PRMT5: A novel regulator of Hepatitis B virus replication and an arginine methylase of HBV core

. 2017 ; 12 (10) : e0186982. [epub] 20171024

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29065155

In mammals, protein arginine methyltransferase 5, PRMT5, is the main type II enzyme responsible for the majority of symmetric dimethylarginine formation in polypeptides. Recent study reported that PRMT5 restricts Hepatitis B virus (HBV) replication through epigenetic repression of HBV DNA transcription and interference with encapsidation of pregenomic RNA. Here we demonstrate that PRMT5 interacts with the HBV core (HBc) protein and dimethylates arginine residues within the arginine-rich domain (ARD) of the carboxyl-terminus. ARD consists of four arginine rich subdomains, ARDI, ARDII, ARDIII and ARDIV. Mutation analysis of ARDs revealed that arginine methylation of HBc required the wild-type status of both ARDI and ARDII. Mass spectrometry analysis of HBc identified multiple potential ubiquitination, methylation and phosphorylation sites, out of which lysine K7 and arginines R150 (within ARDI) and R156 (outside ARDs) were shown to be modified by ubiquitination and methylation, respectively. The HBc symmetric dimethylation appeared to be linked to serine phosphorylation and nuclear import of HBc protein. Conversely, the monomethylated HBc retained in the cytoplasm. Thus, overexpression of PRMT5 led to increased nuclear accumulation of HBc, and vice versa, down-regulation of PRMT5 resulted in reduced levels of HBc in nuclei of transfected cells. In summary, we identified PRMT5 as a potent controller of HBc cell trafficking and function and described two novel types of HBc post-translational modifications (PTMs), arginine methylation and ubiquitination.

Zobrazit více v PubMed

Trepo C, Chan HL, Lok A. Hepatitis B virus infection. Lancet. 2014;384(9959):2053–63. doi: 10.1016/S0140-6736(14)60220-8 . PubMed DOI

Liang TJ, Block TM, McMahon BJ, Ghany MG, Urban S, Guo JT, et al. Present and future therapies of hepatitis B: From discovery to cure. Hepatology. 2015;62(6):1893–908. doi: 10.1002/hep.28025 ; PubMed Central PMCID: PMCPMC4681668. PubMed DOI PMC

Wang M, Xi D, Ning Q. Virus-induced hepatocellular carcinoma with special emphasis on HBV. Hepatol Int. 2017. doi: 10.1007/s12072-016-9779-5 . PubMed DOI

Lee HW, Ahn SH. Prediction models of hepatocellular carcinoma development in chronic hepatitis B patients. World J Gastroenterol. 2016;22(37):8314–21. doi: 10.3748/wjg.v22.i37.8314 ; PubMed Central PMCID: PMCPMC5055862. PubMed DOI PMC

Newman M, Suk FM, Cajimat M, Chua PK, Shih C. Stability and morphology comparisons of self-assembled virus-like particles from wild-type and mutant human hepatitis B virus capsid proteins. J Virol. 2003;77(24):12950–60. doi: 10.1128/JVI.77.24.12950-12960.2003 ; PubMed Central PMCID: PMCPMC296082. PubMed DOI PMC

Steven AC, Conway JF, Cheng N, Watts NR, Belnap DM, Harris A, et al. Structure, assembly, and antigenicity of hepatitis B virus capsid proteins. Adv Virus Res. 2005;64:125–64. doi: 10.1016/S0065-3527(05)64005-5 . PubMed DOI

Yeh CT, Ou JH. Phosphorylation of hepatitis B virus precore and core proteins. J Virol. 1991;65(5):2327–31. ; PubMed Central PMCID: PMCPMC240583. PubMed PMC

Lan YT, Li J, Liao W, Ou J. Roles of the three major phosphorylation sites of hepatitis B virus core protein in viral replication. Virology. 1999;259(2):342–8. doi: 10.1006/viro.1999.9798 . PubMed DOI

Kann M, Sodeik B, Vlachou A, Gerlich WH, Helenius A. Phosphorylation-dependent binding of hepatitis B virus core particles to the nuclear pore complex. J Cell Biol. 1999;145(1):45–55. ; PubMed Central PMCID: PMCPMC2148218. PubMed PMC

Yeh CT, Liaw YF, Ou JH. The arginine-rich domain of hepatitis B virus precore and core proteins contains a signal for nuclear transport. J Virol. 1990;64(12):6141–7. ; PubMed Central PMCID: PMCPMC248788. PubMed PMC

Rabe B, Vlachou A, Pante N, Helenius A, Kann M. Nuclear import of hepatitis B virus capsids and release of the viral genome. Proc Natl Acad Sci U S A. 2003;100(17):9849–54. doi: 10.1073/pnas.1730940100 ; PubMed Central PMCID: PMCPMC187862. PubMed DOI PMC

Chen C, Wang JC, Zlotnick A. A kinase chaperones hepatitis B virus capsid assembly and captures capsid dynamics in vitro. PLoS Pathog. 2011;7(11):e1002388 doi: 10.1371/journal.ppat.1002388 ; PubMed Central PMCID: PMCPMC3219723. PubMed DOI PMC

Li HC, Huang EY, Su PY, Wu SY, Yang CC, Lin YS, et al. Nuclear export and import of human hepatitis B virus capsid protein and particles. PLoS Pathog. 2010;6(10):e1001162 doi: 10.1371/journal.ppat.1001162 ; PubMed Central PMCID: PMCPMC2965763. PubMed DOI PMC

Yang CC, Huang EY, Li HC, Su PY, Shih C. Nuclear export of human hepatitis B virus core protein and pregenomic RNA depends on the cellular NXF1-p15 machinery. PLoS One. 2014;9(10):e106683 doi: 10.1371/journal.pone.0106683 ; PubMed Central PMCID: PMCPMC4215830. PubMed DOI PMC

Park YN, Han KH, Kim KS, Chung JP, Kim S, Park C. Cytoplasmic expression of hepatitis B core antigen in chronic hepatitis B virus infection: role of precore stop mutants. Liver. 1999;19(3):199–205. . PubMed

Yoo JY, Kim HY, Park CK, Khang SK, Jeong JW, Chung WK, et al. Significance of hepatitis B core antigen in the liver in patients with chronic hepatitis B and its relation to hepatitis B virus DNA. J Gastroenterol Hepatol. 1990;5(3):239–43. . PubMed

Bedford MT, Richard S. Arginine methylation an emerging regulator of protein function. Mol Cell. 2005;18(3):263–72. doi: 10.1016/j.molcel.2005.04.003 . PubMed DOI

Bedford MT, Clarke SG. Protein arginine methylation in mammals: who, what, and why. Mol Cell. 2009;33(1):1–13. doi: 10.1016/j.molcel.2008.12.013 ; PubMed Central PMCID: PMCPMC3372459. PubMed DOI PMC

Meister G, Eggert C, Buhler D, Brahms H, Kambach C, Fischer U. Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr Biol. 2001;11(24):1990–4. . PubMed

Kowenz-Leutz E, Pless O, Dittmar G, Knoblich M, Leutz A. Crosstalk between C/EBPbeta phosphorylation, arginine methylation, and SWI/SNF/Mediator implies an indexing transcription factor code. EMBO J. 2010;29(6):1105–15. doi: 10.1038/emboj.2010.3 ; PubMed Central PMCID: PMCPMC2845275. PubMed DOI PMC

Pal S, Vishwanath SN, Erdjument-Bromage H, Tempst P, Sif S. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol Cell Biol. 2004;24(21):9630–45. doi: 10.1128/MCB.24.21.9630-9645.2004 ; PubMed Central PMCID: PMCPMC522266. PubMed DOI PMC

Gary JD, Clarke S. RNA and protein interactions modulated by protein arginine methylation. Prog Nucleic Acid Res Mol Biol. 1998;61:65–131. . PubMed

Liu Q, Dreyfuss G. In vivo and in vitro arginine methylation of RNA-binding proteins. Mol Cell Biol. 1995;15(5):2800–8. ; PubMed Central PMCID: PMCPMC230511. PubMed PMC

Boffa LC, Karn J, Vidali G, Allfrey VG. Distribution of NG, NG,-dimethylarginine in nuclear protein fractions. Biochem Biophys Res Commun. 1977;74(3):969–76. . PubMed

Cheng D, Cote J, Shaaban S, Bedford MT. The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing. Mol Cell. 2007;25(1):71–83. doi: 10.1016/j.molcel.2006.11.019 . PubMed DOI

Gayatri S, Bedford MT. Readers of histone methylarginine marks. Biochim Biophys Acta. 2014;1839(8):702–10. doi: 10.1016/j.bbagrm.2014.02.015 ; PubMed Central PMCID: PMCPMC4099268. PubMed DOI PMC

Wolf SS. The protein arginine methyltransferase family: an update about function, new perspectives and the physiological role in humans. Cell Mol Life Sci. 2009;66(13):2109–21. doi: 10.1007/s00018-009-0010-x . PubMed DOI PMC

Hadjikyriacou A, Yang Y, Espejo A, Bedford MT, Clarke SG. Unique Features of Human Protein Arginine Methyltransferase 9 (PRMT9) and Its Substrate RNA Splicing Factor SF3B2. J Biol Chem. 2015;290(27):16723–43. doi: 10.1074/jbc.M115.659433 ; PubMed Central PMCID: PMCPMC4505422. PubMed DOI PMC

Yang Y, Hadjikyriacou A, Xia Z, Gayatri S, Kim D, Zurita-Lopez C, et al. PRMT9 is a type II methyltransferase that methylates the splicing factor SAP145. Nat Commun. 2015;6:6428 doi: 10.1038/ncomms7428 ; PubMed Central PMCID: PMCPMC4351962. PubMed DOI PMC

Burgos ES, Wilczek C, Onikubo T, Bonanno JB, Jansong J, Reimer U, et al. Histone H2A and H4 N-terminal tails are positioned by the MEP50 WD repeat protein for efficient methylation by the PRMT5 arginine methyltransferase. J Biol Chem. 2015;290(15):9674–89. doi: 10.1074/jbc.M115.636894 ; PubMed Central PMCID: PMCPMC4392268. PubMed DOI PMC

Pal S, Baiocchi RA, Byrd JC, Grever MR, Jacob ST, Sif S. Low levels of miR-92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma. EMBO J. 2007;26(15):3558–69. doi: 10.1038/sj.emboj.7601794 ; PubMed Central PMCID: PMCPMC1949000. PubMed DOI PMC

Friesen WJ, Wyce A, Paushkin S, Abel L, Rappsilber J, Mann M, et al. A novel WD repeat protein component of the methylosome binds Sm proteins. J Biol Chem. 2002;277(10):8243–7. doi: 10.1074/jbc.M109984200 . PubMed DOI

Friesen WJ, Paushkin S, Wyce A, Massenet S, Pesiridis GS, Van Duyne G, et al. The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol Cell Biol. 2001;21(24):8289–300. doi: 10.1128/MCB.21.24.8289-8300.2001 ; PubMed Central PMCID: PMCPMC99994. PubMed DOI PMC

Benhenda S, Ducroux A, Riviere L, Sobhian B, Ward MD, Dion S, et al. Methyltransferase PRMT1 is a binding partner of HBx and a negative regulator of hepatitis B virus transcription. J Virol. 2013;87(8):4360–71. doi: 10.1128/JVI.02574-12 ; PubMed Central PMCID: PMCPMC3624337. PubMed DOI PMC

Zhang W, Chen J, Wu M, Zhang X, Zhang M, Yue L, et al. PRMT5 Restricts Hepatitis B Virus Replication via Epigenetic Repression of cccDNA Transcription and Interference with pgRNA Encapsidation. Hepatology. 2017. doi: 10.1002/hep.29133 . PubMed DOI

Zurita-Lopez CI, Sandberg T, Kelly R, Clarke SG. Human protein arginine methyltransferase 7 (PRMT7) is a type III enzyme forming omega-NG-monomethylated arginine residues. J Biol Chem. 2012;287(11):7859–70. doi: 10.1074/jbc.M111.336271 ; PubMed Central PMCID: PMCPMC3318701. PubMed DOI PMC

Duncan KW, Rioux N, Boriack-Sjodin PA, Munchhof MJ, Reiter LA, Majer CR, et al. Structure and Property Guided Design in the Identification of PRMT5 Tool Compound EPZ015666. ACS Med Chem Lett. 2016;7(2):162–6. doi: 10.1021/acsmedchemlett.5b00380 ; PubMed Central PMCID: PMCPMC4753547. PubMed DOI PMC

Chan-Penebre E, Kuplast KG, Majer CR, Boriack-Sjodin PA, Wigle TJ, Johnston LD, et al. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat Chem Biol. 2015;11(6):432–7. doi: 10.1038/nchembio.1810 . PubMed DOI

Boisvert FM, Cote J, Boulanger MC, Cleroux P, Bachand F, Autexier C, et al. Symmetrical dimethylarginine methylation is required for the localization of SMN in Cajal bodies and pre-mRNA splicing. J Cell Biol. 2002;159(6):957–69. doi: 10.1083/jcb.200207028 ; PubMed Central PMCID: PMCPMC2173973. PubMed DOI PMC

Boisvert FM, Cote J, Boulanger MC, Richard S. A proteomic analysis of arginine-methylated protein complexes. Mol Cell Proteomics. 2003;2(12):1319–30. doi: 10.1074/mcp.M300088-MCP200 . PubMed DOI

Melegari M, Wolf SK, Schneider RJ. Hepatitis B virus DNA replication is coordinated by core protein serine phosphorylation and HBx expression. J Virol. 2005;79(15):9810–20. doi: 10.1128/JVI.79.15.9810-9820.2005 ; PubMed Central PMCID: PMCPMC1181610. PubMed DOI PMC

Enomoto M, Sawano Y, Kosuge S, Yamano Y, Kuroki K, Ohtsuki K. High phosphorylation of HBV core protein by two alpha-type CK2-activated cAMP-dependent protein kinases in vitro. FEBS Lett. 2006;580(3):894–9. doi: 10.1016/j.febslet.2006.01.011 . PubMed DOI

Gallucci L, Kann M. Nuclear Import of Hepatitis B Virus Capsids and Genome. Viruses. 2017;9(1). doi: 10.3390/v9010021 ; PubMed Central PMCID: PMCPMC5294990. PubMed DOI PMC

Ben-Saadon R, Fajerman I, Ziv T, Hellman U, Schwartz AL, Ciechanover A. The tumor suppressor protein p16(INK4a) and the human papillomavirus oncoprotein-58 E7 are naturally occurring lysine-less proteins that are degraded by the ubiquitin system. Direct evidence for ubiquitination at the N-terminal residue. J Biol Chem. 2004;279(40):41414–21. doi: 10.1074/jbc.M407201200 . PubMed DOI

Yu MC. The Role of Protein Arginine Methylation in mRNP Dynamics. Mol Biol Int. 2011;2011:163827 doi: 10.4061/2011/163827 ; PubMed Central PMCID: PMCPMC3195771. PubMed DOI PMC

Gonsalvez GB, Tian L, Ospina JK, Boisvert FM, Lamond AI, Matera AG. Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins. J Cell Biol. 2007;178(5):733–40. doi: 10.1083/jcb.200702147 ; PubMed Central PMCID: PMCPMC2064538. PubMed DOI PMC

Migliori V, Muller J, Phalke S, Low D, Bezzi M, Mok WC, et al. Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. Nat Struct Mol Biol. 2012;19(2):136–44. doi: 10.1038/nsmb.2209 . PubMed DOI

Zlotnick A, Cheng N, Stahl SJ, Conway JF, Steven AC, Wingfield PT. Localization of the C terminus of the assembly domain of hepatitis B virus capsid protein: implications for morphogenesis and organization of encapsidated RNA. Proc Natl Acad Sci U S A. 1997;94(18):9556–61. ; PubMed Central PMCID: PMCPMC23216. PubMed PMC

Chua PK, Tang FM, Huang JY, Suen CS, Shih C. Testing the balanced electrostatic interaction hypothesis of hepatitis B virus DNA synthesis by using an in vivo charge rebalance approach. J Virol. 2010;84(5):2340–51. doi: 10.1128/JVI.01666-09 ; PubMed Central PMCID: PMCPMC2820918. PubMed DOI PMC

Le Pogam S, Chua PK, Newman M, Shih C. Exposure of RNA templates and encapsidation of spliced viral RNA are influenced by the arginine-rich domain of human hepatitis B virus core antigen (HBcAg 165–173). J Virol. 2005;79(3):1871–87. doi: 10.1128/JVI.79.3.1871-1887.2005 ; PubMed Central PMCID: PMCPMC544126. PubMed DOI PMC

Su PY, Yang CJ, Chu TH, Chang CH, Chiang C, Tang FM, et al. HBV maintains electrostatic homeostasis by modulating negative charges from phosphoserine and encapsidated nucleic acids. Sci Rep. 2016;6:38959 doi: 10.1038/srep38959 ; PubMed Central PMCID: PMCPMC5154190. PubMed DOI PMC

Qian G, Hu B, Zhou D, Xuan Y, Bai L, Duan C. NIRF, a Novel Ubiquitin Ligase, Inhibits Hepatitis B Virus Replication Through Effect on HBV Core Protein and H3 Histones. DNA Cell Biol. 2015;34(5):327–32. doi: 10.1089/dna.2014.2714 . PubMed DOI

Qian G, Jin F, Chang L, Yang Y, Peng H, Duan C. NIRF, a novel ubiquitin ligase, interacts with hepatitis B virus core protein and promotes its degradation. Biotechnol Lett. 2012;34(1):29–36. doi: 10.1007/s10529-011-0751-0 . PubMed DOI

Rost M, Mann S, Lambert C, Doring T, Thome N, Prange R. Gamma-adaptin, a novel ubiquitin-interacting adaptor, and Nedd4 ubiquitin ligase control hepatitis B virus maturation. J Biol Chem. 2006;281(39):29297–308. doi: 10.1074/jbc.M603517200 . PubMed DOI

Ponsel D, Bruss V. Mapping of amino acid side chains on the surface of hepatitis B virus capsids required for envelopment and virion formation. J Virol. 2003;77(1):416–22. doi: 10.1128/JVI.77.1.416-422.2003 ; PubMed Central PMCID: PMCPMC140605. PubMed DOI PMC

Garcia ML, Byfield R, Robek MD. Hepatitis B virus replication and release are independent of core lysine ubiquitination. J Virol. 2009;83(10):4923–33. doi: 10.1128/JVI.02644-08 ; PubMed Central PMCID: PMCPMC2682080. PubMed DOI PMC

Di Pietro A, Kajaste-Rudnitski A, Oteiza A, Nicora L, Towers GJ, Mechti N, et al. TRIM22 inhibits influenza A virus infection by targeting the viral nucleoprotein for degradation. J Virol. 2013;87(8):4523–33. doi: 10.1128/JVI.02548-12 ; PubMed Central PMCID: PMCPMC3624352. PubMed DOI PMC

Liao TL, Wu CY, Su WC, Jeng KS, Lai MM. Ubiquitination and deubiquitination of NP protein regulates influenza A virus RNA replication. EMBO J. 2010;29(22):3879–90. doi: 10.1038/emboj.2010.250 ; PubMed Central PMCID: PMCPMC2989104. PubMed DOI PMC

McDowell GS, Philpott A. Non-canonical ubiquitylation: mechanisms and consequences. Int J Biochem Cell Biol. 2013;45(8):1833–42. doi: 10.1016/j.biocel.2013.05.026 . PubMed DOI

Stopa N, Krebs JE, Shechter D. The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Cell Mol Life Sci. 2015;72(11):2041–59. doi: 10.1007/s00018-015-1847-9 ; PubMed Central PMCID: PMCPMC4430368. PubMed DOI PMC

Sohail M, Xie J. Evolutionary emergence of a novel splice variant with an opposite effect on the cell cycle. Mol Cell Biol. 2015;35(12):2203–14. doi: 10.1128/MCB.00190-15 ; PubMed Central PMCID: PMCPMC4438240. PubMed DOI PMC

Sohail M, Zhang M, Litchfield D, Wang L, Kung S, Xie J. Differential expression, distinct localization and opposite effect on Golgi structure and cell differentiation by a novel splice variant of human PRMT5. Biochim Biophys Acta. 2015;1853(10 Pt A):2444–52. doi: 10.1016/j.bbamcr.2015.07.003 . PubMed DOI

Fulcher AJ, Sivakumaran H, Jin H, Rawle DJ, Harrich D, Jans DA. The protein arginine methyltransferase PRMT6 inhibits HIV-1 Tat nucleolar retention. Biochim Biophys Acta. 2016;1863(2):254–62. doi: 10.1016/j.bbamcr.2015.11.019 . PubMed DOI

Invernizzi CF, Xie B, Richard S, Wainberg MA. PRMT6 diminishes HIV-1 Rev binding to and export of viral RNA. Retrovirology. 2006;3:93 doi: 10.1186/1742-4690-3-93 ; PubMed Central PMCID: PMCPMC1779295. PubMed DOI PMC

Liu CD, Cheng CP, Fang JS, Chen LC, Zhao B, Kieff E, et al. Modulation of Epstein-Barr virus nuclear antigen 2-dependent transcription by protein arginine methyltransferase 5. Biochem Biophys Res Commun. 2013;430(3):1097–102. doi: 10.1016/j.bbrc.2012.12.032 ; PubMed Central PMCID: PMCPMC4018761. PubMed DOI PMC

Yu J, Shin B, Park ES, Yang S, Choi S, Kang M, et al. Protein arginine methyltransferase 1 regulates herpes simplex virus replication through ICP27 RGG-box methylation. Biochem Biophys Res Commun. 2010;391(1):322–8. doi: 10.1016/j.bbrc.2009.11.057 . PubMed DOI

Hsu CH, Peng KL, Jhang HC, Lin CH, Wu SY, Chiang CM, et al. The HPV E6 oncoprotein targets histone methyltransferases for modulating specific gene transcription. Oncogene. 2012;31(18):2335–49. doi: 10.1038/onc.2011.415 ; PubMed Central PMCID: PMCPMC3349118. PubMed DOI PMC

Xia Y, Stadler D, Ko C, Protzer U. Analyses of HBV cccDNA Quantification and Modification. Methods Mol Biol. 2017;1540:59–72. doi: 10.1007/978-1-4939-6700-1_6 . PubMed DOI

Vizcaino JA, Cote RG, Csordas A, Dianes JA, Fabregat A, Foster JM, et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 2013;41(Database issue):D1063–9. doi: 10.1093/nar/gks1262 ; PubMed Central PMCID: PMCPMC3531176. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...