Transcriptional activity and gene expression are critical for the development of mature, meiotically competent oocytes. Our study demonstrates that the absence of cyclin-dependent kinase 12 (CDK12) in oocytes leads to complete female sterility, as fully developed oocytes capable of completing meiosis I are absent from the ovaries. Mechanistically, CDK12 regulates RNA polymerase II activity in growing oocytes and ensures the maintenance of the physiological maternal transcriptome, which is essential for protein synthesis that drives further oocyte growth. Notably, CDK12-deficient growing oocytes exhibit a 71% reduction in transcriptional activity. Furthermore, impaired oocyte development disrupts folliculogenesis, leading to premature ovarian failure without terminal follicle maturation or ovulation. In conclusion, our findings identify CDK12 as a key master regulator of the oocyte transcriptional program and gene expression, indispensable for oocyte growth and female fertility. A schematic illustrating the effects of loss of CDK12 in mammalian oocytes on the regulation of transcription by polymerase II and the concomitant effects on translation. This disruption leads to an aberrant transcriptome and translatome, resulting in the absence of fully mature oocytes and ultimately female sterility.
- MeSH
- Cyclin-Dependent Kinases * metabolism genetics MeSH
- Meiosis genetics MeSH
- Mice MeSH
- Oocytes * metabolism MeSH
- RNA Polymerase II metabolism MeSH
- Transcriptome genetics MeSH
- Infertility, Female * genetics pathology metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Somatic hypermutation (SHM) and class switch recombination (CSR) diversify immunoglobulin (Ig) genes and are initiated by the activation-induced deaminase (AID), a single-stranded DNA cytidine deaminase thought to engage its substrate during RNA polymerase II (RNAPII) transcription. Through a genetic screen, we identified numerous potential factors involved in SHM, including elongation factor 1 homolog (ELOF1), a component of the RNAPII elongation complex that functions in transcription-coupled nucleotide excision repair (TC-NER) and transcription elongation. Loss of ELOF1 compromises SHM, CSR, and AID action in mammalian B cells and alters RNAPII transcription by reducing RNAPII pausing downstream of transcription start sites and levels of serine 5 but not serine 2 phosphorylated RNAPII throughout transcribed genes. ELOF1 must bind to RNAPII to be a proximity partner for AID and to function in SHM and CSR, and TC-NER is not required for SHM. We propose that ELOF1 helps create the appropriate stalled RNAPII substrate on which AID acts.
- MeSH
- AICDA (Activation-Induced Cytidine Deaminase) MeSH
- B-Lymphocytes * immunology metabolism MeSH
- Cytidine Deaminase metabolism genetics MeSH
- Phosphoproteins * genetics metabolism MeSH
- Phosphorylation MeSH
- Transcription, Genetic MeSH
- Humans MeSH
- Mice, Knockout MeSH
- Mice MeSH
- DNA Repair MeSH
- Immunoglobulin Class Switching * MeSH
- RNA Polymerase II metabolism genetics MeSH
- Somatic Hypermutation, Immunoglobulin * MeSH
- Transcriptional Elongation Factors * genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
DNA double-strand breaks (DSBs) represent a lethal form of DNA damage that can trigger cell death or initiate oncogenesis. The activity of RNA polymerase II (RNAPII) at the break site is required for efficient DSB repair. However, the regulatory mechanisms governing the transcription cycle at DSBs are not well understood. Here, we show that Integrator complex subunit 6 (INTS6) associates with the heterotrimeric sensor of ssDNA (SOSS1) complex (comprising INTS3, INIP and hSSB1) to form the tetrameric SOSS1 complex. INTS6 binds to DNA:RNA hybrids and promotes Protein Phosphatase 2A (PP2A) recruitment to DSBs, facilitating the dephosphorylation of RNAPII. Furthermore, INTS6 prevents the accumulation of damage-associated RNA transcripts (DARTs) and the stabilization of DNA:RNA hybrids at DSB sites. INTS6 interacts with and promotes the recruitment of senataxin (SETX) to DSBs, facilitating the resolution of DNA:RNA hybrids/R-loops. Our results underscore the significance of the tetrameric SOSS1 complex in the autoregulation of DNA:RNA hybrids and efficient DNA repair.
- MeSH
- DNA-Binding Proteins metabolism MeSH
- DNA Helicases metabolism genetics MeSH
- DNA * metabolism chemistry MeSH
- DNA Breaks, Double-Stranded * MeSH
- Phosphorylation MeSH
- Homeostasis genetics MeSH
- Humans MeSH
- DNA Repair * MeSH
- Protein Phosphatase 2 metabolism genetics MeSH
- R-Loop Structures MeSH
- RNA Helicases metabolism genetics MeSH
- RNA Polymerase II * metabolism MeSH
- RNA * metabolism genetics chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Influenza A viruses, causing seasonal epidemics and occasional pandemics, rely on interactions with host proteins for their RNA genome transcription and replication. The viral RNA polymerase utilizes host RNA polymerase II (Pol II) and interacts with the serine 5 phosphorylated (pS5) C-terminal domain (CTD) of Pol II to initiate transcription. Our study, using single-particle electron cryomicroscopy (cryo-EM), reveals the structure of the 1918 pandemic influenza A virus polymerase bound to a synthetic pS5 CTD peptide composed of four heptad repeats mimicking the 52 heptad repeat mammalian Pol II CTD. The structure shows that the CTD peptide binds at the C-terminal domain of the PA viral polymerase subunit (PA-C) and reveals a previously unobserved position of the 627 domain of the PB2 subunit near the CTD. We identify crucial residues of the CTD peptide that mediate interactions with positively charged cavities on PA-C, explaining the preference of the viral polymerase for pS5 CTD. Functional analysis of mutants targeting the CTD-binding site within PA-C reveals reduced transcriptional function or defects in replication, highlighting the multifunctional role of PA-C in viral RNA synthesis. Our study provides insights into the structural and functional aspects of the influenza virus polymerase-host Pol II interaction and identifies a target for antiviral development.IMPORTANCEUnderstanding the intricate interactions between influenza A viruses and host proteins is crucial for developing targeted antiviral strategies. This study employs advanced imaging techniques to uncover the structural nuances of the 1918 pandemic influenza A virus polymerase bound to a specific host protein, shedding light on the vital process of viral RNA synthesis. The study identifies key amino acid residues in the influenza polymerase involved in binding host polymerase II (Pol II) and highlights their role in both viral transcription and genome replication. These findings not only deepen our understanding of the influenza virus life cycle but also pinpoint a potential target for antiviral development. By elucidating the structural and functional aspects of the influenza virus polymerase-host Pol II interaction, this research provides a foundation for designing interventions to disrupt viral replication and transcription, offering promising avenues for future antiviral therapies.
- MeSH
- Influenza, Human virology MeSH
- Cryoelectron Microscopy * MeSH
- Phosphorylation MeSH
- Transcription, Genetic MeSH
- Humans MeSH
- Models, Molecular MeSH
- Protein Domains MeSH
- Virus Replication MeSH
- RNA, Viral metabolism genetics MeSH
- RNA-Dependent RNA Polymerase * metabolism chemistry MeSH
- RNA Polymerase II * metabolism chemistry MeSH
- Protein Binding MeSH
- Viral Proteins * metabolism chemistry genetics MeSH
- Influenza A virus * metabolism genetics enzymology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Double-strand breaks (DSBs) are the most severe type of DNA damage. Previously, we demonstrated that RNA polymerase II (RNAPII) phosphorylated at the tyrosine 1 (Y1P) residue of its C-terminal domain (CTD) generates RNAs at DSBs. However, the regulation of transcription at DSBs remains enigmatic. Here, we show that the damage-activated tyrosine kinase c-Abl phosphorylates hSSB1, enabling its interaction with Y1P RNAPII at DSBs. Furthermore, the trimeric SOSS1 complex, consisting of hSSB1, INTS3, and c9orf80, binds to Y1P RNAPII in response to DNA damage in an R-loop-dependent manner. Specifically, hSSB1, as a part of the trimeric SOSS1 complex, exhibits a strong affinity for R-loops, even in the presence of replication protein A (RPA). Our in vitro and in vivo data reveal that the SOSS1 complex and RNAPII form dynamic liquid-like repair compartments at DSBs. Depletion of the SOSS1 complex impairs DNA repair, underscoring its biological role in the R-loop-dependent DNA damage response.
In contrast to the catalytic subunit of telomerase, its RNA subunit (TR) is highly divergent in size, sequence and biogenesis pathways across eukaryotes. Current views on TR evolution assume a common origin of TRs transcribed with RNA polymerase II in Opisthokonta (the supergroup including Animalia and Fungi) and Trypanosomida on one hand, and TRs transcribed with RNA polymerase III under the control of type 3 promoter, found in TSAR and Archaeplastida supergroups (including e.g. ciliates and Viridiplantae taxa, respectively). Here, we focus on unknown TRs in one of the largest Animalia order - Hymenoptera (Arthropoda) with more than 300 available representative genomes. Using a combination of bioinformatic and experimental approaches, we identify their TRs. In contrast to the presumed type of TRs (H/ACA box snoRNAs transcribed with RNA Polymerase II) corresponding to their phylogenetic position, we find here short TRs of the snRNA type, likely transcribed with RNA polymerase III under the control of the type 3 promoter. The newly described insect TRs thus question the hitherto assumed monophyletic origin of TRs across Animalia and point to an evolutionary switch in TR type and biogenesis that was associated with the divergence of Arthropods.
- MeSH
- Eukaryota genetics MeSH
- Phylogeny MeSH
- Hymenoptera * genetics MeSH
- Nucleic Acid Conformation MeSH
- RNA Polymerase II genetics metabolism MeSH
- RNA Polymerase III genetics metabolism MeSH
- RNA genetics MeSH
- Plants genetics MeSH
- Telomerase * genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Somatic hypermutation (SHM) drives the genetic diversity of Ig genes in activated B cells and supports the generation of Abs with increased affinity for Ag. SHM is targeted to Ig genes by their enhancers (diversification activators [DIVACs]), but how the enhancers mediate this activity is unknown. We show using chicken DT40 B cells that highly active DIVACs increase the phosphorylation of RNA polymerase II (Pol II) and Pol II occupancy in the mutating gene with little or no accompanying increase in elongation-competent Pol II or production of full-length transcripts, indicating accumulation of stalled Pol II. DIVAC has similar effect also in human Ramos Burkitt lymphoma cells. The DIVAC-induced stalling is weakly associated with an increase in the detection of ssDNA bubbles in the mutating target gene. We did not find evidence for antisense transcription, or that DIVAC functions by altering levels of H3K27ac or the histone variant H3.3 in the mutating gene. These findings argue for a connection between Pol II stalling and cis-acting targeting elements in the context of SHM and thus define a mechanistic basis for locus-specific targeting of SHM in the genome. Our results suggest that DIVAC elements render the target gene a suitable platform for AID-mediated mutation without a requirement for increasing transcriptional output.
- MeSH
- Lymphocyte Activation MeSH
- Burkitt Lymphoma genetics immunology MeSH
- Cytidine Deaminase genetics MeSH
- Transcription, Genetic MeSH
- Immunoglobulins genetics metabolism MeSH
- Chickens MeSH
- Humans MeSH
- Mutation genetics MeSH
- Mutagenesis, Site-Directed MeSH
- B-Lymphocyte Subsets immunology MeSH
- Avian Proteins genetics metabolism MeSH
- RNA Polymerase II genetics metabolism MeSH
- Antibody Diversity MeSH
- Somatic Hypermutation, Immunoglobulin MeSH
- Enhancer Elements, Genetic genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
MIR139 is a tumor suppressor and is commonly silenced in acute myeloid leukemia (AML). However, the tumor-suppressing activities of miR-139 and molecular mechanisms of MIR139-silencing remain largely unknown. Here, we studied the poorly prognostic MLL-AF9 fusion protein-expressing AML. We show that MLL-AF9 expression in hematopoietic precursors caused epigenetic silencing of MIR139, whereas overexpression of MIR139 inhibited in vitro and in vivo AML outgrowth. We identified novel miR-139 targets that mediate the tumor-suppressing activities of miR-139 in MLL-AF9 AML. We revealed that two enhancer regions control MIR139 expression and found that the polycomb repressive complex 2 (PRC2) downstream of MLL-AF9 epigenetically silenced MIR139 in AML. Finally, a genome-wide CRISPR-Cas9 knockout screen revealed RNA Polymerase 2 Subunit M (POLR2M) as a novel MIR139-regulatory factor. Our findings elucidate the molecular control of tumor suppressor MIR139 and reveal a role for POLR2M in the MIR139-silencing mechanism, downstream of MLL-AF9 and PRC2 in AML. In addition, we confirmed these findings in human AML cell lines with different oncogenic aberrations, suggesting that this is a more common oncogenic mechanism in AML. Our results may pave the way for new targeted therapy in AML.
- MeSH
- Leukemia, Myeloid, Acute genetics MeSH
- Epigenesis, Genetic MeSH
- Oncogene Proteins, Fusion genetics MeSH
- Carcinogenesis genetics MeSH
- Humans MeSH
- MicroRNAs genetics MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout MeSH
- Cell Line, Tumor MeSH
- Myeloid-Lymphoid Leukemia Protein genetics MeSH
- Gene Expression Regulation, Leukemic MeSH
- RNA Polymerase II genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
[Figure: see text].
- MeSH
- Adaptor Proteins, Signal Transducing chemistry metabolism MeSH
- DNA-Binding Proteins chemistry metabolism MeSH
- Transcription Elongation, Genetic * MeSH
- Gene Expression MeSH
- Protein Interaction Domains and Motifs genetics MeSH
- Humans MeSH
- Protein Interaction Maps MeSH
- Models, Molecular MeSH
- Mutation MeSH
- Cell Line, Tumor MeSH
- Protein Domains MeSH
- RNA-Binding Proteins chemistry genetics metabolism MeSH
- RNA Polymerase II chemistry metabolism MeSH
- Transcriptional Elongation Factors chemistry metabolism MeSH
- Transcription Factors chemistry genetics metabolism MeSH
- Protein Binding MeSH
- Intrinsically Disordered Proteins chemistry metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) is a regulatory hub for transcription and RNA processing. Here, we identify PHD-finger protein 3 (PHF3) as a regulator of transcription and mRNA stability that docks onto Pol II CTD through its SPOC domain. We characterize SPOC as a CTD reader domain that preferentially binds two phosphorylated Serine-2 marks in adjacent CTD repeats. PHF3 drives liquid-liquid phase separation of phosphorylated Pol II, colocalizes with Pol II clusters and tracks with Pol II across the length of genes. PHF3 knock-out or SPOC deletion in human cells results in increased Pol II stalling, reduced elongation rate and an increase in mRNA stability, with marked derepression of neuronal genes. Key neuronal genes are aberrantly expressed in Phf3 knock-out mouse embryonic stem cells, resulting in impaired neuronal differentiation. Our data suggest that PHF3 acts as a prominent effector of neuronal gene regulation by bridging transcription with mRNA decay.
- MeSH
- Cell Line MeSH
- Phosphorylation MeSH
- Transcription, Genetic MeSH
- Gene Knockdown Techniques MeSH
- Humans MeSH
- Mice, Knockout MeSH
- Neurons chemistry metabolism MeSH
- RNA Processing, Post-Transcriptional MeSH
- Protein Domains MeSH
- Gene Expression Regulation MeSH
- RNA Polymerase II chemistry genetics metabolism MeSH
- RNA * chemistry genetics metabolism MeSH
- RNA Stability MeSH
- Transcription Factors genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH