Engineered Fragments of the PSMA-Specific 5D3 Antibody and Their Functional Characterization

. 2020 Sep 12 ; 21 (18) : . [epub] 20200912

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32932591

Grantová podpora
R01 CA134675 NCI NIH HHS - United States
LTAUSA18196 Ministry of education youth and sports, Czech Republic

Prostate-Specific Membrane Antigen (PSMA) is an established biomarker for the imaging and experimental therapy of prostate cancer (PCa), as it is strongly upregulated in high-grade primary, androgen-independent, and metastatic lesions. Here, we report on the development and functional characterization of recombinant single-chain Fv (scFv) and Fab fragments derived from the 5D3 PSMA-specific monoclonal antibody (mAb). These fragments were engineered, heterologously expressed in insect S2 cells, and purified to homogeneity with yields up to 20 mg/L. In vitro assays including ELISA, immunofluorescence and flow cytometry, revealed that the fragments retain the nanomolar affinity and single target specificity of the parent 5D3 antibody. Importantly, using a murine xenograft model of PCa, we verified the suitability of fluorescently labeled fragments for in vivo imaging of PSMA-positive tumors and compared their pharmacokinetics and tissue distribution to the parent mAb. Collectively, our data provide an experimental basis for the further development of 5D3 recombinant fragments for future clinical use.

Zobrazit více v PubMed

Ferlay J., Colombet M., Soerjomataram I., Dyba T., Randi G., Bettio M., Gavin A., Visser O., Bray F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur. J. Cancer. 2018;103:356–387. doi: 10.1016/j.ejca.2018.07.005. PubMed DOI

Pernar C.H., Ebot E.M., Wilson K.M., Mucci L.A. The Epidemiology of Prostate Cancer. Cold Spring Harb. Perspect. Med. 2018;8:a030361. doi: 10.1101/cshperspect.a030361. PubMed DOI PMC

Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2016. CA Cancer J. Clin. 2016;66:7–30. doi: 10.3322/caac.21332. PubMed DOI

Maurer T., Eiber M., Schwaiger M., Gschwend J.E. Current use of PSMA-PET in prostate cancer management. Nat. Rev. Urol. 2016;13:226–235. doi: 10.1038/nrurol.2016.26. PubMed DOI

Zhao X., Ning Q., Mo Z., Tang S. A promising cancer diagnosis and treatment strategy: Targeted cancer therapy and imaging based on antibody fragment. Artif. Cells Nanomed. Biotechnol. 2019;47:3621–3630. doi: 10.1080/21691401.2019.1657875. PubMed DOI

Batra S.K., Jain M., Wittel U.A., Chauhan S.C., Colcher D. Pharmacokinetics and biodistribution of genetically engineered antibodies. Curr. Opin. Biotechnol. 2002;13:603–608. doi: 10.1016/S0958-1669(02)00352-X. PubMed DOI

Bauerschlag D., Meinhold-Heerlein I., Maass N., Bleilevens A., Brautigam K., Al Rawashdeh W., Di Fiore S., Haugg A.M., Gremse F., Steitz J., et al. Detection and Specific Elimination of EGFR(+) Ovarian Cancer Cells Using a Near Infrared Photoimmunotheranostic Approach. Pharm. Res. 2017;34:696–703. doi: 10.1007/s11095-017-2096-4. PubMed DOI

Yuan X., Yang M., Chen X., Zhang X., Sukhadia S., Musolino N., Bao H., Chen T., Xu C., Wang Q., et al. Characterization of the first fully human anti-TEM1 scFv in models of solid tumor imaging and immunotoxin-based therapy. Cancer Immunol. Immunother. 2017;66:367–378. doi: 10.1007/s00262-016-1937-z. PubMed DOI PMC

Rabenhold M., Steiniger F., Fahr A., Kontermann R.E., Ruger R. Bispecific single-chain diabody-immunoliposomes targeting endoglin (CD105) and fibroblast activation protein (FAP) simultaneously. J. Control. Release. 2015;201:56–67. doi: 10.1016/j.jconrel.2015.01.022. PubMed DOI

Rafiq S., Yeku O.O., Jackson H.J., Purdon T.J., van Leeuwen D.G., Drakes D.J., Song M., Miele M.M., Li Z., Wang P., et al. Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat. Biotechnol. 2018;36:847–856. doi: 10.1038/nbt.4195. PubMed DOI PMC

Zhang M., Kobayashi N., Zettlitz K.A., Kono E.A., Yamashiro J.M., Tsai W.K., Jiang Z.K., Tran C.P., Wang C., Guan J., et al. Near-Infrared Dye-Labeled Anti-Prostate Stem Cell Antigen Minibody Enables Real-Time Fluorescence Imaging and Targeted Surgery in Translational Mouse Models. Clin. Cancer Res. 2019;25:188–200. doi: 10.1158/1078-0432.CCR-18-1382. PubMed DOI PMC

Knowles S.M., Tavare R., Zettlitz K.A., Rochefort M.M., Salazar F.B., Jiang Z.K., Reiter R.E., Wu A.M. Applications of immunoPET: Using 124I-anti-PSCA A11 minibody for imaging disease progression and response to therapy in mouse xenograft models of prostate cancer. Clin. Cancer Res. 2014;20:6367–6378. doi: 10.1158/1078-0432.CCR-14-1452. PubMed DOI PMC

Boonstra M.C., Tolner B., Schaafsma B.E., Boogerd L.S., Prevoo H.A., Bhavsar G., Kuppen P.J., Sier C.F., Bonsing B.A., Frangioni J.V., et al. Preclinical evaluation of a novel CEA-targeting near-infrared fluorescent tracer delineating colorectal and pancreatic tumors. Int. J. Cancer. 2015;137:1910–1920. doi: 10.1002/ijc.29571. PubMed DOI PMC

Debie P., Hernot S. Emerging Fluorescent Molecular Tracers to Guide Intra-Operative Surgical Decision-Making. Front. Pharmacol. 2019;10:510. doi: 10.3389/fphar.2019.00510. PubMed DOI PMC

Wright G.L., Jr., Haley C., Beckett M.L., Schellhammer P.F. Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol. Oncol. 1995;1:18–28. doi: 10.1016/1078-1439(95)00002-Y. PubMed DOI

Frigerio B., Franssen G., Luison E., Satta A., Seregni E., Colombatti M., Fracasso G., Valdagni R., Mezzanzanica D., Boerman O., et al. Full preclinical validation of the 123I-labeled anti-PSMA antibody fragment ScFvD2B for prostate cancer imaging. Oncotarget. 2017;8:10919–10930. doi: 10.18632/oncotarget.14229. PubMed DOI PMC

Czerwinska M., Bilewicz A., Kruszewski M., Wegierek-Ciuk A., Lankoff A. Targeted Radionuclide Therapy of Prostate Cancer-From Basic Research to Clinical Perspectives. Molecules. 2020;25:1743. doi: 10.3390/molecules25071743. PubMed DOI PMC

Foss C.A., Mease R.C., Cho S.Y., Kim H.J., Pomper M.G. GCPII imaging and cancer. Curr. Med. Chem. 2012;19:1346–1359. doi: 10.2174/092986712799462612. PubMed DOI PMC

Barinka C., Rojas C., Slusher B., Pomper M. Glutamate carboxypeptidase II in diagnosis and treatment of neurologic disorders and prostate cancer. Curr. Med. Chem. 2012;19:856–870. doi: 10.2174/092986712799034888. PubMed DOI PMC

Nawaz S., Mullen G.E.D., Blower P.J., Ballinger J.R. A 99mTc-labelled scFv antibody fragment that binds to prostate-specific membrane antigen. Nucl. Med. Commun. 2017;38:666–671. doi: 10.1097/MNM.0000000000000698. PubMed DOI PMC

Mazzocco C., Fracasso G., Germain-Genevois C., Dugot-Senant N., Figini M., Colombatti M., Grenier N., Couillaud F. In vivo imaging of prostate cancer using an anti-PSMA scFv fragment as a probe. Sci. Rep. 2016;6:23314. doi: 10.1038/srep23314. PubMed DOI PMC

Frigerio B., Morlino S., Luison E., Seregni E., Lorenzoni A., Satta A., Valdagni R., Bogni A., Chiesa C., Mira M., et al. Anti-PSMA (124)I-scFvD2B as a new immuno-PET tool for prostate cancer: Preclinical proof of principle. J. Exp. Clin. Cancer Res. 2019;38:326. doi: 10.1186/s13046-019-1325-6. PubMed DOI PMC

Lutje S., van Rij C.M., Franssen G.M., Fracasso G., Helfrich W., Eek A., Oyen W.J., Colombatti M., Boerman O.C. Targeting human prostate cancer with 111In-labeled D2B IgG, F(ab’)2 and Fab fragments in nude mice with PSMA-expressing xenografts. Contrast Media Mol. Imaging. 2015;10:28–36. doi: 10.1002/cmmi.1596. PubMed DOI

Wong P., Li L., Chea J., Delgado M.K., Crow D., Poku E., Szpikowska B., Bowles N., Channappa D., Colcher D., et al. PET imaging of (64)Cu-DOTA-scFv-anti-PSMA lipid nanoparticles (LNPs): Enhanced tumor targeting over anti-PSMA scFv or untargeted LNPs. Nucl. Med. Biol. 2017;47:62–68. doi: 10.1016/j.nucmedbio.2017.01.004. PubMed DOI PMC

Viola-Villegas N.T., Sevak K.K., Carlin S.D., Doran M.G., Evans H.W., Bartlett D.W., Wu A.M., Lewis J.S. Noninvasive Imaging of PSMA in prostate tumors with (89)Zr-Labeled huJ591 engineered antibody fragments: The faster alternatives. Mol. Pharm. 2014;11:3965–3973. doi: 10.1021/mp500164r. PubMed DOI PMC

Pandit-Taskar N., O’Donoghue J.A., Ruan S., Lyashchenko S.K., Carrasquillo J.A., Heller G., Martinez D.F., Cheal S.M., Lewis J.S., Fleisher M., et al. First-in-Human Imaging with 89Zr-Df-IAB2M Anti-PSMA Minibody in Patients with Metastatic Prostate Cancer: Pharmacokinetics, Biodistribution, Dosimetry, and Lesion Uptake. J. Nucl. Med. 2016;57:1858–1864. doi: 10.2967/jnumed.116.176206. PubMed DOI PMC

Su Y., Yu L., Liu N., Guo Z., Wang G., Zheng J., Wei M., Wang H., Yang A.G., Qin W., et al. PSMA specific single chain antibody-mediated targeted knockdown of Notch1 inhibits human prostate cancer cell proliferation and tumor growth. Cancer Lett. 2013;338:282–291. doi: 10.1016/j.canlet.2013.05.035. PubMed DOI

Baum V., Buhler P., Gierschner D., Herchenbach D., Fiala G.J., Schamel W.W., Wolf P., Elsasser-Beile U. Antitumor activities of PSMAxCD3 diabodies by redirected T-cell lysis of prostate cancer cells. Immunotherapy. 2013;5:27–38. doi: 10.2217/imt.12.136. PubMed DOI

Friedrich M., Raum T., Lutterbuese R., Voelkel M., Deegen P., Rau D., Kischel R., Hoffmann P., Brandl C., Schuhmacher J., et al. Regression of human prostate cancer xenografts in mice by AMG 212/BAY2010112, a novel PSMA/CD3-Bispecific BiTE antibody cross-reactive with non-human primate antigens. Mol. Cancer Ther. 2012;11:2664–2673. doi: 10.1158/1535-7163.MCT-12-0042. PubMed DOI

Hernandez-Hoyos G., Sewell T., Bader R., Bannink J., Chenault R.A., Daugherty M., Dasovich M., Fang H., Gottschalk R., Kumer J., et al. MOR209/ES414, a Novel Bispecific Antibody Targeting PSMA for the Treatment of Metastatic Castration-Resistant Prostate Cancer. Mol. Cancer Ther. 2016;15:2155–2165. doi: 10.1158/1535-7163.MCT-15-0242. PubMed DOI

Jachimowicz R.D., Fracasso G., Yazaki P.J., Power B.E., Borchmann P., Engert A., Hansen H.P., Reiners K.S., Marie M., von Strandmann E.P., et al. Induction of in vitro and in vivo NK cell cytotoxicity using high-avidity immunoligands targeting prostate-specific membrane antigen in prostate carcinoma. Mol. Cancer Ther. 2011;10:1036–1045. doi: 10.1158/1535-7163.MCT-10-1093. PubMed DOI

Leconet W., Liu H., Guo M., Le Lamer-Dechamps S., Molinier C., Kim S., Vrlinic T., Oster M., Liu F., Navarro V., et al. Anti-PSMA/CD3 Bispecific Antibody Delivery and Antitumor Activity Using a Polymeric Depot Formulation. Mol. Cancer Ther. 2018;17:1927–1940. doi: 10.1158/1535-7163.MCT-17-1138. PubMed DOI

Zhang Q., Helfand B.T., Carneiro B.A., Qin W., Yang X.J., Lee C., Zhang W., Giles F.J., Cristofanilli M., Kuzel T.M. Efficacy Against Human Prostate Cancer by Prostate-specific Membrane Antigen-specific, Transforming Growth Factor-beta Insensitive Genetically Targeted CD8(+) T-cells Derived from Patients with Metastatic Castrate-resistant Disease. Eur. Urol. 2018;73:648–652. doi: 10.1016/j.eururo.2017.12.008. PubMed DOI PMC

Li J., Franek K.J., Patterson A.L., Holmes L.M., Burgin K.E., Ji J., Yu X., Wagner T.E., Wei Y. Targeting foreign major histocompatibility complex molecules to tumors by tumor cell specific single chain antibody (scFv) Int. J. Oncol. 2003;23:1329–1332. doi: 10.3892/ijo.23.5.1329. PubMed DOI

Michalska M., Schultze-Seemann S., Bogatyreva L., Hauschke D., Wetterauer U., Wolf P. In vitro and in vivo effects of a recombinant anti-PSMA immunotoxin in combination with docetaxel against prostate cancer. Oncotarget. 2016;7:22531–22542. doi: 10.18632/oncotarget.8001. PubMed DOI PMC

Noll T., Schultze-Seemann S., Kuckuck I., Michalska M., Wolf P. Synergistic cytotoxicity of a prostate cancer-specific immunotoxin in combination with the BH3 mimetic ABT-737. Cancer Immunol. Immunother. 2018;67:413–422. doi: 10.1007/s00262-017-2097-5. PubMed DOI PMC

Baiz D., Hassan S., Choi Y.A., Flores A., Karpova Y., Yancey D., Pullikuth A., Sui G., Sadelain M., Debinski W., et al. Combination of the PI3K inhibitor ZSTK474 with a PSMA-targeted immunotoxin accelerates apoptosis and regression of prostate cancer. Neoplasia. 2013;15:1172–1183. doi: 10.1593/neo.13986. PubMed DOI PMC

Meng P., Dong Q.C., Tan G.G., Wen W.H., Wang H., Zhang G., Wang Y.Z., Jing Y.M., Wang C., Qin W.J., et al. Anti-tumor effects of a recombinant anti-prostate specific membrane antigen immunotoxin against prostate cancer cells. BMC Urol. 2017;17:14. doi: 10.1186/s12894-017-0203-9. PubMed DOI PMC

Hassani M., Hajari Taheri F., Sharifzadeh Z., Arashkia A., Hadjati J., van Weerden W.M., Abdoli S., Modarressi M.H., Abolhassani M. Engineered Jurkat Cells for Targeting Prostate-Specific Membrane Antigen on Prostate Cancer Cells by Nanobody-Based Chimeric Antigen Receptor. Iran. Biomed. J. 2020;24:81–88. doi: 10.29252/ibj.24.2.81. PubMed DOI PMC

Santoro S.P., Kim S., Motz G.T., Alatzoglou D., Li C., Irving M., Powell D.J., Jr., Coukos G. T cells bearing a chimeric antigen receptor against prostate-specific membrane antigen mediate vascular disruption and result in tumor regression. Cancer Immunol. Res. 2015;3:68–84. doi: 10.1158/2326-6066.CIR-14-0192. PubMed DOI PMC

Menotti L., Avitabile E., Gatta V., Malatesta P., Petrovic B., Campadelli-Fiume G. HSV as A Platform for the Generation of Retargeted, Armed, and Reporter-Expressing Oncolytic Viruses. Viruses. 2018;10:352. doi: 10.3390/v10070352. PubMed DOI PMC

Liu C., Hasegawa K., Russell S.J., Sadelain M., Peng K.W. Prostate-specific membrane antigen retargeted measles virotherapy for the treatment of prostate cancer. Prostate. 2009;69:1128–1141. doi: 10.1002/pros.20962. PubMed DOI PMC

Novakova Z., Foss C.A., Copeland B.T., Morath V., Baranova P., Havlinova B., Skerra A., Pomper M.G., Barinka C. Novel Monoclonal Antibodies Recognizing Human Prostate-Specific Membrane Antigen (PSMA) as Research and Theranostic Tools. Prostate. 2017;77:749–764. doi: 10.1002/pros.23311. PubMed DOI PMC

Banerjee S.R., Kumar V., Lisok A., Plyku D., Novakova Z., Brummet M., Wharram B., Barinka C., Hobbs R., Pomper M.G. Evaluation of (111)In-DOTA-5D3, a Surrogate SPECT Imaging Agent for Radioimmunotherapy of Prostate-Specific Membrane Antigen. J. Nucl. Med. 2019;60:400–406. doi: 10.2967/jnumed.118.214403. PubMed DOI PMC

Huang C.T., Guo X., Barinka C., Lupold S.E., Pomper M.G., Gabrielson K., Raman V., Artemov D., Hapuarachchige S. Development of 5D3-DM1: A Novel Anti-Prostate-Specific Membrane Antigen Antibody-Drug Conjugate for PSMA-Positive Prostate Cancer Therapy. Mol. Pharm. 2020;17:3392–3402. doi: 10.1021/acs.molpharmaceut.0c00457. PubMed DOI PMC

Hapuarachchige S., Huang C.T., Donnelly M.C., Barinka C., Lupold S.E., Pomper M.G., Artemov D. Cellular Delivery of Bioorthogonal Pretargeting Therapeutics in PSMA-Positive Prostate Cancer. Mol. Pharm. 2020;17:98–108. doi: 10.1021/acs.molpharmaceut.9b00788. PubMed DOI PMC

Schiweck W., Skerra A. Fermenter production of an artificial fab fragment, rationally designed for the antigen cystatin, and its optimized crystallization through constant domain shuffling. Proteins. 1995;23:561–565. doi: 10.1002/prot.340230411. PubMed DOI

Skerra A. Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli. Gene. 1994;151:131–135. doi: 10.1016/0378-1119(94)90643-2. PubMed DOI

Schlapschy M., Fiedler M., Skerra A. Purification and Characterization of His-Tagged Antibody Fragments in Antibody Engineering. 2nd ed. Springer; Berlin, Germany: 2010. pp. 279–291. DOI

Chilumuri A., Markiv A., Milton N.G. Immunocytochemical staining of endogenous nuclear proteins with the HIS-1 anti-poly-histidine monoclonal antibody: A potential source of error in His-tagged protein detection. Acta Histochem. 2014;116:1022–1028. doi: 10.1016/j.acthis.2014.04.006. PubMed DOI

Vermeer A.W., Bremer M.G., Norde W. Structural changes of IgG induced by heat treatment and by adsorption onto a hydrophobic Teflon surface studied by circular dichroism spectroscopy. Biochi. Biophys. Acta. 1998;1425:1–12. doi: 10.1016/S0304-4165(98)00048-8. PubMed DOI

Gupta S.K., Shukla P. Microbial platform technology for recombinant antibody fragment production: A review. Crit. Rev. Microbiol. 2017;43:31–42. doi: 10.3109/1040841X.2016.1150959. PubMed DOI

De Jongh W.A., Salgueiro S., Dyring C. The use of Drosophila S2 cells in R&D and bioprocessing. Pharm. Bioprocess. 2013;1:197–213.

Tykvart J., Sacha P., Barinka C., Knedlik T., Starkova J., Lubkowski J., Konvalinka J. Efficient and versatile one-step affinity purification of in vivo biotinylated proteins: Expression, characterization and structure analysis of recombinant human glutamate carboxypeptidase II. Protein Expr. Purif. 2012;82:106–115. doi: 10.1016/j.pep.2011.11.016. PubMed DOI PMC

Ventini-Monteiro D., Dubois S., Astray R.M., Castillo J., Pereira C.A. Insect cell entrapment, growth and recovering using a single-use fixed-bed bioreactor. Scaling up and recombinant protein production. J. Biotechnol. 2015;216:110–115. doi: 10.1016/j.jbiotec.2015.10.013. PubMed DOI

Daniels R.W., Rossano A.J., Macleod G.T., Ganetzky B. Expression of multiple transgenes from a single construct using viral 2A peptides in Drosophila. PLoS ONE. 2014;9:e100637. doi: 10.1371/journal.pone.0100637. PubMed DOI PMC

Mori K., Hamada H., Ogawa T., Ohmuro-Matsuyama Y., Katsuda T., Yamaji H. Efficient production of antibody Fab fragment by transient gene expression in insect cells. J. Biosci. Bioeng. 2017;124:221–226. doi: 10.1016/j.jbiosc.2017.03.007. PubMed DOI

Holliger P., Prospero T., Winter G. “Diabodies”: Small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. USA. 1993;90:6444–6448. doi: 10.1073/pnas.90.14.6444. PubMed DOI PMC

Viti F., Tarli L., Giovannoni L., Zardi L., Neri D. Increased binding affinity and valence of recombinant antibody fragments lead to improved targeting of tumoral angiogenesis. Cancer Res. 1999;59:347–352. PubMed

Bird R.E., Hardman K.D., Jacobson J.W., Johnson S., Kaufman B.M., Lee S.M., Lee T., Pope S.H., Riordan G.S., Whitlow M. Single-chain antigen-binding proteins. Science. 1988;242:423–426. doi: 10.1126/science.3140379. PubMed DOI

Huston J.S., Levinson D., Mudgett-Hunter M., Tai M.S., Novotny J., Margolies M.N., Ridge R.J., Bruccoleri R.E., Haber E., Crea R., et al. Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA. 1988;85:5879–5883. doi: 10.1073/pnas.85.16.5879. PubMed DOI PMC

Whitlow M., Bell B.A., Feng S.L., Filpula D., Hardman K.D., Hubert S.L., Rollence M.L., Wood J.F., Schott M.E., Milenic D.E., et al. An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. Protein Eng. 1993;6:989–995. doi: 10.1093/protein/6.8.989. PubMed DOI

Olafsen T., Kenanova V.E., Wu A.M. Generation of Single-Chain Fv Fragments and Multivalent Derivatives scFv-Fc and scFv-CH3 (Minibodies) in Antibody Engineering. 2nd ed. Springer; Berlin, Germany: 2010. pp. 69–84. DOI

Kellmann S.J., Dubel S., Thie H. A strategy to identify linker-based modules for the allosteric regulation of antibody-antigen binding affinities of different scFvs. MAbs. 2017;9:404–418. doi: 10.1080/19420862.2016.1277302. PubMed DOI PMC

Muller D. scFv by Two-Step Cloning in Antibody Engineering. 2nd ed. Springer; Berlin, Germany: 2010. pp. 55–59. DOI

Martoglio B., Dobberstein B. Signal sequences: More than just greasy peptides. Trends Cell Biol. 1998;8:410–415. doi: 10.1016/S0962-8924(98)01360-9. PubMed DOI

El-Sayed A., Bernhard W., Barreto K., Gonzalez C., Hill W., Pastushok L., Fonge H., Geyer C.R. Evaluation of antibody fragment properties for near-infrared fluorescence imaging of HER3-positive cancer xenografts. Theranostics. 2018;8:4856–4869. doi: 10.7150/thno.24252. PubMed DOI PMC

Pavlinkova G., Beresford G.W., Booth B.J., Batra S.K., Colcher D. Pharmacokinetics and biodistribution of engineered single-chain antibody constructs of MAb CC49 in colon carcinoma xenografts. J. Nucl. Med. 1999;40:1536–1546. PubMed

Adams G.P., Schier R., Marshall K., Wolf E.J., McCall A.M., Marks J.D., Weiner L.M. Increased affinity leads to improved selective tumor delivery of single-chain Fv antibodies. Cancer Res. 1998;58:485–490. PubMed

Adams G.P., Schier R., McCall A.M., Simmons H.H., Horak E.M., Alpaugh R.K., Marks J.D., Weiner L.M. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res. 2001;61:4750–4755. PubMed

Zhou Y., Goenaga A.L., Harms B.D., Zou H., Lou J., Conrad F., Adams G.P., Schoeberl B., Nielsen U.B., Marks J.D. Impact of intrinsic affinity on functional binding and biological activity of EGFR antibodies. Mol. Cancer Ther. 2012;11:1467–1476. doi: 10.1158/1535-7163.MCT-11-1038. PubMed DOI PMC

Han D., Wu J., Han Y., Wei M., Han S., Lin R., Sun Z., Yang F., Jiao D., Xie P., et al. A novel anti-PSMA human scFv has the potential to be used as a diagnostic tool in prostate cancer. Oncotarget. 2016;7:59471–59481. doi: 10.18632/oncotarget.10697. PubMed DOI PMC

Rezaei J., RajabiBazl M., Ebrahimizadeh W., Dehbidi G.R., Hosseini H. Selection of Single Chain Antibody Fragments for Targeting Prostate Specific Membrane Antigen: A Comparison Between Cell-based and Antigen-based Approach. Protein Pept. Lett. 2016;23:336–342. doi: 10.2174/0929866523666160115131403. PubMed DOI

Frigerio B., Fracasso G., Luison E., Cingarlini S., Mortarino M., Coliva A., Seregni E., Bombardieri E., Zuccolotto G., Rosato A., et al. A single-chain fragment against prostate specific membrane antigen as a tool to build theranostic reagents for prostate cancer. Eur. J. Cancer. 2013;49:2223–2232. doi: 10.1016/j.ejca.2013.01.024. PubMed DOI

Parker S.A., Diaz I.L., Anderson K.A., Batt C.A. Design, production, and characterization of a single-chain variable fragment (ScFv) derived from the prostate specific membrane antigen (PSMA) monoclonal antibody J591. Protein Expr. Purif. 2013;89:136–145. doi: 10.1016/j.pep.2013.02.016. PubMed DOI

Kampmeier F., Williams J.D., Maher J., Mullen G.E., Blower P.J. Design and preclinical evaluation of a 99mTc-labelled diabody of mAb J591 for SPECT imaging of prostate-specific membrane antigen (PSMA) EJNMMI Res. 2014;4:13. doi: 10.1186/2191-219X-4-13. PubMed DOI PMC

Brown B.A., Comeau R.D., Jones P.L., Liberatore F.A., Neacy W.P., Sands H., Gallagher B.M. Pharmacokinetics of the monoclonal antibody B72.3 and its fragments labeled with either 125I or 111In. Cancer Res. 1987;47:1149–1154. PubMed

Fortmuller K., Alt K., Gierschner D., Wolf P., Baum V., Freudenberg N., Wetterauer U., Elsasser-Beile U., Buhler P. Effective targeting of prostate cancer by lymphocytes redirected by a PSMA x CD3 bispecific single-chain diabody. Prostate. 2011;71:588–596. doi: 10.1002/pros.21274. PubMed DOI

Werner W.E., Wu S., Mulkerrin M. The removal of pyroglutamic acid from monoclonal antibodies without denaturation of the protein chains. Anal. Biochem. 2005;342:120–125. doi: 10.1016/j.ab.2005.04.012. PubMed DOI

Lubyova B., Hodek J., Zabransky A., Prouzova H., Hubalek M., Hirsch I., Weber J. PRMT5: A novel regulator of Hepatitis B virus replication and an arginine methylase of HBV core. PLoS ONE. 2017;12:e0186982. doi: 10.1371/journal.pone.0186982. PubMed DOI PMC

Strohalm M., Hassman M., Kosata B., Kodicek M. mMass data miner: An open source alternative for mass spectrometric data analysis. Rapid Commun. Mass Spectrom. 2008;22:905–908. doi: 10.1002/rcm.3444. PubMed DOI

Gebauer M., Skerra A. Anticalins small engineered binding proteins based on the lipocalin scaffold. Methods Enzymol. 2012;503:157–188. doi: 10.1016/B978-0-12-396962-0.00007-0. PubMed DOI

Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33:103–119. doi: 10.1016/0378-1119(85)90120-9. PubMed DOI

Barinka C., Ptacek J., Richter A., Novakova Z., Morath V., Skerra A. Selection and characterization of Anticalins targeting human prostate-specific membrane antigen (PSMA) Protein Eng. Des. Sel. 2016;29:105–115. doi: 10.1093/protein/gzv065. PubMed DOI

Banerjee S.R., Foss C.A., Castanares M., Mease R.C., Byun Y., Fox J.J., Hilton J., Lupold S.E., Kozikowski A.P., Pomper M.G. Synthesis and evaluation of technetium-99m- and rhenium-labeled inhibitors of the prostate-specific membrane antigen (PSMA) J. Med. chem. 2008;51:4504–4517. doi: 10.1021/jm800111u. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Targeting Prostate Cancer Using Bispecific T-Cell Engagers against Prostate-Specific Membrane Antigen

. 2023 Nov 10 ; 6 (11) : 1703-1714. [epub] 20231006

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...