Engineered Fragments of the PSMA-Specific 5D3 Antibody and Their Functional Characterization
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 CA134675
NCI NIH HHS - United States
LTAUSA18196
Ministry of education youth and sports, Czech Republic
PubMed
32932591
PubMed Central
PMC7555429
DOI
10.3390/ijms21186672
PII: ijms21186672
Knihovny.cz E-zdroje
- Klíčová slova
- NAALADase, antibody fragment, glutamate carboxypeptidase II, in vivo imaging, monoclonal antibody, prostate cancer, prostate-specific membrane antigen,
- MeSH
- antigeny povrchové imunologie MeSH
- buněčné linie MeSH
- buňky PC-3 MeSH
- fluorescence MeSH
- glutamátkarboxypeptidasa II imunologie MeSH
- hmyz MeSH
- jednořetězcové protilátky imunologie MeSH
- lidé MeSH
- monoklonální protilátky imunologie MeSH
- myši nahé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory prostaty imunologie MeSH
- rekombinantní proteiny imunologie MeSH
- xenogenní modely - testy antitumorózní aktivity metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny povrchové MeSH
- FOLH1 protein, human MeSH Prohlížeč
- glutamátkarboxypeptidasa II MeSH
- jednořetězcové protilátky MeSH
- monoklonální protilátky MeSH
- rekombinantní proteiny MeSH
Prostate-Specific Membrane Antigen (PSMA) is an established biomarker for the imaging and experimental therapy of prostate cancer (PCa), as it is strongly upregulated in high-grade primary, androgen-independent, and metastatic lesions. Here, we report on the development and functional characterization of recombinant single-chain Fv (scFv) and Fab fragments derived from the 5D3 PSMA-specific monoclonal antibody (mAb). These fragments were engineered, heterologously expressed in insect S2 cells, and purified to homogeneity with yields up to 20 mg/L. In vitro assays including ELISA, immunofluorescence and flow cytometry, revealed that the fragments retain the nanomolar affinity and single target specificity of the parent 5D3 antibody. Importantly, using a murine xenograft model of PCa, we verified the suitability of fluorescently labeled fragments for in vivo imaging of PSMA-positive tumors and compared their pharmacokinetics and tissue distribution to the parent mAb. Collectively, our data provide an experimental basis for the further development of 5D3 recombinant fragments for future clinical use.
Zobrazit více v PubMed
Ferlay J., Colombet M., Soerjomataram I., Dyba T., Randi G., Bettio M., Gavin A., Visser O., Bray F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur. J. Cancer. 2018;103:356–387. doi: 10.1016/j.ejca.2018.07.005. PubMed DOI
Pernar C.H., Ebot E.M., Wilson K.M., Mucci L.A. The Epidemiology of Prostate Cancer. Cold Spring Harb. Perspect. Med. 2018;8:a030361. doi: 10.1101/cshperspect.a030361. PubMed DOI PMC
Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2016. CA Cancer J. Clin. 2016;66:7–30. doi: 10.3322/caac.21332. PubMed DOI
Maurer T., Eiber M., Schwaiger M., Gschwend J.E. Current use of PSMA-PET in prostate cancer management. Nat. Rev. Urol. 2016;13:226–235. doi: 10.1038/nrurol.2016.26. PubMed DOI
Zhao X., Ning Q., Mo Z., Tang S. A promising cancer diagnosis and treatment strategy: Targeted cancer therapy and imaging based on antibody fragment. Artif. Cells Nanomed. Biotechnol. 2019;47:3621–3630. doi: 10.1080/21691401.2019.1657875. PubMed DOI
Batra S.K., Jain M., Wittel U.A., Chauhan S.C., Colcher D. Pharmacokinetics and biodistribution of genetically engineered antibodies. Curr. Opin. Biotechnol. 2002;13:603–608. doi: 10.1016/S0958-1669(02)00352-X. PubMed DOI
Bauerschlag D., Meinhold-Heerlein I., Maass N., Bleilevens A., Brautigam K., Al Rawashdeh W., Di Fiore S., Haugg A.M., Gremse F., Steitz J., et al. Detection and Specific Elimination of EGFR(+) Ovarian Cancer Cells Using a Near Infrared Photoimmunotheranostic Approach. Pharm. Res. 2017;34:696–703. doi: 10.1007/s11095-017-2096-4. PubMed DOI
Yuan X., Yang M., Chen X., Zhang X., Sukhadia S., Musolino N., Bao H., Chen T., Xu C., Wang Q., et al. Characterization of the first fully human anti-TEM1 scFv in models of solid tumor imaging and immunotoxin-based therapy. Cancer Immunol. Immunother. 2017;66:367–378. doi: 10.1007/s00262-016-1937-z. PubMed DOI PMC
Rabenhold M., Steiniger F., Fahr A., Kontermann R.E., Ruger R. Bispecific single-chain diabody-immunoliposomes targeting endoglin (CD105) and fibroblast activation protein (FAP) simultaneously. J. Control. Release. 2015;201:56–67. doi: 10.1016/j.jconrel.2015.01.022. PubMed DOI
Rafiq S., Yeku O.O., Jackson H.J., Purdon T.J., van Leeuwen D.G., Drakes D.J., Song M., Miele M.M., Li Z., Wang P., et al. Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat. Biotechnol. 2018;36:847–856. doi: 10.1038/nbt.4195. PubMed DOI PMC
Zhang M., Kobayashi N., Zettlitz K.A., Kono E.A., Yamashiro J.M., Tsai W.K., Jiang Z.K., Tran C.P., Wang C., Guan J., et al. Near-Infrared Dye-Labeled Anti-Prostate Stem Cell Antigen Minibody Enables Real-Time Fluorescence Imaging and Targeted Surgery in Translational Mouse Models. Clin. Cancer Res. 2019;25:188–200. doi: 10.1158/1078-0432.CCR-18-1382. PubMed DOI PMC
Knowles S.M., Tavare R., Zettlitz K.A., Rochefort M.M., Salazar F.B., Jiang Z.K., Reiter R.E., Wu A.M. Applications of immunoPET: Using 124I-anti-PSCA A11 minibody for imaging disease progression and response to therapy in mouse xenograft models of prostate cancer. Clin. Cancer Res. 2014;20:6367–6378. doi: 10.1158/1078-0432.CCR-14-1452. PubMed DOI PMC
Boonstra M.C., Tolner B., Schaafsma B.E., Boogerd L.S., Prevoo H.A., Bhavsar G., Kuppen P.J., Sier C.F., Bonsing B.A., Frangioni J.V., et al. Preclinical evaluation of a novel CEA-targeting near-infrared fluorescent tracer delineating colorectal and pancreatic tumors. Int. J. Cancer. 2015;137:1910–1920. doi: 10.1002/ijc.29571. PubMed DOI PMC
Debie P., Hernot S. Emerging Fluorescent Molecular Tracers to Guide Intra-Operative Surgical Decision-Making. Front. Pharmacol. 2019;10:510. doi: 10.3389/fphar.2019.00510. PubMed DOI PMC
Wright G.L., Jr., Haley C., Beckett M.L., Schellhammer P.F. Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol. Oncol. 1995;1:18–28. doi: 10.1016/1078-1439(95)00002-Y. PubMed DOI
Frigerio B., Franssen G., Luison E., Satta A., Seregni E., Colombatti M., Fracasso G., Valdagni R., Mezzanzanica D., Boerman O., et al. Full preclinical validation of the 123I-labeled anti-PSMA antibody fragment ScFvD2B for prostate cancer imaging. Oncotarget. 2017;8:10919–10930. doi: 10.18632/oncotarget.14229. PubMed DOI PMC
Czerwinska M., Bilewicz A., Kruszewski M., Wegierek-Ciuk A., Lankoff A. Targeted Radionuclide Therapy of Prostate Cancer-From Basic Research to Clinical Perspectives. Molecules. 2020;25:1743. doi: 10.3390/molecules25071743. PubMed DOI PMC
Foss C.A., Mease R.C., Cho S.Y., Kim H.J., Pomper M.G. GCPII imaging and cancer. Curr. Med. Chem. 2012;19:1346–1359. doi: 10.2174/092986712799462612. PubMed DOI PMC
Barinka C., Rojas C., Slusher B., Pomper M. Glutamate carboxypeptidase II in diagnosis and treatment of neurologic disorders and prostate cancer. Curr. Med. Chem. 2012;19:856–870. doi: 10.2174/092986712799034888. PubMed DOI PMC
Nawaz S., Mullen G.E.D., Blower P.J., Ballinger J.R. A 99mTc-labelled scFv antibody fragment that binds to prostate-specific membrane antigen. Nucl. Med. Commun. 2017;38:666–671. doi: 10.1097/MNM.0000000000000698. PubMed DOI PMC
Mazzocco C., Fracasso G., Germain-Genevois C., Dugot-Senant N., Figini M., Colombatti M., Grenier N., Couillaud F. In vivo imaging of prostate cancer using an anti-PSMA scFv fragment as a probe. Sci. Rep. 2016;6:23314. doi: 10.1038/srep23314. PubMed DOI PMC
Frigerio B., Morlino S., Luison E., Seregni E., Lorenzoni A., Satta A., Valdagni R., Bogni A., Chiesa C., Mira M., et al. Anti-PSMA (124)I-scFvD2B as a new immuno-PET tool for prostate cancer: Preclinical proof of principle. J. Exp. Clin. Cancer Res. 2019;38:326. doi: 10.1186/s13046-019-1325-6. PubMed DOI PMC
Lutje S., van Rij C.M., Franssen G.M., Fracasso G., Helfrich W., Eek A., Oyen W.J., Colombatti M., Boerman O.C. Targeting human prostate cancer with 111In-labeled D2B IgG, F(ab’)2 and Fab fragments in nude mice with PSMA-expressing xenografts. Contrast Media Mol. Imaging. 2015;10:28–36. doi: 10.1002/cmmi.1596. PubMed DOI
Wong P., Li L., Chea J., Delgado M.K., Crow D., Poku E., Szpikowska B., Bowles N., Channappa D., Colcher D., et al. PET imaging of (64)Cu-DOTA-scFv-anti-PSMA lipid nanoparticles (LNPs): Enhanced tumor targeting over anti-PSMA scFv or untargeted LNPs. Nucl. Med. Biol. 2017;47:62–68. doi: 10.1016/j.nucmedbio.2017.01.004. PubMed DOI PMC
Viola-Villegas N.T., Sevak K.K., Carlin S.D., Doran M.G., Evans H.W., Bartlett D.W., Wu A.M., Lewis J.S. Noninvasive Imaging of PSMA in prostate tumors with (89)Zr-Labeled huJ591 engineered antibody fragments: The faster alternatives. Mol. Pharm. 2014;11:3965–3973. doi: 10.1021/mp500164r. PubMed DOI PMC
Pandit-Taskar N., O’Donoghue J.A., Ruan S., Lyashchenko S.K., Carrasquillo J.A., Heller G., Martinez D.F., Cheal S.M., Lewis J.S., Fleisher M., et al. First-in-Human Imaging with 89Zr-Df-IAB2M Anti-PSMA Minibody in Patients with Metastatic Prostate Cancer: Pharmacokinetics, Biodistribution, Dosimetry, and Lesion Uptake. J. Nucl. Med. 2016;57:1858–1864. doi: 10.2967/jnumed.116.176206. PubMed DOI PMC
Su Y., Yu L., Liu N., Guo Z., Wang G., Zheng J., Wei M., Wang H., Yang A.G., Qin W., et al. PSMA specific single chain antibody-mediated targeted knockdown of Notch1 inhibits human prostate cancer cell proliferation and tumor growth. Cancer Lett. 2013;338:282–291. doi: 10.1016/j.canlet.2013.05.035. PubMed DOI
Baum V., Buhler P., Gierschner D., Herchenbach D., Fiala G.J., Schamel W.W., Wolf P., Elsasser-Beile U. Antitumor activities of PSMAxCD3 diabodies by redirected T-cell lysis of prostate cancer cells. Immunotherapy. 2013;5:27–38. doi: 10.2217/imt.12.136. PubMed DOI
Friedrich M., Raum T., Lutterbuese R., Voelkel M., Deegen P., Rau D., Kischel R., Hoffmann P., Brandl C., Schuhmacher J., et al. Regression of human prostate cancer xenografts in mice by AMG 212/BAY2010112, a novel PSMA/CD3-Bispecific BiTE antibody cross-reactive with non-human primate antigens. Mol. Cancer Ther. 2012;11:2664–2673. doi: 10.1158/1535-7163.MCT-12-0042. PubMed DOI
Hernandez-Hoyos G., Sewell T., Bader R., Bannink J., Chenault R.A., Daugherty M., Dasovich M., Fang H., Gottschalk R., Kumer J., et al. MOR209/ES414, a Novel Bispecific Antibody Targeting PSMA for the Treatment of Metastatic Castration-Resistant Prostate Cancer. Mol. Cancer Ther. 2016;15:2155–2165. doi: 10.1158/1535-7163.MCT-15-0242. PubMed DOI
Jachimowicz R.D., Fracasso G., Yazaki P.J., Power B.E., Borchmann P., Engert A., Hansen H.P., Reiners K.S., Marie M., von Strandmann E.P., et al. Induction of in vitro and in vivo NK cell cytotoxicity using high-avidity immunoligands targeting prostate-specific membrane antigen in prostate carcinoma. Mol. Cancer Ther. 2011;10:1036–1045. doi: 10.1158/1535-7163.MCT-10-1093. PubMed DOI
Leconet W., Liu H., Guo M., Le Lamer-Dechamps S., Molinier C., Kim S., Vrlinic T., Oster M., Liu F., Navarro V., et al. Anti-PSMA/CD3 Bispecific Antibody Delivery and Antitumor Activity Using a Polymeric Depot Formulation. Mol. Cancer Ther. 2018;17:1927–1940. doi: 10.1158/1535-7163.MCT-17-1138. PubMed DOI
Zhang Q., Helfand B.T., Carneiro B.A., Qin W., Yang X.J., Lee C., Zhang W., Giles F.J., Cristofanilli M., Kuzel T.M. Efficacy Against Human Prostate Cancer by Prostate-specific Membrane Antigen-specific, Transforming Growth Factor-beta Insensitive Genetically Targeted CD8(+) T-cells Derived from Patients with Metastatic Castrate-resistant Disease. Eur. Urol. 2018;73:648–652. doi: 10.1016/j.eururo.2017.12.008. PubMed DOI PMC
Li J., Franek K.J., Patterson A.L., Holmes L.M., Burgin K.E., Ji J., Yu X., Wagner T.E., Wei Y. Targeting foreign major histocompatibility complex molecules to tumors by tumor cell specific single chain antibody (scFv) Int. J. Oncol. 2003;23:1329–1332. doi: 10.3892/ijo.23.5.1329. PubMed DOI
Michalska M., Schultze-Seemann S., Bogatyreva L., Hauschke D., Wetterauer U., Wolf P. In vitro and in vivo effects of a recombinant anti-PSMA immunotoxin in combination with docetaxel against prostate cancer. Oncotarget. 2016;7:22531–22542. doi: 10.18632/oncotarget.8001. PubMed DOI PMC
Noll T., Schultze-Seemann S., Kuckuck I., Michalska M., Wolf P. Synergistic cytotoxicity of a prostate cancer-specific immunotoxin in combination with the BH3 mimetic ABT-737. Cancer Immunol. Immunother. 2018;67:413–422. doi: 10.1007/s00262-017-2097-5. PubMed DOI PMC
Baiz D., Hassan S., Choi Y.A., Flores A., Karpova Y., Yancey D., Pullikuth A., Sui G., Sadelain M., Debinski W., et al. Combination of the PI3K inhibitor ZSTK474 with a PSMA-targeted immunotoxin accelerates apoptosis and regression of prostate cancer. Neoplasia. 2013;15:1172–1183. doi: 10.1593/neo.13986. PubMed DOI PMC
Meng P., Dong Q.C., Tan G.G., Wen W.H., Wang H., Zhang G., Wang Y.Z., Jing Y.M., Wang C., Qin W.J., et al. Anti-tumor effects of a recombinant anti-prostate specific membrane antigen immunotoxin against prostate cancer cells. BMC Urol. 2017;17:14. doi: 10.1186/s12894-017-0203-9. PubMed DOI PMC
Hassani M., Hajari Taheri F., Sharifzadeh Z., Arashkia A., Hadjati J., van Weerden W.M., Abdoli S., Modarressi M.H., Abolhassani M. Engineered Jurkat Cells for Targeting Prostate-Specific Membrane Antigen on Prostate Cancer Cells by Nanobody-Based Chimeric Antigen Receptor. Iran. Biomed. J. 2020;24:81–88. doi: 10.29252/ibj.24.2.81. PubMed DOI PMC
Santoro S.P., Kim S., Motz G.T., Alatzoglou D., Li C., Irving M., Powell D.J., Jr., Coukos G. T cells bearing a chimeric antigen receptor against prostate-specific membrane antigen mediate vascular disruption and result in tumor regression. Cancer Immunol. Res. 2015;3:68–84. doi: 10.1158/2326-6066.CIR-14-0192. PubMed DOI PMC
Menotti L., Avitabile E., Gatta V., Malatesta P., Petrovic B., Campadelli-Fiume G. HSV as A Platform for the Generation of Retargeted, Armed, and Reporter-Expressing Oncolytic Viruses. Viruses. 2018;10:352. doi: 10.3390/v10070352. PubMed DOI PMC
Liu C., Hasegawa K., Russell S.J., Sadelain M., Peng K.W. Prostate-specific membrane antigen retargeted measles virotherapy for the treatment of prostate cancer. Prostate. 2009;69:1128–1141. doi: 10.1002/pros.20962. PubMed DOI PMC
Novakova Z., Foss C.A., Copeland B.T., Morath V., Baranova P., Havlinova B., Skerra A., Pomper M.G., Barinka C. Novel Monoclonal Antibodies Recognizing Human Prostate-Specific Membrane Antigen (PSMA) as Research and Theranostic Tools. Prostate. 2017;77:749–764. doi: 10.1002/pros.23311. PubMed DOI PMC
Banerjee S.R., Kumar V., Lisok A., Plyku D., Novakova Z., Brummet M., Wharram B., Barinka C., Hobbs R., Pomper M.G. Evaluation of (111)In-DOTA-5D3, a Surrogate SPECT Imaging Agent for Radioimmunotherapy of Prostate-Specific Membrane Antigen. J. Nucl. Med. 2019;60:400–406. doi: 10.2967/jnumed.118.214403. PubMed DOI PMC
Huang C.T., Guo X., Barinka C., Lupold S.E., Pomper M.G., Gabrielson K., Raman V., Artemov D., Hapuarachchige S. Development of 5D3-DM1: A Novel Anti-Prostate-Specific Membrane Antigen Antibody-Drug Conjugate for PSMA-Positive Prostate Cancer Therapy. Mol. Pharm. 2020;17:3392–3402. doi: 10.1021/acs.molpharmaceut.0c00457. PubMed DOI PMC
Hapuarachchige S., Huang C.T., Donnelly M.C., Barinka C., Lupold S.E., Pomper M.G., Artemov D. Cellular Delivery of Bioorthogonal Pretargeting Therapeutics in PSMA-Positive Prostate Cancer. Mol. Pharm. 2020;17:98–108. doi: 10.1021/acs.molpharmaceut.9b00788. PubMed DOI PMC
Schiweck W., Skerra A. Fermenter production of an artificial fab fragment, rationally designed for the antigen cystatin, and its optimized crystallization through constant domain shuffling. Proteins. 1995;23:561–565. doi: 10.1002/prot.340230411. PubMed DOI
Skerra A. Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli. Gene. 1994;151:131–135. doi: 10.1016/0378-1119(94)90643-2. PubMed DOI
Schlapschy M., Fiedler M., Skerra A. Purification and Characterization of His-Tagged Antibody Fragments in Antibody Engineering. 2nd ed. Springer; Berlin, Germany: 2010. pp. 279–291. DOI
Chilumuri A., Markiv A., Milton N.G. Immunocytochemical staining of endogenous nuclear proteins with the HIS-1 anti-poly-histidine monoclonal antibody: A potential source of error in His-tagged protein detection. Acta Histochem. 2014;116:1022–1028. doi: 10.1016/j.acthis.2014.04.006. PubMed DOI
Vermeer A.W., Bremer M.G., Norde W. Structural changes of IgG induced by heat treatment and by adsorption onto a hydrophobic Teflon surface studied by circular dichroism spectroscopy. Biochi. Biophys. Acta. 1998;1425:1–12. doi: 10.1016/S0304-4165(98)00048-8. PubMed DOI
Gupta S.K., Shukla P. Microbial platform technology for recombinant antibody fragment production: A review. Crit. Rev. Microbiol. 2017;43:31–42. doi: 10.3109/1040841X.2016.1150959. PubMed DOI
De Jongh W.A., Salgueiro S., Dyring C. The use of Drosophila S2 cells in R&D and bioprocessing. Pharm. Bioprocess. 2013;1:197–213.
Tykvart J., Sacha P., Barinka C., Knedlik T., Starkova J., Lubkowski J., Konvalinka J. Efficient and versatile one-step affinity purification of in vivo biotinylated proteins: Expression, characterization and structure analysis of recombinant human glutamate carboxypeptidase II. Protein Expr. Purif. 2012;82:106–115. doi: 10.1016/j.pep.2011.11.016. PubMed DOI PMC
Ventini-Monteiro D., Dubois S., Astray R.M., Castillo J., Pereira C.A. Insect cell entrapment, growth and recovering using a single-use fixed-bed bioreactor. Scaling up and recombinant protein production. J. Biotechnol. 2015;216:110–115. doi: 10.1016/j.jbiotec.2015.10.013. PubMed DOI
Daniels R.W., Rossano A.J., Macleod G.T., Ganetzky B. Expression of multiple transgenes from a single construct using viral 2A peptides in Drosophila. PLoS ONE. 2014;9:e100637. doi: 10.1371/journal.pone.0100637. PubMed DOI PMC
Mori K., Hamada H., Ogawa T., Ohmuro-Matsuyama Y., Katsuda T., Yamaji H. Efficient production of antibody Fab fragment by transient gene expression in insect cells. J. Biosci. Bioeng. 2017;124:221–226. doi: 10.1016/j.jbiosc.2017.03.007. PubMed DOI
Holliger P., Prospero T., Winter G. “Diabodies”: Small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. USA. 1993;90:6444–6448. doi: 10.1073/pnas.90.14.6444. PubMed DOI PMC
Viti F., Tarli L., Giovannoni L., Zardi L., Neri D. Increased binding affinity and valence of recombinant antibody fragments lead to improved targeting of tumoral angiogenesis. Cancer Res. 1999;59:347–352. PubMed
Bird R.E., Hardman K.D., Jacobson J.W., Johnson S., Kaufman B.M., Lee S.M., Lee T., Pope S.H., Riordan G.S., Whitlow M. Single-chain antigen-binding proteins. Science. 1988;242:423–426. doi: 10.1126/science.3140379. PubMed DOI
Huston J.S., Levinson D., Mudgett-Hunter M., Tai M.S., Novotny J., Margolies M.N., Ridge R.J., Bruccoleri R.E., Haber E., Crea R., et al. Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA. 1988;85:5879–5883. doi: 10.1073/pnas.85.16.5879. PubMed DOI PMC
Whitlow M., Bell B.A., Feng S.L., Filpula D., Hardman K.D., Hubert S.L., Rollence M.L., Wood J.F., Schott M.E., Milenic D.E., et al. An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. Protein Eng. 1993;6:989–995. doi: 10.1093/protein/6.8.989. PubMed DOI
Olafsen T., Kenanova V.E., Wu A.M. Generation of Single-Chain Fv Fragments and Multivalent Derivatives scFv-Fc and scFv-CH3 (Minibodies) in Antibody Engineering. 2nd ed. Springer; Berlin, Germany: 2010. pp. 69–84. DOI
Kellmann S.J., Dubel S., Thie H. A strategy to identify linker-based modules for the allosteric regulation of antibody-antigen binding affinities of different scFvs. MAbs. 2017;9:404–418. doi: 10.1080/19420862.2016.1277302. PubMed DOI PMC
Muller D. scFv by Two-Step Cloning in Antibody Engineering. 2nd ed. Springer; Berlin, Germany: 2010. pp. 55–59. DOI
Martoglio B., Dobberstein B. Signal sequences: More than just greasy peptides. Trends Cell Biol. 1998;8:410–415. doi: 10.1016/S0962-8924(98)01360-9. PubMed DOI
El-Sayed A., Bernhard W., Barreto K., Gonzalez C., Hill W., Pastushok L., Fonge H., Geyer C.R. Evaluation of antibody fragment properties for near-infrared fluorescence imaging of HER3-positive cancer xenografts. Theranostics. 2018;8:4856–4869. doi: 10.7150/thno.24252. PubMed DOI PMC
Pavlinkova G., Beresford G.W., Booth B.J., Batra S.K., Colcher D. Pharmacokinetics and biodistribution of engineered single-chain antibody constructs of MAb CC49 in colon carcinoma xenografts. J. Nucl. Med. 1999;40:1536–1546. PubMed
Adams G.P., Schier R., Marshall K., Wolf E.J., McCall A.M., Marks J.D., Weiner L.M. Increased affinity leads to improved selective tumor delivery of single-chain Fv antibodies. Cancer Res. 1998;58:485–490. PubMed
Adams G.P., Schier R., McCall A.M., Simmons H.H., Horak E.M., Alpaugh R.K., Marks J.D., Weiner L.M. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res. 2001;61:4750–4755. PubMed
Zhou Y., Goenaga A.L., Harms B.D., Zou H., Lou J., Conrad F., Adams G.P., Schoeberl B., Nielsen U.B., Marks J.D. Impact of intrinsic affinity on functional binding and biological activity of EGFR antibodies. Mol. Cancer Ther. 2012;11:1467–1476. doi: 10.1158/1535-7163.MCT-11-1038. PubMed DOI PMC
Han D., Wu J., Han Y., Wei M., Han S., Lin R., Sun Z., Yang F., Jiao D., Xie P., et al. A novel anti-PSMA human scFv has the potential to be used as a diagnostic tool in prostate cancer. Oncotarget. 2016;7:59471–59481. doi: 10.18632/oncotarget.10697. PubMed DOI PMC
Rezaei J., RajabiBazl M., Ebrahimizadeh W., Dehbidi G.R., Hosseini H. Selection of Single Chain Antibody Fragments for Targeting Prostate Specific Membrane Antigen: A Comparison Between Cell-based and Antigen-based Approach. Protein Pept. Lett. 2016;23:336–342. doi: 10.2174/0929866523666160115131403. PubMed DOI
Frigerio B., Fracasso G., Luison E., Cingarlini S., Mortarino M., Coliva A., Seregni E., Bombardieri E., Zuccolotto G., Rosato A., et al. A single-chain fragment against prostate specific membrane antigen as a tool to build theranostic reagents for prostate cancer. Eur. J. Cancer. 2013;49:2223–2232. doi: 10.1016/j.ejca.2013.01.024. PubMed DOI
Parker S.A., Diaz I.L., Anderson K.A., Batt C.A. Design, production, and characterization of a single-chain variable fragment (ScFv) derived from the prostate specific membrane antigen (PSMA) monoclonal antibody J591. Protein Expr. Purif. 2013;89:136–145. doi: 10.1016/j.pep.2013.02.016. PubMed DOI
Kampmeier F., Williams J.D., Maher J., Mullen G.E., Blower P.J. Design and preclinical evaluation of a 99mTc-labelled diabody of mAb J591 for SPECT imaging of prostate-specific membrane antigen (PSMA) EJNMMI Res. 2014;4:13. doi: 10.1186/2191-219X-4-13. PubMed DOI PMC
Brown B.A., Comeau R.D., Jones P.L., Liberatore F.A., Neacy W.P., Sands H., Gallagher B.M. Pharmacokinetics of the monoclonal antibody B72.3 and its fragments labeled with either 125I or 111In. Cancer Res. 1987;47:1149–1154. PubMed
Fortmuller K., Alt K., Gierschner D., Wolf P., Baum V., Freudenberg N., Wetterauer U., Elsasser-Beile U., Buhler P. Effective targeting of prostate cancer by lymphocytes redirected by a PSMA x CD3 bispecific single-chain diabody. Prostate. 2011;71:588–596. doi: 10.1002/pros.21274. PubMed DOI
Werner W.E., Wu S., Mulkerrin M. The removal of pyroglutamic acid from monoclonal antibodies without denaturation of the protein chains. Anal. Biochem. 2005;342:120–125. doi: 10.1016/j.ab.2005.04.012. PubMed DOI
Lubyova B., Hodek J., Zabransky A., Prouzova H., Hubalek M., Hirsch I., Weber J. PRMT5: A novel regulator of Hepatitis B virus replication and an arginine methylase of HBV core. PLoS ONE. 2017;12:e0186982. doi: 10.1371/journal.pone.0186982. PubMed DOI PMC
Strohalm M., Hassman M., Kosata B., Kodicek M. mMass data miner: An open source alternative for mass spectrometric data analysis. Rapid Commun. Mass Spectrom. 2008;22:905–908. doi: 10.1002/rcm.3444. PubMed DOI
Gebauer M., Skerra A. Anticalins small engineered binding proteins based on the lipocalin scaffold. Methods Enzymol. 2012;503:157–188. doi: 10.1016/B978-0-12-396962-0.00007-0. PubMed DOI
Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33:103–119. doi: 10.1016/0378-1119(85)90120-9. PubMed DOI
Barinka C., Ptacek J., Richter A., Novakova Z., Morath V., Skerra A. Selection and characterization of Anticalins targeting human prostate-specific membrane antigen (PSMA) Protein Eng. Des. Sel. 2016;29:105–115. doi: 10.1093/protein/gzv065. PubMed DOI
Banerjee S.R., Foss C.A., Castanares M., Mease R.C., Byun Y., Fox J.J., Hilton J., Lupold S.E., Kozikowski A.P., Pomper M.G. Synthesis and evaluation of technetium-99m- and rhenium-labeled inhibitors of the prostate-specific membrane antigen (PSMA) J. Med. chem. 2008;51:4504–4517. doi: 10.1021/jm800111u. PubMed DOI PMC