A ubiquitous disordered protein interaction module orchestrates transcription elongation

. 2021 Nov 26 ; 374 (6571) : 1113-1121. [epub] 20211125

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34822292

Grantová podpora
R35 GM137996 NIGMS NIH HHS - United States
T32 ES027801 NIEHS NIH HHS - United States

During eukaryotic transcription elongation, RNA polymerase II (RNAP2) is regulated by a chorus of factors. Here, we identified a common binary interaction module consisting of TFIIS N-terminal domains (TNDs) and natively unstructured TND-interacting motifs (TIMs). This module was conserved among the elongation machinery and linked complexes including transcription factor TFIIS, Mediator, super elongation complex, elongin, IWS1, SPT6, PP1-PNUTS phosphatase, H3K36me3 readers, and other factors. Using nuclear magnetic resonance, live-cell microscopy, and mass spectrometry, we revealed the structural basis for these interactions and found that TND-TIM sequences were necessary and sufficient to induce strong and specific colocalization in the crowded nuclear environment. Disruption of a single TIM in IWS1 induced robust changes in gene expression and RNAP2 elongation dynamics, which underscores the functional importance of TND-TIM surfaces for transcription elongation.

Zobrazit více v PubMed

Core LJ, Waterfall JJ, Lis JT, Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science (80-. ) (2008), doi:10.1126/science.1162228. PubMed DOI PMC

Hodges C, Bintu L, Lubkowska L, Kashlev M, Bustamante C, Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II. Science (80-. ) (2009), doi:10.1126/science.1172926. PubMed DOI PMC

Mayer A, Di Iulio J, Maleri S, Eser U, Vierstra J, Reynolds A, Sandstrom R, Stamatoyannopoulos JA, Churchman LS, Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. Cell (2015), doi:10.1016/j.cell.2015.03.010. PubMed DOI PMC

Miller TE, Liau BB, Wallace LC, Morton AR, Xie Q, Dixit D, Factor DC, Kim LJY, Morrow JJ, Wu Q, Mack SC, Hubert CG, Gillespie SM, Flavahan WA, Hoffmann T, Thummalapalli R, Hemann MT, Paddison PJ, Horbinski CM, Zuber J, Scacheri PC, Bernstein BE, Tesar PJ, Rich JN, Transcription elongation factors represent in vivo cancer dependencies in glioblastoma. Nature (2017), doi:10.1038/nature23000. PubMed DOI PMC

Lin C, Smith ER, Takahashi H, Lai KC, Martin-Brown S, Florens L, Washburn MP, Conaway JW, Conaway RC, Shilatifard A, AFF4, a Component of the ELL/P-TEFb Elongation Complex and a Shared Subunit of MLL Chimeras, Can Link Transcription Elongation to Leukemia. Mol. Cell (2010), doi:10.1016/j.molcel.2010.01.026. PubMed DOI PMC

Yuva-Aydemir Y, Almeida S, Krishnan G, Gendron TF, Gao FB, Transcription elongation factor AFF2/FMR2 regulates expression of expanded GGGGCC repeat-containing C9ORF72 allele in ALS/FTD. Nat. Commun (2019), doi:10.1038/s41467-019-13477-8. PubMed DOI PMC

Yukl SA, Kaiser P, Kim P, Telwatte S, Joshi SK, Vu M, Lampiris H, Wong JK, HIV latency in isolated patient CD4+ T cells may be due to blocks in HIV transcriptional elongation, completion, and splicing. Sci. Transl. Med (2018), doi:10.1126/scitranslmed.aap9927. PubMed DOI PMC

Adelman K, Kennedy MA, Nechaev S, Gilchrist DA, Muse GW, Chinenov Y, Rogatsky I, Immediate mediators of the inflammatory response are poised for gene activation through RNA polymerase II stalling. Proc. Natl. Acad. Sci. U. S. A (2009), doi:10.1073/pnas.0910177106. PubMed DOI PMC

Fousteri M, Vermeulen W, van Zeeland AA, Mullenders LHF, Cockayne Syndrome A and B Proteins Differentially Regulate Recruitment of Chromatin Remodeling and Repair Factors to Stalled RNA Polymerase II In Vivo. Mol. Cell (2006), doi:10.1016/j.molcel.2006.06.029. PubMed DOI

Bai X, Kim J, Yang Z, Jurynec MJ, Akie TE, Lee J, LeBlanc J, Sessa A, Jiang H, DiBiase A, Zhou Y, Grunwald DJ, Lin S, Cantor AB, Orkin SH, Zon LI, TIF1γ Controls Erythroid Cell Fate by Regulating Transcription Elongation. Cell (2010), doi:10.1016/j.cell.2010.05.028. PubMed DOI PMC

Izumi K, Nakato R, Zhang Z, Edmondson AC, Noon S, Dulik MC, Rajagopalan R, Venditti CP, Gripp K, Samanich J, Zackai EH, Deardorff MA, Clark D, Allen JL, Dorsett D, Misulovin Z, Komata M, Bando M, Kaur M, Katou Y, Shirahige K, Krantz ID, Germline gain-of-function mutations in AFF4 cause a developmental syndrome functionally linking the super elongation complex and cohesin. Nat. Genet (2015), doi:10.1038/ng.3229. PubMed DOI PMC

Peterlin BM, Price DH, Controlling the Elongation Phase of Transcription with P-TEFb. Mol. Cell (2006), doi:10.1016/j.molcel.2006.06.014. PubMed DOI

Glover-Cutter K, Larochelle S, Erickson B, Zhang C, Shokat K, Fisher RP, Bentley DL, TFIIH-Associated Cdk7 Kinase Functions in Phosphorylation of C-Terminal Domain Ser7 Residues, Promoter-Proximal Pausing, and Termination by RNA Polymerase II. Mol. Cell. Biol (2009), doi:10.1128/mcb.00637-09. PubMed DOI PMC

Cortazar MA, Sheridan RM, Erickson B, Fong N, Glover-Cutter K, Brannan K, Bentley DL, Control of RNA Pol II Speed by PNUTS-PP1 and Spt5 Dephosphorylation Facilitates Termination by a “Sitting Duck Torpedo” Mechanism. Mol. Cell (2019), doi:10.1016/j.molcel.2019.09.031. PubMed DOI PMC

Galburt EA, Grill SW, Wiedmann A, Lubkowska L, Choy J, Nogales E, Kashlev M, Bustamante C, Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner. Nature (2007), doi:10.1038/nature05701. PubMed DOI

Aso T, Lane WS, Conaway JW, Conaway RC, Elongin (SIII): A multisubunit regulator of elongation by RNA polymerase II. Science (80-. ) (1995), doi:10.1126/science.7660129. PubMed DOI

Liu Y, Zhou K, Zhang N, Wei H, Tan YZ, Zhang Z, Carragher B, Potter CS, D’Arcy S, Luger K, FACT caught in the act of manipulating the nucleosome. Nature (2020), doi:10.1038/s41586-019-1820-0. PubMed DOI PMC

Bortvin A, Winston F, Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science (80-. ) (1996), doi:10.1126/science.272.5267.1473. PubMed DOI

LeRoy G, Oksuz O, Descostes N, Aoi Y, Ganai RA, Kara HO, Yu JR, Lee CH, Stafford J, Shilatifard A, Reinberg D, LEDGF and HDGF2 relieve the nucleosome-induced barrier to transcription in differentiated cells. Sci. Adv (2019), doi:10.1126/sciadv.aay3068. PubMed DOI PMC

Luo Z, Lin C, Shilatifard A, The super elongation complex (SEC) family in transcriptional control. Nat. Rev. Mol. Cell Biol (2012), doi:10.1038/nrm3417. PubMed DOI

Gibson BA, Zhang Y, Jiang H, Hussey KM, Shrimp JH, Lin H, Schwede F, Yu Y, Kraus WL, Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation. Science (80-. ) (2016), doi:10.1126/science.aaf7865. PubMed DOI PMC

Takahashi H, Parmely TJ, Sato S, Tomomori-Sato C, Banks CAS, Kong SE, Szutorisz H, Swanson SK, Martin-Brown S, Washburn MP, Florens L, Seidel CW, Lin C, Smith ER, Shilatifard A, Conaway RC, Conaway JW, Human mediator subunit MED26 functions as a docking site for transcription elongation factors. Cell (2011), doi:10.1016/j.cell.2011.06.005. PubMed DOI PMC

Baranello L, Wojtowicz D, Cui K, Devaiah BN, Chung HJ, Chan-Salis KY, Guha R, Wilson K, Zhang X, Zhang H, Piotrowski J, Thomas CJ, Singer DS, Pugh BF, Pommier Y, Przytycka TM, Kouzine F, Lewis BA, Zhao K, Levens D, RNA Polymerase II Regulates Topoisomerase 1 Activity to Favor Efficient Transcription. Cell (2016), doi:10.1016/j.cell.2016.02.036. PubMed DOI PMC

Van Roey K, Uyar B, Weatheritt RJ, Dinkel H, Seiler M, Budd A, Gibson TJ, Davey NE, Short linear motifs: Ubiquitous and functionally diverse protein interaction modules directing cell regulation. Chem. Rev (2014), doi:10.1021/cr400585q. PubMed DOI

Sabari BR, Dall’Agnese A, Boija A, Klein IA, Coffey EL, Shrinivas K, Abraham BJ, Hannett NM, Zamudio AV, Manteiga JC, Li CH, Guo YE, Day DS, Schuijers J, Vasile E, Malik S, Hnisz D, Lee TI, Cisse II, Roeder RG, Sharp PA, Chakraborty AK, Young RA, Coactivator condensation at super-enhancers links phase separation and gene control. Science (80-. ) (2018), doi:10.1126/science.aar3958. PubMed DOI PMC

Davey NE, Van Roey K, Weatheritt RJ, Toedt G, Uyar B, Altenberg B, Budd A, Diella F, Dinkel H, Gibson TJ, Attributes of short linear motifs. Mol. Biosyst (2012), doi:10.1039/c1mb05231d. PubMed DOI

Sharma S, Čermáková K, De Rijck J, Demeulemeester J, Fábry M, El Ashkar S, Van Belle S, Lepšík M, Tesina P, Duchoslav V, Novák P, Hubálek M, Srb P, Christ F, Řezáčová P, Hodges HC, Debyser Z, Veverka V, Affinity switching of the LEDGF/p75 IBD interactome is governed by kinase-dependent phosphorylation. Proc. Natl. Acad. Sci (2018), doi:10.1073/pnas.1803909115. PubMed DOI PMC

Gibson BA, Doolittle LK, Schneider MWG, Jensen LE, Gamarra N, Henry L, Gerlich DW, Redding S, Rosen MK, Organization of Chromatin by Intrinsic and Regulated Phase Separation. Cell (2019), doi:10.1016/j.cell.2019.08.037. PubMed DOI PMC

Booth V, Koth CM, Edwards AM, Arrowsmith CH, Structure of a conserved domain common to the transcription factors TFIIS, Elongin A, and CRSP70. J. Biol. Chem (2000), doi:10.1074/jbc.M002595200. PubMed DOI

Tesina P, Cermáková K, Horejší M, Procházková K, Fábry M, Sharma S, Christ F, Demeulemeester J, Debyser Z, De Rijck J, Veverka V, Rezácová P, Multiple cellular proteins interact with LEDGF/p75 through a conserved unstructured consensus motif. Nat. Commun (2015), doi:10.1038/ncomms8968. PubMed DOI

Čermaková K, Tesina P, Demeulemeester J, El Ashkar S, Méreau H, Schwaller J, Řezáčová P, Veverka V, De Rijck J, Validation and structural characterization of the LEDGF/p75-MLL interface as a new target for the treatment of MLL-dependent leukemia. Cancer Res (2014), doi:10.1158/0008-5472.CAN-13-3602. PubMed DOI

Diebold ML, Koch M, Loeliger E, Cura V, Winston F, Cavarelli J, Romier C, The structure of an Iws1/Spt6 complex reveals an interaction domain conserved in TFIIS, Elongin A and Med26. EMBO J (2010), doi:10.1038/emboj.2010.272. PubMed DOI PMC

McDonald SM, Close D, Xin H, Formosa T, Hill CP, Structure and Biological Importance of the Spn1-Spt6 Interaction, and Its Regulatory Role in Nucleosome Binding. Mol. Cell (2010), doi:10.1016/j.molcel.2010.11.014. PubMed DOI PMC

Janicki SM, Tsukamoto T, Salghetti SE, Tansey WP, Sachidanandam R, Prasanth KV, Ried T, Shav-Tal Y, Bertrand E, Singer RH, Spector DL, From silencing to gene expression: Real-time analysis in single cells. Cell (2004), doi:10.1016/S0092-8674(04)00171-0. PubMed DOI PMC

Reim NI, Chuang J, Jain D, Alver BH, Park PJ, Winston F, The conserved elongation factor Spn1 is required for normal transcription, histone modifications, and splicing in Saccharomyces cerevisiae. Nucleic Acids Res (2020), doi:10.1093/nar/gkaa745. PubMed DOI PMC

Yoh SM, Cho H, Pickle L, Evans RM, Jones KA, The Spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export. Genes Dev (2007), doi:10.1101/gad.1503107. PubMed DOI PMC

Dronamraju R, Kerschner JL, Peck SA, Hepperla AJ, Adams AT, Hughes KD, Aslam S, Yoblinski AR, Davis IJ, Mosley AL, Strahl BD, Casein Kinase II Phosphorylation of Spt6 Enforces Transcriptional Fidelity by Maintaining Spn1-Spt6 Interaction. Cell Rep (2018), doi:10.1016/j.celrep.2018.11.089. PubMed DOI PMC

Mahat DB, Kwak H, Booth GT, Jonkers IH, Danko CG, Patel RK, Waters CT, Munson K, Core LJ, Lis JT, Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq). Nat. Protoc (2016), doi:10.1038/nprot.2016.086. PubMed DOI PMC

Core L, Adelman K, Promoter-proximal pausing of RNA polymerase II: A nexus of gene regulation. Genes Dev (2019), doi:10.1101/gad.325142.119. PubMed DOI PMC

Weber CM, Ramachandran S, Henikoff S, Nucleosomes are context-specific, H2A.Z-Modulated barriers to RNA polymerase. Mol. Cell (2014), doi:10.1016/j.molcel.2014.02.014. PubMed DOI

Hodges HC, Code: “hodgeslab/workflows”, Version 20210915. Zenodo (2021), doi:10.5281/zenodo.5511049. DOI

Adelman lab, Code: “AdelmanLab/NIH_scripts”, Version 1.0. Zenodo (2021), doi:10.5281/zenodo.5519915. DOI

Adelman lab, Code: “AdelmanLab/GetGeneAnnotation_GGA”, Version 1.0. Zenodo (2021), doi:10.5281/zenodo.5519928. DOI

El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD, The Pfam protein families database in 2019. Nucleic Acids Res (2019), doi:10.1093/nar/gky995. PubMed DOI PMC

Bateman A, Martin MJ, O’Donovan C, Magrane M, Alpi E, Antunes R, Bely B, Bingley M, Bonilla C, Britto R, Bursteinas B, Bye-AJee H, Cowley A, Da Silva A, De Giorgi M, Dogan T, Fazzini F, Castro LG, Figueira L, Garmiri P, Georghiou G, Gonzalez D, Hatton-Ellis E, Li W, Liu W, Lopez R, Luo J, Lussi Y, MacDougall A, Nightingale A, Palka B, Pichler K, Poggioli D, Pundir S, Pureza L, Qi G, Rosanoff S, Saidi R, Sawford T, Shypitsyna A, Speretta E, Turner E, Tyagi N, Volynkin V, Wardell T, Warner K, Watkins X, Zaru R, Zellner H, Xenarios I, Bougueleret L, Bridge A, Poux S, Redaschi N, Aimo L, ArgoudPuy G, Auchincloss A, Axelsen K, Bansal P, Baratin D, Blatter MC, Boeckmann B, Bolleman J, Boutet E, Breuza L, Casal-Casas C, De Castro E, Coudert E, Cuche B, Doche M, Dornevil D, Duvaud S, Estreicher A, Famiglietti L, Feuermann M, Gasteiger E, Gehant S, Gerritsen V, Gos A, Gruaz-Gumowski N, Hinz U, Hulo C, Jungo F, Keller G, Lara V, Lemercier P, Lieberherr D, Lombardot T, Martin X, Masson P, Morgat A, Neto T, Nouspikel N, Paesano S, Pedruzzi I, Pilbout S, Pozzato M, Pruess M, Rivoire C, Roechert B, Schneider M, Sigrist C, Sonesson K, Staehli S, Stutz A, Sundaram S, Tognolli M, Verbregue L, Veuthey AL, Wu CH, Arighi CN, Arminski L, Chen C, Chen Y, Garavelli JS, Huang H, Laiho K, McGarvey P, Natale DA, Ross K, Vinayaka CR, Wang Q, Wang Y, Yeh LS, Zhang J, UniProt: The universal protein knowledgebase. Nucleic Acids Res (2017), doi:10.1093/nar/gkw1099. PubMed DOI

Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, Von Mering C, STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res (2015), doi:10.1093/nar/gku1003. PubMed DOI PMC

Cherepanov P, Sun ZYJ, Rahman S, Maertens G, Wagner G, Engelman A, Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75. Nat. Struct. Mol. Biol (2005), doi:10.1038/nsmb937. PubMed DOI

Krystkowiak I, Davey NE, SLiMSearch: A framework for proteome-wide discovery and annotation of functional modules in intrinsically disordered regions. Nucleic Acids Res (2017), doi:10.1093/nar/gkx238. PubMed DOI PMC

Davey NE, Cowan JL, Shields DC, Gibson TJ, Coldwell MJ, Edwards RJ, SLiMPrints: Conservation-based discovery of functional motif fingerprints in intrinsically disordered protein regions. Nucleic Acids Res (2012), doi:10.1093/nar/gks854. PubMed DOI PMC

Mészáros B, Erdös G, Dosztányi Z, IUPred2A: Context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res (2018), doi:10.1093/nar/gky384. PubMed DOI PMC

Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN, PONDR-FIT: A meta-predictor of intrinsically disordered amino acids. Biochim. Biophys. Acta - Proteins Proteomics (2010), doi:10.1016/j.bbapap.2010.01.011. PubMed DOI PMC

Söding J, Biegert A, Lupas AN, The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res (2005), doi:10.1093/nar/gki408. PubMed DOI PMC

Chiu J, March PE, Lee R, Tillett D, Site-directed, Ligase-Independent Mutagenesis (SLIM): a single-tube methodology approaching 100% efficiency in 4 h. Nucleic Acids Res (2004), doi:10.1093/nar/gnh172. PubMed DOI PMC

Renshaw PS, Veverka V, Kelly G, Frenkiel TA, Williamson RA, Gordon SV, Hewinson RG, Carr MD, Sequence-specific assignment and secondary structure determination of the 195-residue complex formed by the Mycobacterium tuberculosis protein CFP-10 and ESAT-6. J. Biomol. NMR (2004),, doi:10.1023/B:JNMR.0000048852.40853.5c. PubMed DOI

Veverka V, Lennie G, Crabbe T, Bird I, Taylor RJ, Carr MD, NMR assignment of the mTOR domain responsible for rapamycin binding [3]. J. Biomol. NMR (2006),, doi:10.1007/s10858-005-4324-1. PubMed DOI

Veverka V, Crabbe T, Bird I, Lennie G, Muskett FW, Taylor RJ, Carr MD, Structural characterization of the interaction of mTOR with phosphatidic acid and a novel class of inhibitor: Compelling evidence for a central role of the FRB domain in small molecule-mediated regulation of mTOR. Oncogene (2008), doi:10.1038/sj.onc.1210693. PubMed DOI

Herrmann T, Güntert P, Wüthrich K, Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol (2002), doi:10.1016/S0022-2836(02)00241-3. PubMed DOI

Shen Y, Delaglio F, Cornilescu G, Bax A, TALOS+: A hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR (2009), doi:10.1007/s10858-009-9333-z. PubMed DOI PMC

Harjes E, Harjes S, Wohlgemuth S, Müller KH, Krieger E, Herrmann C, Bayer P, GTP-Ras Disrupts the Intramolecular Complex of C1 and RA Domains of Nore1. Structure (2006), doi:10.1016/j.str.2006.03.008. PubMed DOI

Peruzzini R, Lens Z, Verger A, Dewitte F, Ferreira E, Baert JL, Villeret V, Landrieu I, Cantrelle FX, 1H, 15N and 13C assignments of the N-terminal domain of the Mediator complex subunit MED26. Biomol. NMR Assign (2016), doi:10.1007/s12104-016-9673-z. PubMed DOI

Lens Z, Cantrelle FX, Peruzzini R, Hanoulle X, Dewitte F, Ferreira E, Baert JL, Monté D, Aumercier M, Villeret V, Verger A, Landrieu I, Solution Structure of the N-Terminal Domain of Mediator Subunit MED26 and Molecular Characterization of Its Interaction with EAF1 and TAF7. J. Mol. Biol (2017), doi:10.1016/j.jmb.2017.09.001. PubMed DOI

Dominguez C, Boelens R, Bonvin AMJJ, HADDOCK: A protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc (2003), doi:10.1021/ja026939x. PubMed DOI

Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N, The cBio Cancer Genomics Portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov (2012), doi:10.1158/2159-8290.CD-12-0095. PubMed DOI PMC

Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N, Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal (2013), doi:10.1126/scisignal.2004088. PubMed DOI PMC

Erde J, Loo RRO, Loo JA, Enhanced FASP (eFASP) to increase proteome coverage and sample recovery for quantitative proteomic experiments. J. Proteome Res (2014), doi:10.1021/pr4010019. PubMed DOI PMC

Langerová H, Lubyová B, Zábranský A, Hubálek M, Glendová K, Aillot L, Hodek J, Strunin D, Janovec V, Hirsch I, Weber J, Hepatitis B Core Protein Is Post-Translationally Modified through K29-Linked Ubiquitination. Cells (2020), doi:10.3390/cells9122547. PubMed DOI PMC

Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J, The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods (2016), doi:10.1038/nmeth.3901. PubMed DOI

Hodges HC, Stanton BZ, Cermakova K, Chang C-YY, Miller EL, Kirkland JG, Ku WL, Veverka V, Zhao K, Crabtree GR, Dominant-negative SMARCA4 mutants alter the accessibility landscape of tissue-unrestricted enhancers. Nat. Struct. Mol. Biol 25, 61–72 (2018). PubMed PMC

Shen S, Park JW, Lu ZX, Lin L, Henry MD, Wu YN, Zhou Q, Xing Y, rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc. Natl. Acad. Sci. U. S. A (2014), doi:10.1073/pnas.1419161111. PubMed DOI PMC

Shen S, Park JW, Huang J, Dittmar KA, Lu ZX, Zhou Q, Carstens RP, Xing Y, MATS: A Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data. Nucleic Acids Res (2012), doi:10.1093/nar/gkr1291. PubMed DOI PMC

Park JW, Tokheim C, Shen S, Xing Y, Identifying differential alternative splicing events from RNA sequencing data using RNASeq-MATS. Methods Mol. Biol (2013), doi:10.1007/978-1-62703-514-9_10. PubMed DOI

Langmead B, Trapnell C, Pop M, Salzberg SL, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol (2009), doi:10.1186/gb-2009-10-3-r25. PubMed DOI PMC

Pohl A, Beato M, bwtool: A tool for bigWig files. Bioinformatics (2014), doi:10.1093/bioinformatics/btu056. PubMed DOI PMC

Reimer KA, Mimoso CA, Adelman K, Neugebauer KM, Co-transcriptional splicing regulates 3′ end cleavage during mammalian erythropoiesis. Mol. Cell (2021), doi:10.1016/j.molcel.2020.12.018. PubMed DOI PMC

Lopez-Delisle L, Rabbani L, Wolff J, Bhardwaj V, Backofen R, Grüning B, Ramírez F, Manke T, pyGenomeTracks: reproducible plots for multivariate genomic datasets. Bioinformatics (2021), doi:10.1093/bioinformatics/btaa692. PubMed DOI PMC

Cermakova K, Courtney Hodges H, Next-generation drugs and probes for chromatin biology: From targeted protein degradation to phase separation. Molecules (2018), doi:10.3390/molecules23081958. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace