Hepatitis B Core Protein Is Post-Translationally Modified through K29-Linked Ubiquitination

. 2020 Nov 26 ; 9 (12) : . [epub] 20201126

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33256078

Hepatitis B virus (HBV) core protein (HBc) plays many roles in the HBV life cycle, such as regulation of transcription, RNA encapsidation, reverse transcription, and viral release. To accomplish these functions, HBc interacts with many host proteins and undergoes different post-translational modifications (PTMs). One of the most common PTMs is ubiquitination, which was shown to change the function, stability, and intracellular localization of different viral proteins, but the role of HBc ubiquitination in the HBV life cycle remains unknown. Here, we found that HBc protein is post-translationally modified through K29-linked ubiquitination. We performed a series of co-immunoprecipitation experiments with wild-type HBc, lysine to arginine HBc mutants and wild-type ubiquitin, single lysine to arginine ubiquitin mutants, or single ubiquitin-accepting lysine constructs. We observed that HBc protein could be modified by ubiquitination in transfected as well as infected hepatoma cells. In addition, ubiquitination predominantly occurred on HBc lysine 7 and the preferred ubiquitin chain linkage was through ubiquitin-K29. Mass spectrometry (MS) analyses detected ubiquitin protein ligase E3 component N-recognin 5 (UBR5) as a potential E3 ubiquitin ligase involved in K29-linked ubiquitination. These findings emphasize that ubiquitination of HBc may play an important role in HBV life cycle.

Zobrazit více v PubMed

Schaefer S. Hepatitis B virus taxonomy and hepatitis B virus genotypes. World. J. Gastroenterol. 2007;13:14–21. doi: 10.3748/wjg.v13.i1.14. PubMed DOI PMC

Terrault N.A., Lok A.S.F., McMahon B.J., Chang K.M., Hwang J.P., Jonas M.M., Brown R.S., Jr., Bzowej N.H., Wong J.B. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology. 2018;67:1560–1599. doi: 10.1002/hep.29800. PubMed DOI PMC

Seeger C., Mason W.S. Hepatitis B virus biology. Microbiol. Mol. Biol Rev. 2000;64:51–68. doi: 10.1128/MMBR.64.1.51-68.2000. PubMed DOI PMC

Allweiss L., Dandri M. The Role of cccDNA in HBV Maintenance. Viruses. 2017;9:156. doi: 10.3390/v9060156. PubMed DOI PMC

Ganem D., Schneider R. Hepadnaviridae: The viruses and their replication. In: Knipe D.M., Howley P.M., Griffin D.E., Lamb R.A., Martin M.A., Roizman B., Straus S.E., editors. Fields Virology. Volume 4. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2001. pp. 2923–2969.

Hollinger F., Liang T. Hepatitis B virus. In: Knipe D.M., Howley P.M., Griffin D.E., Lamb R.A., Martin M.A., Roizman B., Straus S.E., editors. Fields Virology. Volume 4. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2001. pp. 2971–3036.

Chain B.M., Myers R. Variability and conservation in hepatitis B virus core protein. BMC Microbiol. 2005;5:33. doi: 10.1186/1471-2180-5-33. PubMed DOI PMC

Nassal M. The arginine-rich domain of the hepatitis B virus core protein is required for pregenome encapsidation and productive viral positive-strand DNA synthesis but not for virus assembly. J. Virol. 1992;66:4107–4116. doi: 10.1128/JVI.66.7.4107-4116.1992. PubMed DOI PMC

Birnbaum F., Nassal M. Hepatitis B virus nucleocapsid assembly: Primary structure requirements in the core protein. J. Virol. 1990;64:3319–3330. doi: 10.1128/JVI.64.7.3319-3330.1990. PubMed DOI PMC

Yang F. Post-translational Modification Control of HBV Biological Processes. Front. Microbiol. 2018;9:2661. doi: 10.3389/fmicb.2018.02661. PubMed DOI PMC

Xuan Q., Zhang Y.X., Liu D.G., Chan P., Xu S.L., Cui Y.Q. Post-translational modifications of α-synuclein contribute to neurodegeneration in the colon of elderly individuals. Mol. Med. Rep. 2016;13:5077–5083. doi: 10.3892/mmr.2016.5166. PubMed DOI PMC

Chang E., Abe J.I. Kinase-SUMO networks in diabetes-mediated cardiovascular disease. Metabolism. 2016;65:623–633. doi: 10.1016/j.metabol.2016.01.007. PubMed DOI PMC

Eisenberg-Lerner A., Ciechanover A., Merbl Y. Post-translational modification profiling - A novel tool for mapping the protein modification landscape in cancer. Exp. Biol. Med. 2016;241:1475–1482. doi: 10.1177/1535370216651732. PubMed DOI PMC

Ribet D., Cossart P. Post-translational modifications in host cells during bacterial infection. FEBS Lett. 2010;584:2748–2758. doi: 10.1016/j.febslet.2010.05.012. PubMed DOI

Komander D., Rape M. The ubiquitin code. Annu. Rev. Biochem. 2012;81:203–229. doi: 10.1146/annurev-biochem-060310-170328. PubMed DOI

Schulman B.A., Harper J.W. Ubiquitin-like protein activation by E1 enzymes: The apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol. 2009;10:319–331. doi: 10.1038/nrm2673. PubMed DOI PMC

Ye Y., Rape M. Building ubiquitin chains: E2 enzymes at work. Nat. Rev. Mol. Cell Biol. 2009;10:755–764. doi: 10.1038/nrm2780. PubMed DOI PMC

Hershko A., Heller H., Elias S., Ciechanover A. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J. Biol. Chem. 1983;258:8206–8214. PubMed

Hershko A., Ciechanover A. Mechanisms of intracellular protein breakdown. Annu. Rev. Biochem. 1982;51:335–364. doi: 10.1146/annurev.bi.51.070182.002003. PubMed DOI

Ciechanover A., Elias S., Heller H., Hershko A. “Covalent affinity” purification of ubiquitin-activating enzyme. J. Biol. Chem. 1982;257:2537–2542. PubMed

McDowell G.S., Philpott A. Non-canonical ubiquitylation: Mechanisms and consequences. Int. J. Biochem. Cell. Biol. 2013;45:1833–1842. doi: 10.1016/j.biocel.2013.05.026. PubMed DOI

Wang X., Herr R.A., Chua W.-J., Lybarger L., Wiertz E.J.H.J., Hansen T.H. Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3. J. Cell. Biol. 2007;177:613–624. doi: 10.1083/jcb.200611063. PubMed DOI PMC

Ishikura S., Weissman A.M., Bonifacino J.S. Serine residues in the cytosolic tail of the T-cell antigen receptor alpha-chain mediate ubiquitination and endoplasmic reticulum-associated degradation of the unassembled protein. J. Biol. Chem. 2010;285:23916–23924. doi: 10.1074/jbc.M110.127936. PubMed DOI PMC

Song J., Wang J., Jozwiak A.A., Hu W., Swiderski P.M., Chen Y. Stability of thioester intermediates in ubiquitin-like modifications. Protein Sci. 2009;18:2492–2499. doi: 10.1002/pro.254. PubMed DOI PMC

Carvalho A.F., Pinto M.P., Grou C.P., Alencastre I.S., Fransen M., Sá-Miranda C., Azevedo J.E. Ubiquitination of mammalian Pex5p, the peroxisomal import receptor. J. Biol. Chem. 2007;282:31267–31272. doi: 10.1074/jbc.M706325200. PubMed DOI

Kragt A., Voorn-Brouwer T., van den Berg M., Distel B. The Saccharomyces cerevisiae peroxisomal import receptor Pex5p is monoubiquitinated in wild type cells. J. Biol. Chem. 2005;280:7867–7874. doi: 10.1074/jbc.M413553200. PubMed DOI

Meyer H.-J., Rape M. Enhanced Protein Degradation by Branched Ubiquitin Chains. Cell. 2014;157:910–921. doi: 10.1016/j.cell.2014.03.037. PubMed DOI PMC

Rost M., Mann S., Lambert C., Döring T., Thomé N., Prange R. Gamma-adaptin, a novel ubiquitin-interacting adaptor, and Nedd4 ubiquitin ligase control hepatitis B virus maturation. J. Biol. Chem. 2006;281:29297–29308. doi: 10.1074/jbc.M603517200. PubMed DOI

Garcia M.L., Byfield R., Robek M.D. Hepatitis B virus replication and release are independent of core lysine ubiquitination. J. Virol. 2009;83:4923–4933. doi: 10.1128/JVI.02644-08. PubMed DOI PMC

Qian G., Jin F., Chang L., Yang Y., Peng H., Duan C. NIRF, a novel ubiquitin ligase, interacts with hepatitis B virus core protein and promotes its degradation. Biotechnol. Lett. 2012;34:29–36. doi: 10.1007/s10529-011-0751-0. PubMed DOI

Lubyova B., Hodek J., Zabransky A., Prouzova H., Hubalek M., Hirsch I., Weber J. PRMT5: A novel regulator of Hepatitis B virus replication and an arginine methylase of HBV core. PLoS ONE. 2017;12:e0186982. doi: 10.1371/journal.pone.0186982. PubMed DOI PMC

Lubyová B., Weber J. Posttranslational modifications of HBV core protein. Acta. Virol. 2020;64:177–186. doi: 10.4149/av_2020_207. PubMed DOI

Hochstrasser M. Origin and function of ubiquitin-like proteins. Nature. 2009;458:422–429. doi: 10.1038/nature07958. PubMed DOI PMC

Lim K.L., Chew K.C., Tan J.M., Wang C., Chung K.K., Zhang Y., Tanaka Y., Smith W., Engelender S., Ross C.A., et al. Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: Implications for Lewy body formation. J. Neurosci. 2005;25:2002–2009. doi: 10.1523/JNEUROSCI.4474-04.2005. PubMed DOI PMC

Livingston C.M., Ifrim M.F., Cowan A.E., Weller S.K. Virus-Induced Chaperone-Enriched (VICE) domains function as nuclear protein quality control centers during HSV-1 infection. PLoS Pathog. 2009;5:e1000619. doi: 10.1371/journal.ppat.1000619. PubMed DOI PMC

Birsa N., Norkett R., Wauer T., Mevissen T.E., Wu H.C., Foltynie T., Bhatia K., Hirst W.D., Komander D., Plun-Favreau H., et al. Lysine 27 ubiquitination of the mitochondrial transport protein Miro is dependent on serine 65 of the Parkin ubiquitin ligase. J. Biol. Chem. 2014;289:14569–14582. doi: 10.1074/jbc.M114.563031. PubMed DOI PMC

Békés M., Prudden J., Srikumar T., Raught B., Boddy M.N., Salvesen G.S. The dynamics and mechanism of SUMO chain deconjugation by SUMO-specific proteases. J. Biol. Chem. 2011;286:10238–10247. doi: 10.1074/jbc.M110.205153. PubMed DOI PMC

Kamitani T., Nguyen H.P., Kito K., Fukuda-Kamitani T., Yeh E.T. Covalent modification of PML by the sentrin family of ubiquitin-like proteins. J. Biol. Chem. 1998;273:3117–3120. doi: 10.1074/jbc.273.6.3117. PubMed DOI

Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC

Choo Y.S., Zhang Z. Detection of protein ubiquitination. J. Vis. Exp. 2009:1293. doi: 10.3791/1293. PubMed DOI PMC

Chastagner P., Israël A., Brou C. Itch/AIP4 mediates Deltex degradation through the formation of K29-linked polyubiquitin chains. EMBO Rep. 2006;7:1147–1153. doi: 10.1038/sj.embor.7400822. PubMed DOI PMC

Hay-Koren A., Caspi M., Zilberberg A., Rosin-Arbesfeld R. The EDD E3 ubiquitin ligase ubiquitinates and up-regulates beta-catenin. Mol. Biol. Cell. 2011;22:399–411. doi: 10.1091/mbc.e10-05-0440. PubMed DOI PMC

Ponsel D., Bruss V. Mapping of Amino Acid Side Chains on the Surface of Hepatitis B Virus Capsids Required for Envelopment and Virion Formation. J. Virol. 2003;77:416–422. doi: 10.1128/JVI.77.1.416-422.2003. PubMed DOI PMC

Zheng N., Shabek N. Ubiquitin Ligases: Structure, Function, and Regulation. Annu. Rev. Biochem. 2017;86:129–157. doi: 10.1146/annurev-biochem-060815-014922. PubMed DOI

Chu B.W., Kovary K.M., Guillaume J., Chen L.-c., Teruel M.N., Wandless T.J. The E3 ubiquitin ligase UBE3C enhances proteasome processivity by ubiquitinating partially proteolyzed substrates. J. Biol. Chem. 2013;288:34575–34587. doi: 10.1074/jbc.M113.499350. PubMed DOI PMC

Fang N.N., Ng A.H.M., Measday V., Mayor T. Hul5 HECT ubiquitin ligase plays a major role in the ubiquitylation and turnover of cytosolic misfolded proteins. Nat. Cell Biol. 2011;13:1344–1352. doi: 10.1038/ncb2343. PubMed DOI PMC

Ohtake F., Tsuchiya H., Saeki Y., Tanaka K. K63 ubiquitylation triggers proteasomal degradation by seeding branched ubiquitin chains. Proc Natl. Acad. Sci. USA. 2018;115:E1401–E1408. doi: 10.1073/pnas.1716673115. PubMed DOI PMC

Akutsu M., Dikic I., Bremm A. Ubiquitin chain diversity at a glance. J. Cell. Sci. 2016;129:875–880. doi: 10.1242/jcs.183954. PubMed DOI

Michel M.A., Elliott P.R., Swatek K.N., Simicek M., Pruneda J.N., Wagstaff J.L., Freund S.M.V., Komander D. Assembly and Specific Recognition of K29- and K33-Linked Polyubiquitin. Mol. Cell. 2015;58:95–109. doi: 10.1016/j.molcel.2015.01.042. PubMed DOI PMC

Bremm A., Freund S.M., Komander D. Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne. Nat. Struct. Mol. Biol. 2010;17:939–947. doi: 10.1038/nsmb.1873. PubMed DOI PMC

Kristariyanto Y.A., Choi S.Y., Rehman S.A., Ritorto M.S., Campbell D.G., Morrice N.A., Toth R., Kulathu Y. Assembly and structure of Lys33-linked polyubiquitin reveals distinct conformations. Biochem. J. 2015;467:345–352. doi: 10.1042/BJ20141502. PubMed DOI PMC

Lee T.L., Shyu Y.C., Hsu T.Y., Shen C.K. Itch regulates p45/NF-E2 in vivo by Lys63-linked ubiquitination. Biochem. Biophys. Res. Commun. 2008;375:326–330. doi: 10.1016/j.bbrc.2008.07.164. PubMed DOI

You F., Sun H., Zhou X., Sun W., Liang S., Zhai Z., Jiang Z. PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4. Nat. Immunol. 2009;10:1300–1308. doi: 10.1038/ni.1815. PubMed DOI

Chastagner P., Israël A., Brou C. AIP4/Itch regulates Notch receptor degradation in the absence of ligand. PLoS ONE. 2008;3:e2735. doi: 10.1371/journal.pone.0002735. PubMed DOI PMC

Bernassola F., Karin M., Ciechanover A., Melino G. The HECT family of E3 ubiquitin ligases: Multiple players in cancer development. Cancer Cell. 2008;14:10–21. doi: 10.1016/j.ccr.2008.06.001. PubMed DOI

Scheffner M., Kumar S. Mammalian HECT ubiquitin-protein ligases: Biological and pathophysiological aspects. Biochim. Biophys. Acta. 2014;1843:61–74. doi: 10.1016/j.bbamcr.2013.03.024. PubMed DOI

Yeung B., Ho K.-C., Yang X. WWP1 E3 Ligase Targets LATS1 for Ubiquitin-Mediated Degradation in Breast Cancer Cells. PLoS ONE. 2013;8:e61027. doi: 10.1371/journal.pone.0061027. PubMed DOI PMC

Pao K.C., Wood N.T., Knebel A., Rafie K., Stanley M., Mabbitt P.D., Sundaramoorthy R., Hofmann K., van Aalten D.M.F., Virdee S. Activity-based E3 ligase profiling uncovers an E3 ligase with esterification activity. Nature. 2018;556:381–385. doi: 10.1038/s41586-018-0026-1. PubMed DOI

Yin L., Joshi S., Wu N., Tong X., Lazar M.A. E3 ligases Arf-bp1 and Pam mediate lithium-stimulated degradation of the circadian heme receptor Rev-erb alpha. Proc. Natl. Acad. Sci. USA. 2010;107:11614–11619. doi: 10.1073/pnas.1000438107. PubMed DOI PMC

Gudjonsson T., Altmeyer M., Savic V., Toledo L., Dinant C., Grøfte M., Bartkova J., Poulsen M., Oka Y., Bekker-Jensen S., et al. TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes. Cell. 2012;150:697–709. doi: 10.1016/j.cell.2012.06.039. PubMed DOI

Karim M., Biquand E., Declercq M., Jacob Y., van der Werf S., Demeret C. Nonproteolytic K29-Linked Ubiquitination of the PB2 Replication Protein of Influenza A Viruses by Proviral Cullin 4-Based E3 Ligases. mBio. 2020;11:e00305–e00320. doi: 10.1128/mBio.00305-20. PubMed DOI PMC

Strack B., Calistri A., Accola M.A., Palu G., Gottlinger H.G. A role for ubiquitin ligase recruitment in retrovirus release. Proc. Natl. Acad. Sci. USA. 2000;97:13063–13068. doi: 10.1073/pnas.97.24.13063. PubMed DOI PMC

Narahara C., Yasuda J. Roles of the three L-domains in β-retrovirus budding. Microbiol. Immunol. 2015;59:545–554. doi: 10.1111/1348-0421.12285. PubMed DOI

Zhai Q., Fisher R.D., Chung H.Y., Myszka D.G., Sundquist W.I., Hill C.P. Structural and functional studies of ALIX interactions with YPX(n)L late domains of HIV-1 and EIAV. Nat. Struct. Mol. Biol. 2008;15:43–49. doi: 10.1038/nsmb1319. PubMed DOI

Lee S., Joshi A., Nagashima K., Freed E.O., Hurley J.H. Structural basis for viral late-domain binding to Alix. Nat. Struct. Mol. Biol. 2007;14:194–199. doi: 10.1038/nsmb1203. PubMed DOI PMC

Puffer B.A., Parent L.J., Wills J.W., Montelaro R.C. Equine infectious anemia virus utilizes a YXXL motif within the late assembly domain of the Gag p9 protein. J. Virol. 1997;71:6541–6546. doi: 10.1128/JVI.71.9.6541-6546.1997. PubMed DOI PMC

Wills J.W., Cameron C.E., Wilson C.B., Xiang Y., Bennett R.P., Leis J. An assembly domain of the Rous sarcoma virus Gag protein required late in budding. J. Virol. 1994;68:6605–6618. doi: 10.1128/JVI.68.10.6605-6618.1994. PubMed DOI PMC

Huang M., Orenstein J.M., Martin M.A., Freed E.O. p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J. Virol. 1995;69:6810–6818. doi: 10.1128/JVI.69.11.6810-6818.1995. PubMed DOI PMC

Chou S.-F., Tsai M.-L., Huang J.-Y., Chang Y.-S., Shih C. The Dual Role of an ESCRT-0 Component HGS in HBV Transcription and Naked Capsid Secretion. PLoS Pathog. 2015;11:e1005123. doi: 10.1371/journal.ppat.1005123. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace