• This record comes from PubMed

β-catenin functions as a molecular adapter for disordered cBAF interactions

. 2025 Aug 21 ; 85 (16) : 3041-3056.e9. [epub] 20250721

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
P30 CA125123 NCI NIH HHS - United States
R01 CA220297 NCI NIH HHS - United States
R01 CA272769 NCI NIH HHS - United States
R35 GM137996 NIGMS NIH HHS - United States

Links

PubMed 40695292
PubMed Central PMC12323811
DOI 10.1016/j.molcel.2025.06.026
PII: S1097-2765(25)00576-3
Knihovny.cz E-resources

BAF (SWI/SNF) chromatin remodelers engage binding partners to generate site-specific DNA accessibility. However, the basis for interaction between BAF and divergent binding partners has remained unclear. Here, we tested the hypothesis that scaffold proteins augment BAF's binding repertoire by examining β-catenin (CTNNB1) and steroidogenic factor 1 (SF-1, NR5A1), a transcription factor central to steroid production in human cells. BAF inhibition rapidly opposed SF-1/β-catenin enhancer occupancy, impairing SF-1 target activation and SF-1/β-catenin autoregulation. These effects arise due to β-catenin's role as a molecular adapter between SF-1 and an intrinsically disordered region (IDR) of the canonical BAF (cBAF) subunit ARID1A. In contrast to exclusively IDR-driven mechanisms, adapter function is mediated by direct association of ARID1A with β-catenin's folded Armadillo repeats. β-catenin similarly linked cBAF to YAP1, SOX2, FOXO3, and CBP/p300, reflecting a general IDR-mediated mechanism for modular coordination between factors. Molecular visualization highlights β-catenin's adapter role for interaction of cBAF with binding partners.

Advanced Technology Cores Baylor College of Medicine Houston TX 77030 USA

Center for Precision Environmental Health Baylor College of Medicine Houston TX 77030 USA; Department of Biochemistry and Molecular Pharmacology Baylor College of Medicine Houston TX 77030 USA

Department of Endocrine Neoplasia and Hormonal Disorders The University of Texas MD Anderson Cancer Center Houston TX 77030 USA

Department of Internal Medicine Division of Metabolism Endocrinology and Diabetes University of Michigan Ann Arbor MI 48105 USA

Department of Internal Medicine Division of Metabolism Endocrinology and Diabetes University of Michigan Ann Arbor MI 48105 USA; Endocrine Oncology Program Rogel Cancer Center University of Michigan Health System Ann Arbor MI 48109 USA

Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX 77030 USA; Advanced Technology Cores Baylor College of Medicine Houston TX 77030 USA; Dan L Duncan Comprehensive Cancer Center Baylor College of Medicine Houston TX 77030 USA

Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX 77030 USA; Center for Precision Environmental Health Baylor College of Medicine Houston TX 77030 USA

Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX 77030 USA; Center for Precision Environmental Health Baylor College of Medicine Houston TX 77030 USA; Dan L Duncan Comprehensive Cancer Center Baylor College of Medicine Houston TX 77030 USA; Department of Bioengineering Rice University Houston TX 77030 USA

Department of Pathology The University of Texas MD Anderson Cancer Center Houston TX 77030 USA

Division of Endocrinology Metabolism and Diabetes Department of Medicine University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora CO 80045 USA; Research Service Rocky Mountain Regional Veterans Affairs Medical Center Aurora CO 80045 USA

Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic

Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic; Department of Cell Biology Faculty of Science Charles University Prague Czech Republic

See more in PubMed

Cermakova K, Tao L, Dejmek M, Sala M, Montierth MD, Chan YS, Patel I, Chambers C, Loeza Cabrera M, Hoffman D, et al. (2023). Reactivation of the G1 enhancer landscape underlies core circuitry addiction to SWI/SNF. Nucleic Acids Res. 10.1093/nar/gkad1081. PubMed DOI PMC

Chambers C, Cermakova K, Chan YS, Kurtz K, Wohlan K, Lewis AH, Wang C, Pham A, Dejmek M, Sala M, et al. (2023). SWI/SNF Blockade Disrupts PU.1-Directed Enhancer Programs in Normal Hematopoietic Cells and Acute Myeloid Leukemia. Cancer Res 83, 983–996. 10.1158/0008-5472.CAN-22-2129. PubMed DOI PMC

Hodges HC, Stanton BZ, Cermakova K, Chang C-Y, Miller EL, Kirkland JG, Ku WL, Veverka V, Zhao K, and Crabtree GR (2018). Dominant-negative SMARCA4 mutants alter the accessibility landscape of tissue-unrestricted enhancers. Nat Struct Mol Biol 25, 61–72. 10.1038/s41594-017-0007-3. PubMed DOI PMC

Stanton BZ, Hodges C, Calarco JP, Braun SMG, Ku WL, Kadoch C, Zhao K, and Crabtree GR (2017). Smarca4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nat Genet. 10.1038/ng.3735. PubMed DOI PMC

Kadoch C, Williams RT, Calarco JP, Miller EL, Weber CM, Braun SMG, Pulice JL, Chory EJ, and Crabtree GR (2017). Dynamics of BAF–Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat Genet 49, 213–222. 10.1038/ng.3734. PubMed DOI PMC

Bayona-Feliu A, Barroso S, Muñoz S, and Aguilera A (2021). The SWI/SNF chromatin remodeling complex helps resolve R-loop-mediated transcription–replication conflicts. Nat Genet 53, 1050–1063. 10.1038/s41588-021-00867-2. PubMed DOI

Watanabe R, Ui A, Kanno S, Ogiwara H, Nagase T, Kohno T, and Yasui A (2014). SWI/SNF Factors Required for Cellular Resistance to DNA Damage Include ARID1A and ARID1B and Show Interdependent Protein Stability. Cancer Res 74, 2465–2475. 10.1158/0008-5472.CAN-13-3608. PubMed DOI

Lee H-S, Park J-H, Kim S-J, Kwon S-J, and Kwon J (2010). A cooperative activation loop among SWI/SNF, γ-H2AX and H3 acetylation for DNA double-strand break repair. EMBO J 29, 1434–1445. 10.1038/emboj.2010.27. PubMed DOI PMC

Batsché E, Yaniv M, and Muchardt C (2006). The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol 13, 22–29. 10.1038/nsmb1030. PubMed DOI

Hodges C, Kirkland JG, and Crabtree GR (2016). The Many Roles of BAF (mSWI/SNF) and PBAF Complexes in Cancer. Cold Spring Harb Perspect Med 6, a026930. 10.1101/cshperspect.a026930. PubMed DOI PMC

Karki M, Jangid RK, Anish R, Seervai RNH, Bertocchio J-P, Hotta T, Msaouel P, Jung SY, Grimm SL, Coarfa C, et al. (2021). A cytoskeletal function for PBRM1 reading methylated microtubules. Sci Adv 7. 10.1126/sciadv.abf2866. PubMed DOI PMC

Ho L, Ronan JL, Wu J, Staahl BT, Chen L, Kuo A, Lessard J, Nesvizhskii AI, Ranish J, and Crabtree GR (2009). An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proceedings of the National Academy of Sciences 106, 5181–5186. 10.1073/pnas.0812889106. PubMed DOI PMC

Patil A, Strom AR, Paulo JA, Collings CK, Ruff KM, Shinn MK, Sankar A, Cervantes KS, Wauer T, St. Laurent JD, et al. (2023). A disordered region controls cBAF activity via condensation and partner recruitment. Cell 186, 4936–4955.e26. 10.1016/j.cell.2023.08.032. PubMed DOI PMC

Barisic D, Stadler MB, Iurlaro M, and Schübeler D (2019). Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors. Nature. 10.1038/s41586-019-1115-5. PubMed DOI PMC

Alver BH, Kim KH, Lu P, Wang X, Manchester HE, Wang W, Haswell JR, Park PJ, and Roberts CWM (2017). The SWI/SNF chromatin remodelling complex is required for maintenance of lineage specific enhancers. Nat Commun 8, 14648. 10.1038/ncomms14648. PubMed DOI PMC

Miller EL, Hargreaves DC, Kadoch C, Chang CY, Calarco JP, Hodges C, Buenrostro JD, Cui K, Greenleaf WJ, Zhao K, et al. (2017). TOP2 synergizes with BAF chromatin remodeling for both resolution and formation of facultative heterochromatin. Nat Struct Mol Biol. 10.1038/nsmb.3384. PubMed DOI PMC

Brahma S, and Henikoff S (2024). The BAF chromatin remodeler synergizes with RNA polymerase II and transcription factors to evict nucleosomes. Nat Genet 56, 100–111. 10.1038/s41588-023-01603-8. PubMed DOI PMC

Hainer SJ, Gu W, Carone BR, Landry BD, Rando OJ, Mello CC, and Fazzio TG (2015). Suppression of pervasive noncoding transcription in embryonic stem cells by esBAF. Genes Dev 29, 362–378. 10.1101/gad.253534.114. PubMed DOI PMC

Saha D, Animireddy S, Lee J, Thommen A, Murvin MM, Lu Y, Calabrese JM, and Bartholomew B (2024). Enhancer switching in cell lineage priming is linked to eRNA, Brg1’s AT-hook, and SWI/SNF recruitment. Mol Cell 84, 1855–1869.e5. 10.1016/j.molcel.2024.03.013. PubMed DOI PMC

Mashtalir N, Suzuki H, Farrell DP, Sankar A, Luo J, Filipovski M, D’Avino AR, St. Pierre R, Valencia AM, Onikubo T, et al. (2020). A Structural Model of the Endogenous Human BAF Complex Informs Disease Mechanisms. Cell 183, 802–817.e24. 10.1016/j.cell.2020.09.051. PubMed DOI PMC

He S, Wu Z, Tian Y, Yu Z, Yu J, Wang X, Li J, Liu B, and Xu Y (2020). Structure of nucleosome-bound human BAF complex. Science 367, 875–881. 10.1126/science.aaz9761. PubMed DOI

Han Y, Reyes AA, Malik S, and He Y (2020). Cryo-EM structure of SWI/SNF complex bound to a nucleosome. Nature 579, 452–455. 10.1038/s41586-020-2087-1. PubMed DOI PMC

Wagner FR, Dienemann C, Wang H, Stützer A, Tegunov D, Urlaub H, and Cramer P (2020). Structure of SWI/SNF chromatin remodeller RSC bound to a nucleosome. Nature 579, 448–451. 10.1038/s41586-020-2088-0. PubMed DOI PMC

Mashtalir N, D’Avino AR, Michel BC, Luo J, Pan J, Otto JE, Zullow HJ, McKenzie ZM, Kubiak RL, St. Pierre R, et al. (2018). Modular Organization and Assembly of SWI/SNF Family Chromatin Remodeling Complexes. Cell 175, 1272–1288.e20. 10.1016/j.cell.2018.09.032. PubMed DOI PMC

Maxwell MB, Hom-Tedla MS, Yi J, Li S, Rivera SA, Yu J, Burns MJ, McRae HM, Stevenson BT, Coakley KE, et al. (2024). ARID1A suppresses R-loop-mediated STING-type I interferon pathway activation of anti-tumor immunity. Cell 187, 3390–3408.e19. 10.1016/j.cell.2024.04.025. PubMed DOI PMC

Grossi E, Nguyen CB, Carcamo S, Kirigin Callaú V, Moran S, Filipescu D, Tagore S, Firestone TM, Keogh MC, Sun L, Izar B, Hasson D, Bernstein E The SWI/SNF PBAF complex facilitates REST occupancy at repressive chromatin. Mol Cell. 2025. May 1;85(9):1714–1729.e7. doi: 10.1016/j.molcel.2025.03.026. Epub 2025 Apr 18. PubMed DOI PMC

Alpsoy A, and Dykhuizen EC (2018). Glioma tumor suppressor candidate region gene 1 (GLTSCR1) and its paralog GLTSCR1-like form SWI/SNF chromatin remodeling subcomplexes. Journal of Biological Chemistry 293, 3892–3903. 10.1074/jbc.RA117.001065. PubMed DOI PMC

Cermakova K, and Hodges HC (2023). Interaction modules that impart specificity to disordered protein. Trends Biochem Sci 48, 477–490. 10.1016/j.tibs.2023.01.004. PubMed DOI PMC

Kim YR, Joo J, Lee HJ, Kim C, Park J-C, Yu YS, Kim CR, Lee DH, Cha J, Kwon H, et al. (2024). Prion-like domain mediated phase separation of ARID1A promotes oncogenic potential of Ewing’s sarcoma. Nat Commun 15, 6569. 10.1038/s41467-024-51050-0. PubMed DOI PMC

Farag M, Borcherds WM, Bremer A, Mittag T, and Pappu RV (2023). Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions. Nat Commun 14, 5527. 10.1038/s41467-023-41274-x. PubMed DOI PMC

Lyons H, Veettil RT, Pradhan P, Fornero C, De La Cruz N, Ito K, Eppert M, Roeder RG, and Sabari BR (2023). Functional partitioning of transcriptional regulators by patterned charge blocks. Cell 186, 327–345.e28. 10.1016/j.cell.2022.12.013. PubMed DOI PMC

Zamudio AV, Dall’Agnese A, Henninger JE, Manteiga JC, Afeyan LK, Hannett NM, Coffey EL, Li CH, Oksuz O, Sabari BR, et al. (2019). Mediator Condensates Localize Signaling Factors to Key Cell Identity Genes. Mol Cell 76, 753–766.e6. 10.1016/j.molcel.2019.08.016. PubMed DOI PMC

Pei G, Lyons H, Li P, and Sabari BR (2024). Transcription regulation by biomolecular condensates. Nat Rev Mol Cell Biol. 10.1038/s41580-024-00789-x. PubMed DOI PMC

Cermakova K, Demeulemeester J, Lux V, Nedomova M, Goldman SR, Smith EA, Srb P, Hexnerova R, Fabry M, Madlikova M, et al. (2021). A ubiquitous disordered protein interaction module orchestrates transcription elongation. Science 374, 1113–1121. 10.1126/science.abe2913. PubMed DOI PMC

Martin EW, Thomasen FE, Milkovic NM, Cuneo MJ, Grace CR, Nourse A, Lindorff-Larsen K, and Mittag T (2021). Interplay of folded domains and the disordered low-complexity domain in mediating hnRNPA1 phase separation. Nucleic Acids Res 49, 2931–2945. 10.1093/nar/gkab063. PubMed DOI PMC

Davey NE, Simonetti L, and Ivarsson Y (2023). The next wave of interactomics: Mapping the SLiM-based interactions of the intrinsically disordered proteome. Curr Opin Struct Biol 80, 102593. 10.1016/j.sbi.2023.102593. PubMed DOI

Lazar T, Tantos A, Tompa P, and Schad E (2022). Intrinsic protein disorder uncouples affinity from binding specificity. Protein Sci 31, e4455. 10.1002/pro.4455. PubMed DOI PMC

Ghoneim M, Fuchs HA, and Musselman CA (2021). Histone Tail Conformations: A Fuzzy Affair with DNA. Trends Biochem Sci 46, 564–578. 10.1016/j.tibs.2020.12.012. PubMed DOI PMC

Brown AD, Cranstone C, Dupré DJ, and Langelaan DN (2023). β-Catenin interacts with the TAZ1 and TAZ2 domains of CBP/p300 to activate gene transcription. Int J Biol Macromol 238, 124155. 10.1016/j.ijbiomac.2023.124155. PubMed DOI

Cermakova K, Veverka V, and Hodges HC (2023). The TFIIS N-terminal domain (TND): a transcription assembly module at the interface of order and disorder. Biochem Soc Trans 51, 125–135. 10.1042/BST20220342. PubMed DOI PMC

Valenta T, Hausmann G, and Basler K (2012). The many faces and functions of β-catenin. EMBO J 31, 2714–2736. 10.1038/emboj.2012.150. PubMed DOI PMC

Lickert H, Takeuchi JK, von Both I, Walls JR, McAuliffe F, Lee Adamson S, Mark Henkelman R, Wrana JL, Rossant J, and Bruneau BG (2004). Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature 432, 107–112. 10.1038/nature03071. PubMed DOI

Barker N (2001). The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. EMBO J 20, 4935–4943. 10.1093/emboj/20.17.4935. PubMed DOI PMC

Sharma T, Olea-Flores M, and Imbalzano AN (2023). Regulation of the Wnt signaling pathway during myogenesis by the mammalian SWI/SNF ATPase BRG1. Front Cell Dev Biol 11, 1160227. 10.3389/fcell.2023.1160227. PubMed DOI PMC

Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT, Schafer EJ, Zack TI, Wang X, Tsherniak A, Schinzel AC, et al. (2012). β-Catenin-Driven Cancers Require a YAP1 Transcriptional Complex for Survival and Tumorigenesis. Cell 151, 1457–1473. 10.1016/j.cell.2012.11.026. PubMed DOI PMC

Mukherjee S, Luedeke DM, McCoy L, Iwafuchi M, and Zorn AM (2022). SOX transcription factors direct TCF-independent WNT/β-catenin responsive transcription to govern cell fate in human pluripotent stem cells. Cell Rep 40, 111247. 10.1016/j.celrep.2022.111247. PubMed DOI PMC

Essers MAG, de Vries-Smits LMM, Barker N, Polderman PE, Burgering BMT, and Korswagen HC (2005). Functional Interaction Between ß-Catenin and FOXO in Oxidative Stress Signaling. Science 308, 1181–1184. 10.1126/science.1109083. PubMed DOI

Mohan DR, Borges KS, Finco I, LaPensee CR, Rege J, Solon AL, Little DW, Else T, Almeida MQ, Dang D, et al. (2023). β-Catenin–Driven Differentiation Is a Tissue-Specific Epigenetic Vulnerability in Adrenal Cancer. Cancer Res 83, 2123–2141. 10.1158/0008-5472.CAN-22-2712. PubMed DOI PMC

Berthon A, Martinez A, Bertherat J, and Val P (2012). Wnt/β-catenin signalling in adrenal physiology and tumour development. Mol Cell Endocrinol 351, 87–95. 10.1016/j.mce.2011.09.009. PubMed DOI

Doughty BR, Hinks MM, Schaepe JM, Marinov GK, Thurm AR, Rios-Martinez C, Parks BE, Tan Y, Marklund E, Dubocanin D, et al. (2024). Single-molecule states link transcription factor binding to gene expression. Nature. 10.1038/s41586-024-08219-w. PubMed DOI PMC

Yang JH, and Hansen AS (2024). Enhancer selectivity in space and time: from enhancer–promoter interactions to promoter activation. Nat Rev Mol Cell Biol 25, 574–591. 10.1038/s41580-024-00710-6. PubMed DOI PMC

Doghman M, Figueiredo BC, Volante M, Papotti M, and Lalli E (2013). Integrative analysis of SF-1 transcription factor dosage impact on genome-wide binding and gene expression regulation. Nucleic Acids Res 41. 10.1093/nar/gkt658. PubMed DOI PMC

Ruiz-Babot G, Eceiza A, Abollo-Jiménez F, Malyukov M, Carlone DL, Borges K, Da Costa AR, Qarin S, Matsumoto T, Morizane R, et al. (2023). Generation of glucocorticoid-producing cells derived from human pluripotent stem cells. Cell reports methods 3, 100627. 10.1016/j.crmeth.2023.100627. PubMed DOI PMC

Val P, Lefrançois-Martinez A-M, Veyssière G, and Martinez A (2003). SF-1 a key player in the development and differentiation of steroidogenic tissues. Nucl Recept 1, 8. 10.1186/1478-1336-1-8. PubMed DOI PMC

Schimmer BP, and White PC (2010). Minireview: Steroidogenic Factor 1: Its Roles in Differentiation, Development, and Disease. Molecular Endocrinology 24, 1322–1337. 10.1210/me.2009-0519. PubMed DOI PMC

Zheng S, Cherniack AD, Dewal N, Moffitt RA, Danilova L, Murray BA, Lerario AM, Else T, Knijnenburg TA, Ciriello G, et al. (2016). Comprehensive pan-genomic characterization of adrenocortical carcinoma. Cancer Cell. 10.1016/j.ccell.2016.04.002. PubMed DOI PMC

Logié A, Boudou P, Boccon-Gibod L, Baudin E, Vassal G, Schlumberger M, Le Bouc Y, and Gicquel C (2000). Establishment and characterization of a human adrenocortical carcinoma xenograft model. Endocrinology 141. 10.1210/endo.141.9.7668. PubMed DOI

Kiseljak-Vassiliades K, Zhang Y, Bagby SM, Kar A, Pozdeyev N, Xu M, Gowan K, Sharma V, Raeburn CD, Albuja-Cruz M, et al. (2018). Development of new preclinical models to advance adrenocortical carcinoma research. Endocr Relat Cancer 25, 437–451. 10.1530/ERC-17-0447. PubMed DOI PMC

Papillon JPN, Nakajima K, Adair CD, Hempel J, Jouk AO, Karki RG, Mathieu S, Möbitz H, Ntaganda R, Smith T, et al. (2018). Discovery of Orally Active Inhibitors of Brahma Homolog (BRM)/SMARCA2 ATPase Activity for the Treatment of Brahma Related Gene 1 (BRG1)/SMARCA4-Mutant Cancers. J Med Chem. 10.1021/acs.jmedchem.8b01318. PubMed DOI

Martin BJE, Ablondi EF, Goglia C, Mimoso CA, Espinel-Cabrera PR, and Adelman K (2023). Global identification of SWI/SNF targets reveals compensation by EP400. Cell 186, 5290–5307.e26. 10.1016/j.cell.2023.10.006. PubMed DOI PMC

Duplaquet L, So K, Ying AW, Pal Choudhuri S, Li X, Xu GD, Li Y, Qiu X, Li R, Singh S, et al. (2024). Mammalian SWI/SNF complex activity regulates POU2F3 and constitutes a targetable dependency in small cell lung cancer. Cancer Cell 42, 1352–1369.e13. 10.1016/j.ccell.2024.06.012. PubMed DOI PMC

Xiao L, Parolia A, Qiao Y, Bawa P, Eyunni S, Mannan R, Carson SE, Chang Y, Wang X, Zhang Y, et al. (2022). Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer. Nature 601, 434–439. 10.1038/s41586-021-04246-z. PubMed DOI PMC

Ernst J, and Kellis M (2017). Chromatin-state discovery and genome annotation with ChromHMM. Nat Protoc 12, 2478–2492. 10.1038/nprot.2017.124. PubMed DOI PMC

Lemon B, Inouye C, King DS, and Tjian R (2001). Selectivity of chromatinremodelling cofactors for ligand-activated transcription. Nature 414, 924–928. 10.1038/414924a. PubMed DOI

Zubair M, Ishihara S, Oka S, Okumura K, and Morohashi K (2006). Two-Step Regulation of Ad4BP/SF-1 Gene Transcription during Fetal Adrenal Development: Initiation by a Hox-Pbx1-Prep1 Complex and Maintenance via Autoregulation by Ad4BP/SF-1. Mol Cell Biol 26, 4111–4121. 10.1128/MCB.00222-06. PubMed DOI PMC

Mizusaki H, Kawabe K, Mukai T, Ariyoshi E, Kasahara M, Yoshioka H, Swain A, and Morohashi K (2003). Dax-1 (Dosage-Sensitive Sex Reversal-Adrenal Hypoplasia Congenita Critical Region on the X Chromosome, Gene 1) Gene Transcription Is Regulated by Wnt4 in the Female Developing Gonad. Molecular Endocrinology 17, 507–519. 10.1210/me.2002-0362. PubMed DOI

Poy F, Lepourcelet M, Shivdasani RA, and Eck MJ (2001). Structure of a human Tcf4–β-catenin complex. Nat Struct Biol 8, 1053–1057. 10.1038/nsb720. PubMed DOI

Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick J, et al. (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500. 10.1038/s41586-024-07487-w. PubMed DOI PMC

Omidi A, Møller MH, Malhis N, Bui JM, and Gsponer J (2024). AlphaFold-Multimer accurately captures interactions and dynamics of intrinsically disordered protein regions. Proceedings of the National Academy of Sciences 121. 10.1073/pnas.2406407121. PubMed DOI PMC

Hecht A (2000). The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. EMBO J 19, 1839–1850. 10.1093/emboj/19.8.1839. PubMed DOI PMC

Field A, and Adelman K (2020). Evaluating Enhancer Function and Transcription. Annu Rev Biochem 89, 213–234. 10.1146/annurev-biochem-011420-095916. PubMed DOI

Blassberg R, Patel H, Watson T, Gouti M, Metzis V, Delás MJ, and Briscoe J (2022). Sox2 levels regulate the chromatin occupancy of WNT mediators in epiblast progenitors responsible for vertebrate body formation. Nat Cell Biol 24, 633–644. 10.1038/s41556-022-00910-2. PubMed DOI PMC

Hoogeboom D, Essers MAG, Polderman PE, Voets E, Smits LMM, and Burgering B.M.Th. (2008). Interaction of FOXO with β-Catenin Inhibits β-Catenin/T Cell Factor Activity. Journal of Biological Chemistry 283, 9224–9230. 10.1074/jbc.M706638200. PubMed DOI

Ito T, Yamauchi M, Nishina M, Yamamichi N, Mizutani T, Ui M, Murakami M, and Iba H (2001). Identification of SWI·SNF Complex Subunit BAF60a as a Determinant of the Transactivation Potential of Fos/Jun Dimers. Journal of Biological Chemistry 276, 2852–2857. 10.1074/jbc.M009633200. PubMed DOI

Kong C, Qu X, Liu M, Xu W, Chen D, Zhang Y, Zhang S, Zhu F, Liu Z, Li J, et al. (2023). Dynamic interactions between E-cadherin and Ankyrin-G mediate epithelial cell polarity maintenance. Nat Commun 14, 6860. 10.1038/s41467-023-42628-1. PubMed DOI PMC

Rudeen AJ, Douglas JT, Xing M, McDonald WH, Lamb AL, and Neufeld KL (2020). The 15-Amino Acid Repeat Region of Adenomatous Polyposis Coli Is Intrinsically Disordered and Retains Conformational Flexibility upon Binding β-Catenin. Biochemistry 59, 4039–4050. 10.1021/acs.biochem.0c00479. PubMed DOI PMC

Nong J, Kang K, Shi Q, Zhu X, Tao Q, and Chen Y-G (2021). Phase separation of Axin organizes the β-catenin destruction complex. Journal of Cell Biology 220. 10.1083/jcb.202012112. PubMed DOI PMC

Richter G, Gui T, Bourgeois B, Koyani CN, Ulz P, Heitzer E, von Lewinski D, Burgering BMT, Malle E, and Madl T (2021). β‐catenin regulates FOXP2 transcriptional activity via multiple binding sites. FEBS J 288, 3261–3284. 10.1111/febs.15656. PubMed DOI PMC

Bourgeois B, Gui T, Hoogeboom D, Hocking HG, Richter G, Spreitzer E, Viertler M, Richter K, Madl T, and Burgering BMT (2021). Multiple regulatory intrinsically disordered motifs control FOXO4 transcription factor binding and function. Cell Rep 36, 109446. 10.1016/j.celrep.2021.109446. PubMed DOI

Gui T, Fleming C, Manzato C, Bourgeois B, Sirati N, Heuer J, Papadionysiou I, Montfort DI, van Gijzen M, van Smits LMM, et al. (2023). Targeted perturbation of signaling-driven condensates. Mol Cell 83, 4141–4157.e11. 10.1016/j.molcel.2023.10.023. PubMed DOI

Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, and Melton DA (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26, 1269–1275. 10.1038/nbt.1502. PubMed DOI

Morris BJ, Willcox DC, Donlon TA, and Willcox BJ (2015). FOXO3; A Major Gene for Human Longevity - A Mini-Review. Gerontology 61, 515–525. 10.1159/000375235. PubMed DOI PMC

Varelas X (2014). The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development 141, 1614–1626. 10.1242/dev.102376. PubMed DOI

Xu G, Chhangawala S, Cocco E, Razavi P, Cai Y, Otto JE, Ferrando L, Selenica P, Ladewig E, Chan C, et al. (2020). ARID1A determines luminal identity and therapeutic response in estrogen-receptor-positive breast cancer. Nat Genet 52, 198–207. 10.1038/s41588-019-0554-0. PubMed DOI PMC

Kenneth NS, Mudie S, van Uden P, and Rocha S (2009). SWI/SNF regulates the cellular response to hypoxia. J Biol Chem 284, 4123–4131. 10.1074/jbc.M808491200. PubMed DOI

Dreier MR, Walia J, and de la Serna IL (2024). Targeting SWI/SNF Complexes in Cancer: Pharmacological Approaches and Implications. Epigenomes 8, 7. 10.3390/epigenomes8010007. PubMed DOI PMC

DiNardo CD, Savona MR, Kishtagari A, Fathi AT, Bhalla KN, Agresta S, Reilly S, Almon C, Hentemann M, Hickman D, et al. (2023). Preliminary Results from a Phase 1 Dose Escalation Study of FHD-286, a Novel BRG1/BRM (SMARCA4/SMARCA2) Inhibitor, Administered As an Oral Monotherapy in Patients with Advanced Hematologic Malignancies. Blood 142, 4284–4284. 10.1182/blood-2023-178090. DOI

DiNardo CD, Fathi AT, Kishtagari A, Bhalla KN, Quintás-Cardama A, Reilly SA, Almon C, Patriquin C, Nabhan S, Healy K, et al. (2025). A Phase 1 Study of FHD-286, a Dual BRG1/BRM (SMARCA4/SMARCA2) Inhibitor, in Patients With Advanced Myeloid Malignancies. Clin Cancer Res. 10.1158/1078-0432.CCR-24-3790. PubMed DOI

Martinez GJ, Appleton M, Kipp ZA, Loria AS, Min B, and Hinds TD (2024). Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. Physiol Rev 104, 473–532. 10.1152/physrev.00021.2023. PubMed DOI PMC

Acharya N, Madi A, Zhang H, Klapholz M, Escobar G, Dulberg S, Christian E, Ferreira M, Dixon KO, Fell G, et al. (2020). Endogenous Glucocorticoid Signaling Regulates CD8+ T Cell Differentiation and Development of Dysfunction in the Tumor Microenvironment. Immunity 53, 658–671.e6. 10.1016/j.immuni.2020.08.005. PubMed DOI PMC

He X-Y, Ng D, Van Aelst L, and Egeblad M (2019). Stressing Out about Cancer Immunotherapy. Cancer Cell 36, 468–470. 10.1016/j.ccell.2019.10.013. PubMed DOI

Borgers JSW, Tobin RP, Torphy RJ, Vorwald VM, Van Gulick RJ, Amato CM, Cogswell DT, Chimed T-S, Couts KL, Van Bokhoven A, et al. (2021). Melanoma Metastases to the Adrenal Gland Are Highly Resistant to Immune Checkpoint Inhibitors. Journal of the National Comprehensive Cancer Network 19, 53–63. 10.6004/jnccn.2020.7800. PubMed DOI

Pegna GJ, Roper N, Kaplan RN, Bergsland E, Kiseljak-Vassiliades K, Habra MA, Pommier Y, and Del Rivero J (2021). The Immunotherapy Landscape in Adrenocortical Cancer. Cancers (Basel) 13, 2660. 10.3390/cancers13112660. PubMed DOI PMC

Araujo-Castro M, Pascual-Corrales E, Molina-Cerrillo J, and Alonso-Gordoa T (2021). Immunotherapy in Adrenocortical Carcinoma: Predictors of Response, Efficacy, Safety, and Mechanisms of Resistance. Biomedicines 9, 304. 10.3390/biomedicines9030304. PubMed DOI PMC

Landwehr L-S, Altieri B, Schreiner J, Sbiera I, Weigand I, Kroiss M, Fassnacht M, and Sbiera S (2020). Interplay between glucocorticoids and tumor-infiltrating lymphocytes on the prognosis of adrenocortical carcinoma. J Immunother Cancer 8. 10.1136/jitc-2019-000469. PubMed DOI PMC

Wilmouth JJ, Olabe J, Garcia-Garcia D, Lucas C, Guiton R, Roucher-Boulez F, Dufour D, Damon-Soubeyrand C, Sahut-Barnola I, Pointud J-C, et al. (2022). Sexually dimorphic activation of innate antitumor immunity prevents adrenocortical carcinoma development. Sci Adv 8, eadd0422. 10.1126/sciadv.add0422. PubMed DOI PMC

Hodges HC Code: ‘hodgeslab/workflows’, Version 20210915. Zenodo. 10.5281/zenodo.5511049. DOI

Sanjana NE, Shalem O, and Zhang F (2014). Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11, 783–784. 10.1038/nmeth.3047. PubMed DOI PMC

Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, and Kinzler KW (1997). Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275, 1787–1790. 10.1126/science.275.5307.1787. PubMed DOI

Langmead B, and Salzberg SL (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359. 10.1038/nmeth.1923. PubMed DOI PMC

Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nussbaum C, Myers RM, Brown M, Li W, et al. (2008). Model-based analysis of ChIP-Seq (MACS). Genome Biol. 10.1186/gb-2008-9-9-r137. PubMed DOI PMC

Stark R, and Brown G (2011). DiffBind : differential binding analysis of ChIP-Seq peak data. Bioconductor. 10.18129/B9.bioc.DiffBind. DOI

Love MI, Huber W, and Anders S (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 10.1186/s13059-014-0550-8. PubMed DOI PMC

Quinlan AR, and Hall IM (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842. 10.1093/bioinformatics/btq033. PubMed DOI PMC

Pohl A, and Beato M (2014). bwtool: a tool for bigWig files. Bioinformatics 30, 1618–1619. 10.1093/bioinformatics/btu056. PubMed DOI PMC

Kim D, Paggi JM, Park C, Bennett C, and Salzberg SL (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37, 907–915. 10.1038/s41587-019-0201-4. PubMed DOI PMC

Anders S, Pyl PT, and Huber W (2015). HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169. 10.1093/bioinformatics/btu638. PubMed DOI PMC

Korotkevich G, Sukhov V, and Sergushichev A (2019). Fast gene set enrichment analysis. Preprint of BioRxiv. bioRxiv 10.1101/060012. DOI

Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, and Glass CK (2010). Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities. Mol Cell. 10.1016/j.molcel.2010.05.004. PubMed DOI PMC

Schep AN, Wu B, Buenrostro JD, and Greenleaf WJ (2017). ChromVAR: Inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat Methods. 10.1038/nmeth.4401. PubMed DOI PMC

Schoenfelder S, Javierre B-M, Furlan-Magaril M, Wingett SW, and Fraser P (2018). Promoter Capture Hi-C: High-resolution, Genome-wide Profiling of Promoter Interactions. Journal of Visualized Experiments. 10.3791/57320. PubMed DOI PMC

Krijger PHL, Geeven G, Bianchi V, Hilvering CRE, and de Laat W (2020). 4C-seq from beginning to end: A detailed protocol for sample preparation and data analysis. Methods 170, 17–32. 10.1016/j.ymeth.2019.07.014. PubMed DOI

Montefiori LE, Sobreira DR, Sakabe NJ, Aneas I, Joslin AC, Hansen GT, Bozek G, Moskowitz IP, McNally EM, and Nóbrega MA (2018). A promoter interaction map for cardiovascular disease genetics. Elife 7. 10.7554/eLife.35788. PubMed DOI PMC

Lopez-Delisle L, Rabbani L, Wolff J, Bhardwaj V, Backofen R, Grüning B, Ramírez F, and Manke T (2021). pyGenomeTracks: reproducible plots for multivariate genomic datasets. Bioinformatics 37, 422–423. 10.1093/bioinformatics/btaa692. PubMed DOI PMC

Sarpe V, Rafiei A, Hepburn M, Ostan N, Schryvers AB, and Schriemer DC (2016). High Sensitivity Crosslink Detection Coupled With Integrative Structure Modeling in the Mass Spec Studio. Mol Cell Proteomics 15, 3071–3080. 10.1074/mcp.O116.058685. PubMed DOI PMC

Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, McQuaid S, Gray RT, Murray LJ, Coleman HG, et al. (2017). QuPath: Open source software for digital pathology image analysis. Sci Rep 7, 16878. 10.1038/s41598-017-17204-5. PubMed DOI PMC

Gu Z, Eils R, and Schlesner M (2016). Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849. 10.1093/bioinformatics/btw313. PubMed DOI

Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, Sabedot TS, Malta TM, Pagnotta SM, Castiglioni I, et al. (2016). TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res 44, e71. 10.1093/nar/gkv1507. PubMed DOI PMC

Sean D, and Meltzer PS (2007). GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 10.1093/bioinformatics/btm254. PubMed DOI

Therneau TM, and Grambsch PM (2000). Modeling Survival Data: Extending the Cox Model (Springer; ).

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, and Smyth GK (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43, e47–e47. 10.1093/nar/gkv007. PubMed DOI PMC

Muzzi JCD, Magno JM, Cardoso MA, de Moura J, Castro MAA, and Figueiredo BC (2021). Adrenocortical Carcinoma Steroid Profiles: In Silico Pan-Cancer Analysis of TCGA Data Uncovers Immunotherapy Targets for Potential Improved Outcomes. Front Endocrinol (Lausanne) 12. 10.3389/fendo.2021.672319. PubMed DOI PMC

Venables WN, and Ripley BD (2002). Modern Applied Statistics with S Fourth edition (Springer; ).

Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, and Müller M (2011). pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12, 77. 10.1186/1471-2105-12-77. PubMed DOI PMC

Krieger E, and Vriend G (2014). YASARA View—molecular graphics for all devices—from smartphones to workstations. Bioinformatics 30, 2981–2982. 10.1093/bioinformatics/btu426. PubMed DOI PMC

Hatazawa S, Liu J, Takizawa Y, Zandian M, Negishi L, Kutateladze TG, and Kurumizaka H (2022). Structural basis for binding diversity of acetyltransferase p300 to the nucleosome. iScience 25, 104563. 10.1016/j.isci.2022.104563. PubMed DOI PMC

Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, and Skrzypek E (2015). PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43, D512–D520. 10.1093/nar/gku1267. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...