Reactivation of the G1 enhancer landscape underlies core circuitry addiction to SWI/SNF
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
R01 CA272769
NCI NIH HHS - United States
R35 GM137996
NIGMS NIH HHS - United States
S10 RR024574
NCRR NIH HHS - United States
R01CA272769
NIH HHS - United States
PubMed
37993417
PubMed Central
PMC10783513
DOI
10.1093/nar/gkad1081
PII: 7442053
Knihovny.cz E-zdroje
- MeSH
- buněčný cyklus MeSH
- chromatin genetika MeSH
- DNA MeSH
- G1 fáze * MeSH
- lidé MeSH
- nádory * MeSH
- regulační oblasti nukleových kyselin MeSH
- restrukturace chromatinu MeSH
- transkripční faktory * metabolismus MeSH
- zesilovače transkripce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chromatin MeSH
- DNA MeSH
- SWI-SNF-B chromatin-remodeling complex MeSH Prohlížeč
- transkripční faktory * MeSH
Several cancer core regulatory circuitries (CRCs) depend on the sustained generation of DNA accessibility by SWI/SNF chromatin remodelers. However, the window when SWI/SNF is acutely essential in these settings has not been identified. Here we used neuroblastoma (NB) cells to model and dissect the relationship between cell-cycle progression and SWI/SNF ATPase activity. We find that SWI/SNF inactivation impairs coordinated occupancy of non-pioneer CRC members at enhancers within 1 hour, rapidly breaking their autoregulation. By precisely timing inhibitor treatment following synchronization, we show that SWI/SNF is dispensable for survival in S and G2/M, but becomes acutely essential only during G1 phase. We furthermore developed a new approach to analyze the oscillating patterns of genome-wide DNA accessibility across the cell cycle, which revealed that SWI/SNF-dependent CRC binding sites are enriched at enhancers with peak accessibility during G1 phase, where they activate genes involved in cell-cycle progression. SWI/SNF inhibition strongly impairs G1-S transition and potentiates the ability of retinoids used clinically to induce cell-cycle exit. Similar cell-cycle effects in diverse SWI/SNF-addicted settings highlight G1-S transition as a common cause of SWI/SNF dependency. Our results illustrate that deeper knowledge of the temporal patterns of enhancer-related dependencies may aid the rational targeting of addicted cancers.
Cancer cells driven by runaway transcription factor networks frequently depend on the cellular machinery that promotes DNA accessibility. For this reason, recently developed small molecules that impair SWI/SNF (or BAF) chromatin remodeling activity have been under active evaluation as anti-cancer agents. However, exactly when SWI/SNF activity is essential in dependent cancers has remained unknown. By combining live-cell imaging and genome-wide profiling in neuroblastoma cells, Cermakova et al. discover that SWI/SNF activity is needed for survival only during G1 phase of the cell cycle. The authors reveal that in several cancer settings, dependency on SWI/SNF arises from the need to reactivate factors involved in G1-S transition. Because of this role, authors find that SWI/SNF inhibition potentiates cell-cycle exit by retinoic acid.
Cancer and Cell Biology Graduate Program Baylor College of Medicine Houston TX USA
Dan L Duncan Comprehensive Cancer Center Baylor College of Medicine Houston TX USA
Department of Bioengineering Rice University Houston TX USA
Program in Developmental Biology Baylor College of Medicine Houston TX USA
Translational Biology and Molecular Medicine Graduate Program Houston TX USA
Zobrazit více v PubMed
Chambers C., Cermakova K., Chan Y.S., Kurtz K., Wohlan K., Lewis A.H., Wang C., Pham A., Dejmek M., Sala M.et al. .. SWI/SNF blockade disrupts PU.1-directed enhancer programs in normal hematopoietic cells and acute myeloid leukemia. Cancer Res. 2023; 83:983–996. PubMed PMC
Shi J., Whyte W.A., Zepeda-Mendoza C.J., Milazzo J.P., Shen C., Roe J.S., Minder J.L., Mercan F., Wang E., Eckersley-Maslin M.A.et al. .. Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Genes Dev. 2013; 27:2648–2662. PubMed PMC
Jubierre L., Soriano A., Planells-Ferrer L., París-Coderch L., Tenbaum S.P., Romero O.A., Moubarak R.S., Almazán-Moga A., Molist C., Roma J.et al. .. BRG1/SMARCA4 is essential for neuroblastoma cell viability through modulation of cell death and survival pathways. Oncogene. 2016; 35:5179–5190. PubMed
Xiao L., Parolia A., Qiao Y., Bawa P., Eyunni S., Mannan R., Carson S.E., Chang Y., Wang X., Zhang Y.et al. .. Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer. Nature. 2022; 601:434–439. PubMed PMC
Rago F., Elliott G.N., Li A., Sprouffske K., Kerr G., Desplat A., Abramowski D., Chen J.T., Farsidjani A., Xiang K.X.et al. .. The discovery of SWI/SNF chromatin remodeling activity as a novel and targetable dependency in uveal melanoma. Mol. Cancer Ther. 2020; 19:2186–2195. PubMed
Laubscher D., Gryder B.E., Sunkel B.D., Andresson T., Wachtel M., Das S., Roschitzki B., Wolski W., Wu X.S., Chou H.C.et al. .. BAF complexes drive proliferation and block myogenic differentiation in fusion-positive rhabdomyosarcoma. Nat. Commun. 2021; 12:6924. PubMed PMC
Papillon J.P.N., Nakajima K., Adair C.D., Hempel J., Jouk A.O., Karki R.G., Mathieu S., Möbitz H., Ntaganda R., Smith T.et al. .. Discovery of orally active inhibitors of brahma homolog (BRM)/SMARCA2 ATPase activity for the treatment of brahma related gene 1 (BRG1)/SMARCA4-mutant cancers. J. Med. Chem. 2018; 61:10155–10172. PubMed
Rago F., Rodrigues L.U., Bonney M., Sprouffske K., Kurth E., Elliott G., Ambrose J., Aspesi P., Oborski J., Chen J.T.et al. .. Exquisite sensitivity to dual BRG1/BRM ATPase inhibitors reveals broad SWI/SNF dependencies in acute myeloid leukemia. Mol. Cancer Res. 2021; 20:361–372. PubMed
Hodges H.C., Stanton B.Z., Cermakova K., Chang C.-Y.Y., Miller E.L., Kirkland J.G., Ku W.L., Veverka V., Zhao K., Crabtree G.R.. Dominant-negative SMARCA4 mutants alter the accessibility landscape of tissue-unrestricted enhancers. Nat. Struct. Mol. Biol. 2018; 25:61–72. PubMed PMC
Stanton B.Z., Hodges C., Calarco J.P., Braun S.M.G., Ku W.L., Kadoch C., Zhao K., Crabtree G.R.. Smarca4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nat. Genet. 2017; 49:282–288. PubMed PMC
Dykhuizen E.C., Hargreaves D.C., Miller E.L., Cui K., Korshunov A., Kool M., Pfister S., Cho Y.J., Zhao K., Crabtree G.R.. BAF complexes facilitate decatenation of DNA by topoisomerase iiα. Nature. 2013; 497:624–627. PubMed PMC
Jiménez C., Antonelli R., Nadal-Ribelles M., Devis-Jauregui L., Latorre P., Solé C., Masanas M., Molero-Valenzuela A., Soriano A., Sánchez de Toledo J.et al. .. Structural disruption of BAF chromatin remodeller impairs neuroblastoma metastasis by reverting an invasiveness epigenomic program. Mol. Cancer. 2022; 21:175. PubMed PMC
Zhu Z., Chen X., Guo A., Manzano T., Walsh P.J., Wills K.M., Halliburton R., Radko-Juettner S., Carter R.D., Partridge J.F.et al. .. Mitotic bookmarking by SWI/SNF subunits. Nature. 2023; 618:180–187. PubMed PMC
Lee H.S., Park J.H., Kim S.J., Kwon S.J., Kwon J.. A cooperative activation loop among SWI/SNF, γ-H2AX and H3 acetylation for DNA double-strand break repair. EMBO J. 2010; 29:1434–1445. PubMed PMC
Bayona-Feliu A., Barroso S., Muñoz S., Aguilera A.. The SWI/SNF chromatin remodeling complex helps resolve R-loop-mediated transcription–replication conflicts. Nat. Genet. 2021; 53:1050–1063. PubMed
Karki M., Jangid R.K., Anish R., Seervai R.N.H., Bertocchio J.P., Hotta T., Msaouel P., Jung S.Y., Grimm S.L., Coarfa C.et al. .. A cytoskeletal function for PBRM1 reading methylated microtubules. Sci. Adv. 2021; 7:eabf2866. PubMed PMC
Iurlaro M., Stadler M.B., Masoni F., Jagani Z., Galli G.G., Schübeler D.. Mammalian SWI/SNF continuously restores local accessibility to chromatin. Nat. Genet. 2021; 53:279–287. PubMed
Schick S., Grosche S., Kohl K.E., Drpic D., Jaeger M.G., Marella N.C., Imrichova H., Lin J.-M.G., Hofstätter G., Schuster M.et al. .. Acute BAF perturbation causes immediate changes in chromatin accessibility. Nat. Genet. 2021; 53:269–278. PubMed PMC
Katsumura K.R., Ong I.M., DeVilbiss A.W., Sanalkumar R., Bresnick E.H.. GATA factor-dependent positive-feedback circuit in acute myeloid leukemia cells. Cell Rep. 2016; 16:2428–2441. PubMed PMC
Chen Y., Xu L., Lin R.Y.T., Müschen M., Koeffler H.P.. Core transcriptional regulatory circuitries in cancer. Oncogene. 2020; 39:6633–6646. PubMed PMC
London W.B., Castleberry R.P., Matthay K.K., Look A.T., Seeger R.C., Shimada H., Thorner P., Brodeur G., Maris J.M., Reynolds C.P.et al. .. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children's Oncology Group. J. Clin. Oncol. 2005; 23:6459–6465. PubMed
Bedoya-Reina O.C., Li W., Arceo M., Plescher M., Bullova P., Pui H., Kaucka M., Kharchenko P., Martinsson T., Holmberg J.et al. .. Single-nuclei transcriptomes from human adrenal gland reveal distinct cellular identities of low and high-risk neuroblastoma tumors. Nat. Commun. 2021; 12:5309. PubMed PMC
Huang M., Weiss W.A.. Neuroblastoma and MYCN. Cold Spring Harb. Perspect. Med. 2013; 3:a014415. PubMed PMC
Dzieran J., Garcia A.R., Westermark U.K., Henley A.B., Sánchez E.E., Träger C., Johansson H.J., Lehtiö J., Arsenian-Henriksson M.. MYCN-amplified neuroblastoma maintains an aggressive and undifferentiated phenotype by deregulation of estrogen and NGF signaling. Proc. Natl. Acad. Sci. USA. 2018; 115:E1229–E1238. PubMed PMC
Molenaar J.J., Koster J., Zwijnenburg D.A., Van Sluis P., Valentijn L.J., Van Der Ploeg I., Hamdi M., Van Nes J., Westerman B.A., Van Arkel J.et al. .. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature. 2012; 483:589–593. PubMed
Rickman D.S., Schulte J.H., Eilers M.. The expanding world of N-MYC-driven tumors. Cancer Discov. 2018; 8:150–163. PubMed
Chipumuro E., Marco E., Christensen C.L., Kwiatkowski N., Zhang T., Hatheway C.M., Abraham B.J., Sharma B., Yeung C., Altabef A.et al. .. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell. 2014; 159:1126–1139. PubMed PMC
Van Groningen T., Koster J., Valentijn L.J., Zwijnenburg D.A., Akogul N., Hasselt N.E., Broekmans M., Haneveld F., Nowakowska N.E., Bras J.et al. .. Neuroblastoma is composed of two super-enhancer-associated differentiation states. Nat. Genet. 2017; 49:1261–1266. PubMed
Oldridge D.A., Wood A.C., Weichert-Leahey N., Crimmins I., Sussman R., Winter C., McDaniel L.D., Diamond M., Hart L.S., Zhu S.et al. .. Genetic predisposition to neuroblastoma mediated by a LMO1 super-enhancer polymorphism. Nature. 2015; 528:418–421. PubMed PMC
Zeid R., Lawlor M.A., Poon E., Reyes J.M., Fulciniti M., Lopez M.A., Scott T.G., Nabet B., Erb M.A., Winter G.E.et al. .. Enhancer invasion shapes MYCN-dependent transcriptional amplification in neuroblastoma. Nat. Genet. 2018; 50:515–523. PubMed PMC
Dong R., Yang R., Zhan Y., Lai H.D., Ye C.J., Yao X.Y., Luo W.Q., Cheng X.M., Miao J.J., Wang J.F.et al. .. Single-cell characterization of malignant phenotypes and developmental trajectories of adrenal neuroblastoma. Cancer Cell. 2020; 38:716–733. PubMed
Yuan X., Seneviratne J.A., Du S., Xu Y., Chen Y., Jin Q., Jin X., Balachandran A., Huang S., Xu Y.et al. .. Single-cell profiling of peripheral neuroblastic tumors identifies an aggressive transitional state that bridges an adrenergic-mesenchymal trajectory. Cell Rep. 2022; 41:111455. PubMed
Boeva V., Louis-Brennetot C., Peltier A., Durand S., Pierre-Eugène C., Raynal V., Etchevers H.C., Thomas S., Lermine A., Daudigeos-Dubus E.et al. .. Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries. Nat. Genet. 2017; 49:1408–1413. PubMed
Durbin A.D., Zimmerman M.W., Dharia N.V., Abraham B.J., Iniguez A.B., Weichert-Leahey N., He S., Krill-Burger J.M., Root D.E., Vazquez F.et al. .. Selective gene dependencies in MYCN-amplified neuroblastoma include the core transcriptional regulatory circuitry. Nat. Genet. 2018; 50:1240–1246. PubMed PMC
Gartlgruber M., Sharma A.K., Quintero A., Dreidax D., Jansky S., Park Y.G., Kreth S., Meder J., Doncevic D., Saary P.et al. .. Super enhancers define regulatory subtypes and cell identity in neuroblastoma. Nat. Cancer. 2021; 2:114–128. PubMed
Zhu S., Zhang X., Weichert-Leahey N., Dong Z., Zhang C., Lopez G., Tao T., He S., Wood A.C., Oldridge D.et al. .. LMO1 Synergizes with MYCN to promote neuroblastoma initiation and metastasis. Cancer Cell. 2017; 32:310–323. PubMed PMC
Zimmerman M.W., Durbin A.D., He S., Oppel F., Shi H., Tao T., Li Z., Berezovskaya A., Liu Y., Zhang J.et al. .. Retinoic acid rewires the adrenergic core regulatory circuitry of childhood neuroblastoma. Sci. Adv. 2021; 7:eabe0834. PubMed PMC
Haddox M.K., Russell D.H.. Cell cycle-specific locus of vitamin A inhibition of growth. Cancer Res. 1979; 39:2476–2480. PubMed
Chiu J., March P.E., Lee R., Tillett d.. Site-directed, Ligase-Independent Mutagenesis (SLIM): a single-tube methodology approaching 100% efficiency in 4 h. Nucleic Acids Res. 2004; 32:e174. PubMed PMC
Shalem O., Sanjana N.E., Hartenian E., Shi X., Scott D.A., Mikkelsen T.S., Heckl D., Ebert B.L., Root D.E., Doench J.G.et al. .. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014; 343:84–87. PubMed PMC
Sanjana N., Shalem O., Zhang F.. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods. 2014; 11:783–784. PubMed PMC
Kuo H.H., Gao X., DeKeyser J.M., Fetterman K.A., Pinheiro E.A., Weddle C.J., Fonoudi H., Orman M.V., Romero-Tejeda M., Jouni M.et al. .. Negligible-cost and weekend-free chemically defined Human iPSC culture. Stem Cell Rep. 2020; 14:256–270. PubMed PMC
Tao L., Moreno-Smith M., Ibarra-García-Padilla R., Milazzo G., Drolet N.A., Hernandez B.E., Oh Y.S., Patel I., Kim J.J., Zorman B.et al. .. CHAF1A Blocks neuronal differentiation and promotes neuroblastoma oncogenesis via metabolic reprogramming. Adv. Sci. 2021; 8:e2005047. PubMed PMC
Gomez G.A., Prasad M.S., Sandhu N., Shelar P.B., Leung A.W., García-Castro M.I.. Human neural crest induction by temporal modulation of WNT activation. Dev. Biol. 2019; 449:99–106. PubMed PMC
Nishimura K., Fukagawa T., Takisawa H., Kakimoto T., Kanemaki M.. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods. 2009; 6:917–922. PubMed
Cermakova K., Hodges H.C.. Next-generation drugs and probes for chromatin biology: from targeted protein degradation to phase separation. Molecules. 2018; 23:1958. PubMed PMC
Herzog V.A., Reichholf B., Neumann T., Rescheneder P., Bhat P., Burkard T.R., Wlotzka W., Von Haeseler A., Zuber J., Ameres S.L.. Thiol-linked alkylation of RNA to assess expression dynamics. Nat. Methods. 2017; 14:1198–1204. PubMed PMC
Zhang Y., Park C., Bennett C., Thornton M., Kim D.. Rapid and accurate alignment of nucleotide conversion sequencing reads with HISAT-3N. Genome Res. 2021; 31:1290–1295. PubMed PMC
Corces M.R., Trevino A.E., Hamilton E.G., Greenside P.G., Sinnott-Armstrong N.A., Vesuna S., Satpathy A.T., Rubin A.J., Montine K.S., Wu B.et al. .. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods. 2017; 14:959–962. PubMed PMC
Langmead B., Trapnell C., Pop M., Salzberg S.L.. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009; 10:R25. PubMed PMC
Zhang Y., Liu T., Meyer C.A., Eeckhoute J., Johnson D.S., Bernstein B.E., Nussbaum C., Myers R.M., Brown M., Li W.et al. .. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008; 9:R137. PubMed PMC
Heinz S., Benner C., Spann N., Bertolino E., Lin Y.C., Laslo P., Cheng J.X., Murre C., Singh H., Glass C.K.. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell. 2010; 38:576–589. PubMed PMC
Schep A.N., Wu B., Buenrostro J.D., Greenleaf W.J.. ChromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods. 2017; 14:975–978. PubMed PMC
Cermakova K., Demeulemeester J., Lux V., Nedomova M., Goldman S.R., Smith E.A., Srb P., Hexnerova R., Fabry M., Madlikova M.et al. .. A ubiquitous disordered protein interaction module orchestrates transcription elongation. Science. 2021; 374:1113–1121. PubMed PMC
Patterson D.M., Shohet J.M., Kim E.S.. Preclinical models of pediatric solid tumors (neuroblastoma) and their use in drug discovery. Curr. Protoc. Pharmacol. 2011; Chapter 14:Unit 14.17. PubMed
Bankhead P., Loughrey M.B., Fernández J.A., Dombrowski Y., McArt D.G., Dunne P.D., McQuaid S., Gray R.T., Murray L.J., Coleman H.G.et al. .. QuPath: open source software for digital pathology image analysis. Sci. Rep. 2017; 7:16878. PubMed PMC
Dempster J.M., Boyle I., Vazquez F., Root D., Boehm J.S., Hahn W.C., Tsherniak A., McFarland J.M.. Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects. Genome Biology. 2021; 22:343. PubMed PMC
Zhang W., Yu Y., Hertwig F., Thierry-Mieg J., Zhang W., Thierry-Mieg D., Wang J., Furlanello C., Devanarayan V., Cheng J.et al. .. Comparison of RNA-seq and microarray-based models for clinical endpoint prediction. Genome Biol. 2015; 16:133. PubMed PMC
Bolouri H., Farrar J.E., Triche T., Ries R.E., Lim E.L., Alonzo T.A., Ma Y., Moore R., Mungall A.J., Marra M.A.et al. .. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat. Med. 2018; 24:103–112. PubMed PMC
Pugh T.J., Morozova O., Attiyeh E.F., Asgharzadeh S., Wei J.S., Auclair D., Carter S.L., Cibulskis K., Hanna M., Kiezun A.et al. .. The genetic landscape of high-risk neuroblastoma. Nat. Genet. 2013; 45:279–284. PubMed PMC
Abida W., Cyrta J., Heller G., Prandi D., Armenia J., Coleman I., Cieslik M., Benelli M., Robinson D., Van Allen E.M.et al. .. Genomic correlates of clinical outcome in advanced prostate cancer. Proc. Natl. Acad. Sci. U.S.A. 2019; 116:11428–11436. PubMed PMC
Hothorn T., Lausen B.. On the exact distribution of maximally selected rank statistics. Comput. Stat. Data Anal. 2003; 43:121–137.
Hodges H.C. Code: ‘hodgeslab/workflows’, version 20210915. 2021; Zenodo10.5281/zenodo.5511049. DOI
Upton K., Modi A., Patel K., Kendsersky N.M., Conkrite K.L., Sussman R.T., Way G.P., Adams R.N., Sacks G.I., Fortina P.et al. .. Epigenomic profiling of neuroblastoma cell lines. Sci. Data. 2020; 7:116. PubMed PMC
Harenza J.L., DIamond M.A., Adams R.N., Song M.M., Davidson H.L., Hart L.S., Dent M.H., Fortina P., Reynolds C.P., Maris J.M.. Transcriptomic profiling of 39 commonly-used neuroblastoma cell lines. Sci. Data. 2017; 4:170033. PubMed PMC
Garcia-Dominguez M., Poquet C., Garel S., Charnay P.. Ebf gene function is required for coupling neuronal differentiation and cell cycle exit. Development. 2003; 130:6013–6025. PubMed
Tanaka H., Takizawa Y., Takaku M., Kato D., Kumagawa Y., Grimm S.A., Wade P.A., Kurumizaka H.. Interaction of the pioneer transcription factor GATA3 with nucleosomes. Nat. Commun. 2020; 11:4136. PubMed PMC
Takaku M., Grimm S.A., Shimbo T., Perera L., Menafra R., Stunnenberg H.G., Archer T.K., Machida S., Kurumizaka H., Wade P.A.. GATA3-dependent cellular reprogramming requires activation-domain dependent recruitment of a chromatin remodeler. Genome Biol. 2016; 17:36. PubMed PMC
Muhar M., Ebert A., Neumann T., Umkehrer C., Jude J., Wieshofer C., Rescheneder P., Lipp J.J., Herzog V.A., Reichholf B.et al. .. SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis. Science. 2018; 360:800–805. PubMed PMC
Ando R., Sakaue-Sawano A., Shoda K., Miyawaki A.. Two coral fluorescent proteins of distinct colors for sharp visualization of cell-cycle progression. Cell Struct. Funct. 2023; 48:135–144. PubMed PMC
Matthews H.K., Bertoli C., de Bruin R.A.M.. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol. 2022; 23:74–88. PubMed
Rubin S.M., Sage J., Skotheim J.M.. Integrating old and new paradigms of G1/S control. Mol. Cell. 2020; 80:183–192. PubMed PMC
Strickland S., Mahdavi V.. The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell. 1978; 15:393–403. PubMed
Lo C.S.Y., van Toorn M., Gaggioli V., Dias M.P., Zhu Y., Manolika E.M., Zhao W., van der Does M., Mukherjee C., Souto Gonçalves J.G.S.C.et al. .. SMARCAD1-mediated active replication fork stability maintains genome integrity. Sci. Adv. 2021; 7:eabe7804. PubMed PMC
Matthay K.K., Villablanca J.G., Seeger R.C., Stram D.O., Harris R.E., Ramsay N.K., Swift P., Shimada H., Black C.T., Brodeur G.M.et al. .. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. N. Engl. J. Med. 1999; 341:1165–1173. PubMed
Stubbins R.J., Karsan A.. Differentiation therapy for myeloid malignancies: beyond cytotoxicity. Blood Cancer J. 2021; 11:193. PubMed PMC