Banerjee S. R.; Kumar V.; Lisok A.; Plyku D.; Novakova Z.; Brummet M.; Wharram B.; Barinka C.; Hobbs R.; Pomper M. G. Evaluation of (111)In-DOTA-5D3, a Surrogate SPECT Imaging Agent for Radioimmunotherapy of Prostate-Specific Membrane Antigen. J. Nucl. Med. 2019, 60, 400–406. 10.2967/jnumed.118.214403. PubMed DOI PMC
Novakova Z.; Belousova N.; Foss C. A.; Havlinova B.; Gresova M.; Das G.; Lisok A.; Prada A.; Barinkova M.; Hubalek M.; Pomper M. G.; Barinka C. Engineered Fragments of the PSMA-Specific 5D3 Antibody and Their Functional Characterization. Int. J. Mol. Sci. 2020, 21, 6672.10.3390/ijms21186672. PubMed DOI PMC
Kufer P., Lutterbuse R., Kohleisen B., Zeman S., Bauerle P.. Pharmaceutical compositions comprising bispecific anti-cd3, anti-cd19 antibody constructs for the treatment of b-cell related disorders. United States Patent US7635472B2, 2007.
Dorken B., Riethmüller G., Kufer P., Lutterbüse R., Bargou R., Löffler A.. CD19xCD3 Specific Polypeptides and Uses Thereof. United States Patent US007575923B2, 1999.
Harrington K. H.; Gudgeon C. J.; Laszlo G. S.; Newhall K. J.; Sinclair A. M.; Frankel S. R.; Kischel R.; Chen G.; Walter R. B. The Broad Anti-AML Activity of the CD33/CD3 BiTE Antibody Construct, AMG 330, Is Impacted by Disease Stage and Risk. PLoS One 2015, 10, e013594510.1371/journal.pone.0135945. PubMed DOI PMC
Milowsky M. I.; Galsky M. D.; Morris M. J.; Crona D. J.; George D. J.; Dreicer R.; Tse K.; Petruck J.; Webb I. J.; Bander N. H.; Nanus D. M.; Scher H. I. Phase 1/2 multiple ascending dose trial of the prostate-specific membrane antigen-targeted antibody drug conjugate MLN2704 in metastatic castration-resistant prostate cancer. Urol. Oncol. 2016, 34, 530.e15–530.e21. 10.1016/j.urolonc.2016.07.005. PubMed DOI PMC
Narayan V.; Barber-Rotenberg J. S.; Jung I. Y.; Lacey S. F.; Rech A. J.; Davis M. M.; Hwang W. T.; Lal P.; Carpenter E. L.; Maude S. L.; Plesa G.; Vapiwala N.; Chew A.; Moniak M.; Sebro R. A.; Farwell M. D.; Marshall A.; Gilmore J.; Lledo L.; Dengel K.; Church S. E.; Hether T. D.; Xu J.; Gohil M.; Buckingham T. H.; Yee S. S.; Gonzalez V. E.; Kulikovskaya I.; Chen F.; Tian L.; Tien K.; Gladney W.; Nobles C. L.; Raymond H. E.; Prostate Cancer Cellular Therapy Program I.; Hexner E. O.; Siegel D. L.; Bushman F. D.; June C. H.; Fraietta J. A.; Haas N. B.; et al. PSMA-targeting TGFbeta-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat. Med. 2022, 28, 724–734. 10.1038/s41591-022-01726-1. PubMed DOI PMC
Nauseef J. T.; Bander N. H.; Tagawa S. T. Emerging Prostate-specific Membrane Antigen-based Therapeutics: Small Molecules, Antibodies, and Beyond. Eur. Urol. Focus 2021, 7, 254–257. 10.1016/j.euf.2021.02.006. PubMed DOI
Alzubi J.; Dettmer-Monaco V.; Kuehle J.; Thorausch N.; Seidl M.; Taromi S.; Schamel W.; Zeiser R.; Abken H.; Cathomen T.; Wolf P. PSMA-Directed CAR T Cells Combined with Low-Dose Docetaxel Treatment Induce Tumor Regression in a Prostate Cancer Xenograft Model. Mol. Ther. Oncolytics 2020, 18, 226–235. 10.1016/j.omto.2020.06.014. PubMed DOI PMC
Buhler P.; Wolf P.; Gierschner D.; Schaber I.; Katzenwadel A.; Schultze-Seemann W.; Wetterauer U.; Tacke M.; Swamy M.; Schamel W. W.; Elsasser-Beile U. A bispecific diabody directed against prostate-specific membrane antigen and CD3 induces T-cell mediated lysis of prostate cancer cells. Cancer Immunol. Immunother. 2008, 57, 43–52. 10.1007/s00262-007-0348-6. PubMed DOI PMC
Serganova I.; Moroz E.; Cohen I.; Moroz M.; Mane M.; Zurita J.; Shenker L.; Ponomarev V.; Blasberg R. Enhancement of PSMA-Directed CAR Adoptive Immunotherapy by PD-1/PD-L1 Blockade. Mol. Ther. Oncolytics 2017, 4, 41–54. 10.1016/j.omto.2016.11.005. PubMed DOI PMC
Tykvart J.; Sacha P.; Barinka C.; Knedlik T.; Starkova J.; Lubkowski J.; Konvalinka J. Efficient and versatile one-step affinity purification of in vivo biotinylated proteins: expression, characterization and structure analysis of recombinant human glutamate carboxypeptidase II. Protein Expr. Purif. 2012, 82, 106–115. 10.1016/j.pep.2011.11.016. PubMed DOI PMC
Ventini-Monteiro D.; Dubois S.; Astray R. M.; Castillo J.; Pereira C. A. Insect cell entrapment, growth and recovering using a single-use fixed-bed bioreactor. Scaling up and recombinant protein production. J. Biotechnol. 2015, 216, 110–115. 10.1016/j.jbiotec.2015.10.013. PubMed DOI
Subklewe M. BiTEs better than CAR T cells. Blood Adv. 2021, 5, 607–612. 10.1182/bloodadvances.2020001792. PubMed DOI PMC
Heitmann J. S.; Pfluegler M.; Jung G.; Salih H. R. Bispecific Antibodies in Prostate Cancer Therapy: Current Status and Perspectives. Cancers (Basel) 2021, 13, 549.10.3390/cancers13030549. PubMed DOI PMC
Hernandez-Hoyos G.; Sewell T.; Bader R.; Bannink J.; Chenault R. A.; Daugherty M.; Dasovich M.; Fang H.; Gottschalk R.; Kumer J.; Miller R. E.; Ravikumar P.; Wiens J.; Algate P. A.; Bienvenue D.; McMahan C. J.; Natarajan S. K.; Gross J. A.; Blankenship J. W. MOR209/ES414, a Novel Bispecific Antibody Targeting PSMA for the Treatment of Metastatic Castration-Resistant Prostate Cancer. Mol. Cancer Ther. 2016, 15, 2155–65. 10.1158/1535-7163.MCT-15-0242. PubMed DOI
Lim E. A.; Schweizer M. T.; Chi K. N.; Aggarwal R.; Agarwal N.; Gulley J.; Attiyeh E.; Greger J.; Wu S.; Jaiprasart P.; Loffredo J.; Bandyopadhyay N.; Xie H.; Hansen A. R. Phase 1 Study of Safety and Preliminary Clinical Activity of JNJ-63898081, a PSMA and CD3 Bispecific Antibody, for Metastatic Castration-Resistant Prostate Cancer. Clin. Genitourin. Cancer 2023, 21, 366–375. 10.1016/j.clgc.2023.02.010. PubMed DOI PMC
Simao D. C.; Zarrabi K. K.; Mendes J. L.; Luz R.; Garcia J. A.; Kelly W. K.; Barata P. C. Bispecific T-Cell Engagers Therapies in Solid Tumors: Focusing on Prostate Cancer. Cancers (Basel) 2023, 15, 1412.10.3390/cancers15051412. PubMed DOI PMC
Arvedson T.; Bailis J. M.; Britten C. D.; Klinger M.; Nagorsen D.; Coxon A.; Egen J. G.; Martin F. Targeting Solid Tumors with Bispecific T Cell Engager Immune Therapy. Annu. Rev. Cancer Biol. 2022, 6, 17–34. 10.1146/annurev-cancerbio-070620-104325. DOI
Deegen P.; Thomas O.; Nolan-Stevaux O.; Li S.; Wahl J.; Bogner P.; Aeffner F.; Friedrich M.; Liao M. Z.; Matthes K.; Rau D.; Rattel B.; Raum T.; Kufer P.; Coxon A.; Bailis J. M. The PSMA-targeting Half-life Extended BiTE Therapy AMG 160 has Potent Antitumor Activity in Preclinical Models of Metastatic Castration-resistant Prostate Cancer. Clin. Cancer Res. 2021, 27, 2928–2937. 10.1158/1078-0432.CCR-20-3725. PubMed DOI
Einsele H.; Borghaei H.; Orlowski R. Z.; Subklewe M.; Roboz G. J.; Zugmaier G.; Kufer P.; Iskander K.; Kantarjian H. M. The BiTE (bispecific T-cell engager) platform: Development and future potential of a targeted immuno-oncology therapy across tumor types. Cancer 2020, 126, 3192–3201. 10.1002/cncr.32909. PubMed DOI
Harper T.; Sharma A.; Kaliyaperumal S.; Fajardo F.; Hsu K.; Liu L.; Davies R.; Wei Y. L.; Zhan J.; Estrada J.; Kvesic M.; Nahrwold L.; Deisting W.; Panzer M.; Cooke K.; Lebrec H.; Nolan-Stevaux O. Characterization of an Anti-CD70 Half-Life Extended Bispecific T-Cell Engager (HLE-BiTE) and Associated On-Target Toxicity in Cynomolgus Monkeys. Toxicol. Sci. 2022, 189, 32–50. 10.1093/toxsci/kfac052. PubMed DOI
Mandrup O. A.; Ong S. C.; Lykkemark S.; Dinesen A.; Rudnik-Jansen I.; Dagnaes-Hansen N. F.; Andersen J. T.; Alvarez-Vallina L.; Howard K. A. Programmable half-life and anti-tumour effects of bispecific T-cell engager-albumin fusions with tuned FcRn affinity. Commun. Biol. 2021, 4, 31010.1038/s42003-021-01790-2. PubMed DOI PMC
Schlapschy M.; Binder U.; Borger C.; Theobald I.; Wachinger K.; Kisling S.; Haller D.; Skerra A. PASylation: a biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins. Protein Eng. Des. Sel. 2013, 26, 489–501. 10.1093/protein/gzt023. PubMed DOI PMC
Hummel H.-D.; Kufer P.; Grüllich C.; Seggewiss-Bernhardt R.; Deschler-Baier B.; Chatterjee M.; Goebeler M.-E.; Miller K.; de Santis M.; Loidl W.; Dittrich C.; Buck A.; Lapa C.; Thurner A.; Wittemer-Rump S.; Koca G.; Boix O.; Döcke W.-D.; Finnern R.; Kusi H.; Ajavon-Hartmann A.; Stienen S.; Sayehli C. M.; Polat B.; Bargou R. C. Pasotuxizumab, a BiTE® immune therapy for castration-resistant prostate cancer: Phase I, dose-escalation study findings. Immunotherapy 2021, 13, 125–141. 10.2217/imt-2020-0256. PubMed DOI
Choudhry J.; Parson M.; Wright J. A Retrospective Review of Tocilizumab for the Management of Blinatumomab (a Bispecific T Cell Engager)-Induced Cytokine Release Syndrome (CRS). Blood 2018, 132, 5211–5211. 10.1182/blood-2018-99-117353. DOI
Kauer J.; Horner S.; Osburg L.; Muller S.; Marklin M.; Heitmann J. S.; Zekri L.; Rammensee H. G.; Salih H. R.; Jung G. Tocilizumab, but not dexamethasone, prevents CRS without affecting antitumor activity of bispecific antibodies. J. Immunother. Cancer 2020, 8, e000621.10.1136/jitc-2020-000621. PubMed DOI PMC
Sigmund A. M.; Sahasrabudhe K. D.; Bhatnagar B. Evaluating Blinatumomab for the Treatment of Relapsed/Refractory ALL: Design, Development, and Place in Therapy. Blood Lymphat. Cancer 2020, 10, 7–20. 10.2147/BLCTT.S223894. PubMed DOI PMC
Choi B. D.; Gedeon P. C.; Herndon J. E. 2nd; Archer G. E.; Reap E. A.; Sanchez-Perez L.; Mitchell D. A.; Bigner D. D.; Sampson J. H. Human regulatory T cells kill tumor cells through granzyme-dependent cytotoxicity upon retargeting with a bispecific antibody. Cancer Immunol. Res. 2013, 1, 163.10.1158/2326-6066.CIR-13-0049. PubMed DOI PMC
Haas C.; Krinner E.; Brischwein K.; Hoffmann P.; Lutterbuse R.; Schlereth B.; Kufer P.; Baeuerle P. A. Mode of cytotoxic action of T cell-engaging BiTE antibody MT110. Immunobiology 2009, 214, 441–53. 10.1016/j.imbio.2008.11.014. PubMed DOI
Xu Y.; Fu J.; Henderson M.; Lee F.; Jurcak N.; Henn A.; Wahl J.; Shao Y.; Wang J.; Lyman M.; Funes V.; Espinoza B.; Zhang R.; Washington I.; Chen S. Y.; Zlomke H.; Wang J.; Niu N.; Li P.; Meng F.; Burns W.; Friedrich M.; Stienen S.; Bailis J. M.; Zheng L. CLDN18.2 BiTE Engages Effector and Regulatory T Cells for Antitumor Immune Response in Preclinical Models of Pancreatic Cancer. Gastroenterology 2023, 10.1053/j.gastro.2023.06.037. PubMed DOI PMC
Karpisheh V.; Mousavi S. M.; Naghavi Sheykholeslami P.; Fathi M.; Mohammadpour Saray M.; Aghebati-Maleki L.; Jafari R.; Majidi Zolbanin N.; Jadidi-Niaragh F. The role of regulatory T cells in the pathogenesis and treatment of prostate cancer. Life Sci. 2021, 284, 11913210.1016/j.lfs.2021.119132. PubMed DOI
Duell J.; Dittrich M.; Bedke T.; Mueller T.; Eisele F.; Rosenwald A.; Rasche L.; Hartmann E.; Dandekar T.; Einsele H.; Topp M. S. Frequency of regulatory T cells determines the outcome of the T-cell-engaging antibody blinatumomab in patients with B-precursor ALL. Leukemia 2017, 31, 2181–2190. 10.1038/leu.2017.41. PubMed DOI PMC
Hoffmann P.; Hofmeister R.; Brischwein K.; Brandl C.; Crommer S.; Bargou R.; Itin C.; Prang N.; Baeuerle P. A. Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int. J. Cancer 2005, 115, 98–104. 10.1002/ijc.20908. PubMed DOI
Dreier T.; Lorenczewski G.; Brandl C.; Hoffmann P.; Syring U.; Hanakam F.; Kufer P.; Riethmuller G.; Bargou R.; Baeuerle P. A. Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int. J. Cancer 2002, 100, 690–7. 10.1002/ijc.10557. PubMed DOI
Bühler P.; Molnar E.; Dopfer E. P.; Wolf P.; Gierschner D.; Wetterauer U.; Schamel W. W. A.; Elsässer-Beile U. Target-dependent T-cell Activation by Coligation With a PSMA × CD3 Diabody Induces Lysis of Prostate Cancer Cells. J. Immunother. 2009, 32, 565–573. 10.1097/CJI.0b013e3181a697eb. PubMed DOI
Leconet W.; Liu H.; Guo M.; Le Lamer-Dechamps S.; Molinier C.; Kim S.; Vrlinic T.; Oster M.; Liu F.; Navarro V.; Batra J. S.; Noriega A. L.; Grizot S.; Bander N. H. Anti-PSMA/CD3 Bispecific Antibody Delivery and Antitumor Activity Using a Polymeric Depot Formulation. Mol. Cancer. Ther. 2018, 17, 1927–1940. 10.1158/1535-7163.MCT-17-1138. PubMed DOI
Offner S.; Hofmeister R.; Romaniuk A.; Kufer P.; Baeuerle P. A. Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol. Immunol. 2006, 43, 763–71. 10.1016/j.molimm.2005.03.007. PubMed DOI
Barinka C.; Ptacek J.; Richter A.; Novakova Z.; Morath V.; Skerra A. Selection and characterization of Anticalins targeting human prostate-specific membrane antigen (PSMA). Protein Eng. Des. Sel. 2016, 29, 105–115. 10.1093/protein/gzv065. PubMed DOI
Riedhammer C.; Halbritter D.; Weissert R. Peripheral Blood Mononuclear Cells: Isolation, Freezing, Thawing, and Culture. Multiple Sclerosis 2014, 1304, 53–61. 10.1007/7651_2014_99. PubMed DOI
Fortmuller K.; Alt K.; Gierschner D.; Wolf P.; Baum V.; Freudenberg N.; Wetterauer U.; Elsasser-Beile U.; Buhler P. Effective targeting of prostate cancer by lymphocytes redirected by a PSMA x CD3 bispecific single-chain diabody. Prostate 2011, 71, 588–596. 10.1002/pros.21274. PubMed DOI