β-catenin functions as a molecular adapter for disordered cBAF interactions
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
P30 CA125123
NCI NIH HHS - United States
R01 CA220297
NCI NIH HHS - United States
R01 CA272769
NCI NIH HHS - United States
R35 GM137996
NIGMS NIH HHS - United States
PubMed
40695292
PubMed Central
PMC12323811
DOI
10.1016/j.molcel.2025.06.026
PII: S1097-2765(25)00576-3
Knihovny.cz E-resources
- Keywords
- IDRs, adrenocortical carcinoma, chromatin remodeling, co-activators, scaffold proteins, steroid hormones, transcription factors, transcription regulators, unstructured protein,
- MeSH
- Adaptor Proteins, Signal Transducing metabolism genetics MeSH
- beta Catenin * metabolism genetics chemistry MeSH
- DNA-Binding Proteins * metabolism genetics chemistry MeSH
- Phosphoproteins metabolism genetics MeSH
- HEK293 Cells MeSH
- Nuclear Proteins * metabolism genetics MeSH
- Humans MeSH
- Forkhead Box Protein O3 metabolism genetics MeSH
- YAP-Signaling Proteins MeSH
- Signal Transduction MeSH
- Steroidogenic Factor 1 * metabolism genetics MeSH
- p300-CBP Transcription Factors metabolism genetics MeSH
- Transcription Factors * metabolism genetics chemistry MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Intrinsically Disordered Proteins * metabolism genetics MeSH
- Enhancer Elements, Genetic MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Adaptor Proteins, Signal Transducing MeSH
- ARID1A protein, human MeSH Browser
- beta Catenin * MeSH
- CTNNB1 protein, human MeSH Browser
- DNA-Binding Proteins * MeSH
- Phosphoproteins MeSH
- Nuclear Proteins * MeSH
- NR5A1 protein, human MeSH Browser
- Forkhead Box Protein O3 MeSH
- YAP-Signaling Proteins MeSH
- Steroidogenic Factor 1 * MeSH
- p300-CBP Transcription Factors MeSH
- Transcription Factors * MeSH
- Intrinsically Disordered Proteins * MeSH
- YAP1 protein, human MeSH Browser
BAF (SWI/SNF) chromatin remodelers engage binding partners to generate site-specific DNA accessibility. However, the basis for interaction between BAF and divergent binding partners has remained unclear. Here, we tested the hypothesis that scaffold proteins augment BAF's binding repertoire by examining β-catenin (CTNNB1) and steroidogenic factor 1 (SF-1, NR5A1), a transcription factor central to steroid production in human cells. BAF inhibition rapidly opposed SF-1/β-catenin enhancer occupancy, impairing SF-1 target activation and SF-1/β-catenin autoregulation. These effects arise due to β-catenin's role as a molecular adapter between SF-1 and an intrinsically disordered region (IDR) of the canonical BAF (cBAF) subunit ARID1A. In contrast to exclusively IDR-driven mechanisms, adapter function is mediated by direct association of ARID1A with β-catenin's folded Armadillo repeats. β-catenin similarly linked cBAF to YAP1, SOX2, FOXO3, and CBP/p300, reflecting a general IDR-mediated mechanism for modular coordination between factors. Molecular visualization highlights β-catenin's adapter role for interaction of cBAF with binding partners.
Advanced Technology Cores Baylor College of Medicine Houston TX 77030 USA
Department of Pathology The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
See more in PubMed
Cermakova K, Tao L, Dejmek M, Sala M, Montierth MD, Chan YS, Patel I, Chambers C, Loeza Cabrera M, Hoffman D, et al. (2023). Reactivation of the G1 enhancer landscape underlies core circuitry addiction to SWI/SNF. Nucleic Acids Res. 10.1093/nar/gkad1081. PubMed DOI PMC
Chambers C, Cermakova K, Chan YS, Kurtz K, Wohlan K, Lewis AH, Wang C, Pham A, Dejmek M, Sala M, et al. (2023). SWI/SNF Blockade Disrupts PU.1-Directed Enhancer Programs in Normal Hematopoietic Cells and Acute Myeloid Leukemia. Cancer Res 83, 983–996. 10.1158/0008-5472.CAN-22-2129. PubMed DOI PMC
Hodges HC, Stanton BZ, Cermakova K, Chang C-Y, Miller EL, Kirkland JG, Ku WL, Veverka V, Zhao K, and Crabtree GR (2018). Dominant-negative SMARCA4 mutants alter the accessibility landscape of tissue-unrestricted enhancers. Nat Struct Mol Biol 25, 61–72. 10.1038/s41594-017-0007-3. PubMed DOI PMC
Stanton BZ, Hodges C, Calarco JP, Braun SMG, Ku WL, Kadoch C, Zhao K, and Crabtree GR (2017). Smarca4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nat Genet. 10.1038/ng.3735. PubMed DOI PMC
Kadoch C, Williams RT, Calarco JP, Miller EL, Weber CM, Braun SMG, Pulice JL, Chory EJ, and Crabtree GR (2017). Dynamics of BAF–Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat Genet 49, 213–222. 10.1038/ng.3734. PubMed DOI PMC
Bayona-Feliu A, Barroso S, Muñoz S, and Aguilera A (2021). The SWI/SNF chromatin remodeling complex helps resolve R-loop-mediated transcription–replication conflicts. Nat Genet 53, 1050–1063. 10.1038/s41588-021-00867-2. PubMed DOI
Watanabe R, Ui A, Kanno S, Ogiwara H, Nagase T, Kohno T, and Yasui A (2014). SWI/SNF Factors Required for Cellular Resistance to DNA Damage Include ARID1A and ARID1B and Show Interdependent Protein Stability. Cancer Res 74, 2465–2475. 10.1158/0008-5472.CAN-13-3608. PubMed DOI
Lee H-S, Park J-H, Kim S-J, Kwon S-J, and Kwon J (2010). A cooperative activation loop among SWI/SNF, γ-H2AX and H3 acetylation for DNA double-strand break repair. EMBO J 29, 1434–1445. 10.1038/emboj.2010.27. PubMed DOI PMC
Batsché E, Yaniv M, and Muchardt C (2006). The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol 13, 22–29. 10.1038/nsmb1030. PubMed DOI
Hodges C, Kirkland JG, and Crabtree GR (2016). The Many Roles of BAF (mSWI/SNF) and PBAF Complexes in Cancer. Cold Spring Harb Perspect Med 6, a026930. 10.1101/cshperspect.a026930. PubMed DOI PMC
Karki M, Jangid RK, Anish R, Seervai RNH, Bertocchio J-P, Hotta T, Msaouel P, Jung SY, Grimm SL, Coarfa C, et al. (2021). A cytoskeletal function for PBRM1 reading methylated microtubules. Sci Adv 7. 10.1126/sciadv.abf2866. PubMed DOI PMC
Ho L, Ronan JL, Wu J, Staahl BT, Chen L, Kuo A, Lessard J, Nesvizhskii AI, Ranish J, and Crabtree GR (2009). An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proceedings of the National Academy of Sciences 106, 5181–5186. 10.1073/pnas.0812889106. PubMed DOI PMC
Patil A, Strom AR, Paulo JA, Collings CK, Ruff KM, Shinn MK, Sankar A, Cervantes KS, Wauer T, St. Laurent JD, et al. (2023). A disordered region controls cBAF activity via condensation and partner recruitment. Cell 186, 4936–4955.e26. 10.1016/j.cell.2023.08.032. PubMed DOI PMC
Barisic D, Stadler MB, Iurlaro M, and Schübeler D (2019). Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors. Nature. 10.1038/s41586-019-1115-5. PubMed DOI PMC
Alver BH, Kim KH, Lu P, Wang X, Manchester HE, Wang W, Haswell JR, Park PJ, and Roberts CWM (2017). The SWI/SNF chromatin remodelling complex is required for maintenance of lineage specific enhancers. Nat Commun 8, 14648. 10.1038/ncomms14648. PubMed DOI PMC
Miller EL, Hargreaves DC, Kadoch C, Chang CY, Calarco JP, Hodges C, Buenrostro JD, Cui K, Greenleaf WJ, Zhao K, et al. (2017). TOP2 synergizes with BAF chromatin remodeling for both resolution and formation of facultative heterochromatin. Nat Struct Mol Biol. 10.1038/nsmb.3384. PubMed DOI PMC
Brahma S, and Henikoff S (2024). The BAF chromatin remodeler synergizes with RNA polymerase II and transcription factors to evict nucleosomes. Nat Genet 56, 100–111. 10.1038/s41588-023-01603-8. PubMed DOI PMC
Hainer SJ, Gu W, Carone BR, Landry BD, Rando OJ, Mello CC, and Fazzio TG (2015). Suppression of pervasive noncoding transcription in embryonic stem cells by esBAF. Genes Dev 29, 362–378. 10.1101/gad.253534.114. PubMed DOI PMC
Saha D, Animireddy S, Lee J, Thommen A, Murvin MM, Lu Y, Calabrese JM, and Bartholomew B (2024). Enhancer switching in cell lineage priming is linked to eRNA, Brg1’s AT-hook, and SWI/SNF recruitment. Mol Cell 84, 1855–1869.e5. 10.1016/j.molcel.2024.03.013. PubMed DOI PMC
Mashtalir N, Suzuki H, Farrell DP, Sankar A, Luo J, Filipovski M, D’Avino AR, St. Pierre R, Valencia AM, Onikubo T, et al. (2020). A Structural Model of the Endogenous Human BAF Complex Informs Disease Mechanisms. Cell 183, 802–817.e24. 10.1016/j.cell.2020.09.051. PubMed DOI PMC
He S, Wu Z, Tian Y, Yu Z, Yu J, Wang X, Li J, Liu B, and Xu Y (2020). Structure of nucleosome-bound human BAF complex. Science 367, 875–881. 10.1126/science.aaz9761. PubMed DOI
Han Y, Reyes AA, Malik S, and He Y (2020). Cryo-EM structure of SWI/SNF complex bound to a nucleosome. Nature 579, 452–455. 10.1038/s41586-020-2087-1. PubMed DOI PMC
Wagner FR, Dienemann C, Wang H, Stützer A, Tegunov D, Urlaub H, and Cramer P (2020). Structure of SWI/SNF chromatin remodeller RSC bound to a nucleosome. Nature 579, 448–451. 10.1038/s41586-020-2088-0. PubMed DOI PMC
Mashtalir N, D’Avino AR, Michel BC, Luo J, Pan J, Otto JE, Zullow HJ, McKenzie ZM, Kubiak RL, St. Pierre R, et al. (2018). Modular Organization and Assembly of SWI/SNF Family Chromatin Remodeling Complexes. Cell 175, 1272–1288.e20. 10.1016/j.cell.2018.09.032. PubMed DOI PMC
Maxwell MB, Hom-Tedla MS, Yi J, Li S, Rivera SA, Yu J, Burns MJ, McRae HM, Stevenson BT, Coakley KE, et al. (2024). ARID1A suppresses R-loop-mediated STING-type I interferon pathway activation of anti-tumor immunity. Cell 187, 3390–3408.e19. 10.1016/j.cell.2024.04.025. PubMed DOI PMC
Grossi E, Nguyen CB, Carcamo S, Kirigin Callaú V, Moran S, Filipescu D, Tagore S, Firestone TM, Keogh MC, Sun L, Izar B, Hasson D, Bernstein E The SWI/SNF PBAF complex facilitates REST occupancy at repressive chromatin. Mol Cell. 2025. May 1;85(9):1714–1729.e7. doi: 10.1016/j.molcel.2025.03.026. Epub 2025 Apr 18. PubMed DOI PMC
Alpsoy A, and Dykhuizen EC (2018). Glioma tumor suppressor candidate region gene 1 (GLTSCR1) and its paralog GLTSCR1-like form SWI/SNF chromatin remodeling subcomplexes. Journal of Biological Chemistry 293, 3892–3903. 10.1074/jbc.RA117.001065. PubMed DOI PMC
Cermakova K, and Hodges HC (2023). Interaction modules that impart specificity to disordered protein. Trends Biochem Sci 48, 477–490. 10.1016/j.tibs.2023.01.004. PubMed DOI PMC
Kim YR, Joo J, Lee HJ, Kim C, Park J-C, Yu YS, Kim CR, Lee DH, Cha J, Kwon H, et al. (2024). Prion-like domain mediated phase separation of ARID1A promotes oncogenic potential of Ewing’s sarcoma. Nat Commun 15, 6569. 10.1038/s41467-024-51050-0. PubMed DOI PMC
Farag M, Borcherds WM, Bremer A, Mittag T, and Pappu RV (2023). Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions. Nat Commun 14, 5527. 10.1038/s41467-023-41274-x. PubMed DOI PMC
Lyons H, Veettil RT, Pradhan P, Fornero C, De La Cruz N, Ito K, Eppert M, Roeder RG, and Sabari BR (2023). Functional partitioning of transcriptional regulators by patterned charge blocks. Cell 186, 327–345.e28. 10.1016/j.cell.2022.12.013. PubMed DOI PMC
Zamudio AV, Dall’Agnese A, Henninger JE, Manteiga JC, Afeyan LK, Hannett NM, Coffey EL, Li CH, Oksuz O, Sabari BR, et al. (2019). Mediator Condensates Localize Signaling Factors to Key Cell Identity Genes. Mol Cell 76, 753–766.e6. 10.1016/j.molcel.2019.08.016. PubMed DOI PMC
Pei G, Lyons H, Li P, and Sabari BR (2024). Transcription regulation by biomolecular condensates. Nat Rev Mol Cell Biol. 10.1038/s41580-024-00789-x. PubMed DOI PMC
Cermakova K, Demeulemeester J, Lux V, Nedomova M, Goldman SR, Smith EA, Srb P, Hexnerova R, Fabry M, Madlikova M, et al. (2021). A ubiquitous disordered protein interaction module orchestrates transcription elongation. Science 374, 1113–1121. 10.1126/science.abe2913. PubMed DOI PMC
Martin EW, Thomasen FE, Milkovic NM, Cuneo MJ, Grace CR, Nourse A, Lindorff-Larsen K, and Mittag T (2021). Interplay of folded domains and the disordered low-complexity domain in mediating hnRNPA1 phase separation. Nucleic Acids Res 49, 2931–2945. 10.1093/nar/gkab063. PubMed DOI PMC
Davey NE, Simonetti L, and Ivarsson Y (2023). The next wave of interactomics: Mapping the SLiM-based interactions of the intrinsically disordered proteome. Curr Opin Struct Biol 80, 102593. 10.1016/j.sbi.2023.102593. PubMed DOI
Lazar T, Tantos A, Tompa P, and Schad E (2022). Intrinsic protein disorder uncouples affinity from binding specificity. Protein Sci 31, e4455. 10.1002/pro.4455. PubMed DOI PMC
Ghoneim M, Fuchs HA, and Musselman CA (2021). Histone Tail Conformations: A Fuzzy Affair with DNA. Trends Biochem Sci 46, 564–578. 10.1016/j.tibs.2020.12.012. PubMed DOI PMC
Brown AD, Cranstone C, Dupré DJ, and Langelaan DN (2023). β-Catenin interacts with the TAZ1 and TAZ2 domains of CBP/p300 to activate gene transcription. Int J Biol Macromol 238, 124155. 10.1016/j.ijbiomac.2023.124155. PubMed DOI
Cermakova K, Veverka V, and Hodges HC (2023). The TFIIS N-terminal domain (TND): a transcription assembly module at the interface of order and disorder. Biochem Soc Trans 51, 125–135. 10.1042/BST20220342. PubMed DOI PMC
Valenta T, Hausmann G, and Basler K (2012). The many faces and functions of β-catenin. EMBO J 31, 2714–2736. 10.1038/emboj.2012.150. PubMed DOI PMC
Lickert H, Takeuchi JK, von Both I, Walls JR, McAuliffe F, Lee Adamson S, Mark Henkelman R, Wrana JL, Rossant J, and Bruneau BG (2004). Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature 432, 107–112. 10.1038/nature03071. PubMed DOI
Barker N (2001). The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. EMBO J 20, 4935–4943. 10.1093/emboj/20.17.4935. PubMed DOI PMC
Sharma T, Olea-Flores M, and Imbalzano AN (2023). Regulation of the Wnt signaling pathway during myogenesis by the mammalian SWI/SNF ATPase BRG1. Front Cell Dev Biol 11, 1160227. 10.3389/fcell.2023.1160227. PubMed DOI PMC
Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT, Schafer EJ, Zack TI, Wang X, Tsherniak A, Schinzel AC, et al. (2012). β-Catenin-Driven Cancers Require a YAP1 Transcriptional Complex for Survival and Tumorigenesis. Cell 151, 1457–1473. 10.1016/j.cell.2012.11.026. PubMed DOI PMC
Mukherjee S, Luedeke DM, McCoy L, Iwafuchi M, and Zorn AM (2022). SOX transcription factors direct TCF-independent WNT/β-catenin responsive transcription to govern cell fate in human pluripotent stem cells. Cell Rep 40, 111247. 10.1016/j.celrep.2022.111247. PubMed DOI PMC
Essers MAG, de Vries-Smits LMM, Barker N, Polderman PE, Burgering BMT, and Korswagen HC (2005). Functional Interaction Between ß-Catenin and FOXO in Oxidative Stress Signaling. Science 308, 1181–1184. 10.1126/science.1109083. PubMed DOI
Mohan DR, Borges KS, Finco I, LaPensee CR, Rege J, Solon AL, Little DW, Else T, Almeida MQ, Dang D, et al. (2023). β-Catenin–Driven Differentiation Is a Tissue-Specific Epigenetic Vulnerability in Adrenal Cancer. Cancer Res 83, 2123–2141. 10.1158/0008-5472.CAN-22-2712. PubMed DOI PMC
Berthon A, Martinez A, Bertherat J, and Val P (2012). Wnt/β-catenin signalling in adrenal physiology and tumour development. Mol Cell Endocrinol 351, 87–95. 10.1016/j.mce.2011.09.009. PubMed DOI
Doughty BR, Hinks MM, Schaepe JM, Marinov GK, Thurm AR, Rios-Martinez C, Parks BE, Tan Y, Marklund E, Dubocanin D, et al. (2024). Single-molecule states link transcription factor binding to gene expression. Nature. 10.1038/s41586-024-08219-w. PubMed DOI PMC
Yang JH, and Hansen AS (2024). Enhancer selectivity in space and time: from enhancer–promoter interactions to promoter activation. Nat Rev Mol Cell Biol 25, 574–591. 10.1038/s41580-024-00710-6. PubMed DOI PMC
Doghman M, Figueiredo BC, Volante M, Papotti M, and Lalli E (2013). Integrative analysis of SF-1 transcription factor dosage impact on genome-wide binding and gene expression regulation. Nucleic Acids Res 41. 10.1093/nar/gkt658. PubMed DOI PMC
Ruiz-Babot G, Eceiza A, Abollo-Jiménez F, Malyukov M, Carlone DL, Borges K, Da Costa AR, Qarin S, Matsumoto T, Morizane R, et al. (2023). Generation of glucocorticoid-producing cells derived from human pluripotent stem cells. Cell reports methods 3, 100627. 10.1016/j.crmeth.2023.100627. PubMed DOI PMC
Val P, Lefrançois-Martinez A-M, Veyssière G, and Martinez A (2003). SF-1 a key player in the development and differentiation of steroidogenic tissues. Nucl Recept 1, 8. 10.1186/1478-1336-1-8. PubMed DOI PMC
Schimmer BP, and White PC (2010). Minireview: Steroidogenic Factor 1: Its Roles in Differentiation, Development, and Disease. Molecular Endocrinology 24, 1322–1337. 10.1210/me.2009-0519. PubMed DOI PMC
Zheng S, Cherniack AD, Dewal N, Moffitt RA, Danilova L, Murray BA, Lerario AM, Else T, Knijnenburg TA, Ciriello G, et al. (2016). Comprehensive pan-genomic characterization of adrenocortical carcinoma. Cancer Cell. 10.1016/j.ccell.2016.04.002. PubMed DOI PMC
Logié A, Boudou P, Boccon-Gibod L, Baudin E, Vassal G, Schlumberger M, Le Bouc Y, and Gicquel C (2000). Establishment and characterization of a human adrenocortical carcinoma xenograft model. Endocrinology 141. 10.1210/endo.141.9.7668. PubMed DOI
Kiseljak-Vassiliades K, Zhang Y, Bagby SM, Kar A, Pozdeyev N, Xu M, Gowan K, Sharma V, Raeburn CD, Albuja-Cruz M, et al. (2018). Development of new preclinical models to advance adrenocortical carcinoma research. Endocr Relat Cancer 25, 437–451. 10.1530/ERC-17-0447. PubMed DOI PMC
Papillon JPN, Nakajima K, Adair CD, Hempel J, Jouk AO, Karki RG, Mathieu S, Möbitz H, Ntaganda R, Smith T, et al. (2018). Discovery of Orally Active Inhibitors of Brahma Homolog (BRM)/SMARCA2 ATPase Activity for the Treatment of Brahma Related Gene 1 (BRG1)/SMARCA4-Mutant Cancers. J Med Chem. 10.1021/acs.jmedchem.8b01318. PubMed DOI
Martin BJE, Ablondi EF, Goglia C, Mimoso CA, Espinel-Cabrera PR, and Adelman K (2023). Global identification of SWI/SNF targets reveals compensation by EP400. Cell 186, 5290–5307.e26. 10.1016/j.cell.2023.10.006. PubMed DOI PMC
Duplaquet L, So K, Ying AW, Pal Choudhuri S, Li X, Xu GD, Li Y, Qiu X, Li R, Singh S, et al. (2024). Mammalian SWI/SNF complex activity regulates POU2F3 and constitutes a targetable dependency in small cell lung cancer. Cancer Cell 42, 1352–1369.e13. 10.1016/j.ccell.2024.06.012. PubMed DOI PMC
Xiao L, Parolia A, Qiao Y, Bawa P, Eyunni S, Mannan R, Carson SE, Chang Y, Wang X, Zhang Y, et al. (2022). Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer. Nature 601, 434–439. 10.1038/s41586-021-04246-z. PubMed DOI PMC
Ernst J, and Kellis M (2017). Chromatin-state discovery and genome annotation with ChromHMM. Nat Protoc 12, 2478–2492. 10.1038/nprot.2017.124. PubMed DOI PMC
Lemon B, Inouye C, King DS, and Tjian R (2001). Selectivity of chromatinremodelling cofactors for ligand-activated transcription. Nature 414, 924–928. 10.1038/414924a. PubMed DOI
Zubair M, Ishihara S, Oka S, Okumura K, and Morohashi K (2006). Two-Step Regulation of Ad4BP/SF-1 Gene Transcription during Fetal Adrenal Development: Initiation by a Hox-Pbx1-Prep1 Complex and Maintenance via Autoregulation by Ad4BP/SF-1. Mol Cell Biol 26, 4111–4121. 10.1128/MCB.00222-06. PubMed DOI PMC
Mizusaki H, Kawabe K, Mukai T, Ariyoshi E, Kasahara M, Yoshioka H, Swain A, and Morohashi K (2003). Dax-1 (Dosage-Sensitive Sex Reversal-Adrenal Hypoplasia Congenita Critical Region on the X Chromosome, Gene 1) Gene Transcription Is Regulated by Wnt4 in the Female Developing Gonad. Molecular Endocrinology 17, 507–519. 10.1210/me.2002-0362. PubMed DOI
Poy F, Lepourcelet M, Shivdasani RA, and Eck MJ (2001). Structure of a human Tcf4–β-catenin complex. Nat Struct Biol 8, 1053–1057. 10.1038/nsb720. PubMed DOI
Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick J, et al. (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500. 10.1038/s41586-024-07487-w. PubMed DOI PMC
Omidi A, Møller MH, Malhis N, Bui JM, and Gsponer J (2024). AlphaFold-Multimer accurately captures interactions and dynamics of intrinsically disordered protein regions. Proceedings of the National Academy of Sciences 121. 10.1073/pnas.2406407121. PubMed DOI PMC
Hecht A (2000). The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. EMBO J 19, 1839–1850. 10.1093/emboj/19.8.1839. PubMed DOI PMC
Field A, and Adelman K (2020). Evaluating Enhancer Function and Transcription. Annu Rev Biochem 89, 213–234. 10.1146/annurev-biochem-011420-095916. PubMed DOI
Blassberg R, Patel H, Watson T, Gouti M, Metzis V, Delás MJ, and Briscoe J (2022). Sox2 levels regulate the chromatin occupancy of WNT mediators in epiblast progenitors responsible for vertebrate body formation. Nat Cell Biol 24, 633–644. 10.1038/s41556-022-00910-2. PubMed DOI PMC
Hoogeboom D, Essers MAG, Polderman PE, Voets E, Smits LMM, and Burgering B.M.Th. (2008). Interaction of FOXO with β-Catenin Inhibits β-Catenin/T Cell Factor Activity. Journal of Biological Chemistry 283, 9224–9230. 10.1074/jbc.M706638200. PubMed DOI
Ito T, Yamauchi M, Nishina M, Yamamichi N, Mizutani T, Ui M, Murakami M, and Iba H (2001). Identification of SWI·SNF Complex Subunit BAF60a as a Determinant of the Transactivation Potential of Fos/Jun Dimers. Journal of Biological Chemistry 276, 2852–2857. 10.1074/jbc.M009633200. PubMed DOI
Kong C, Qu X, Liu M, Xu W, Chen D, Zhang Y, Zhang S, Zhu F, Liu Z, Li J, et al. (2023). Dynamic interactions between E-cadherin and Ankyrin-G mediate epithelial cell polarity maintenance. Nat Commun 14, 6860. 10.1038/s41467-023-42628-1. PubMed DOI PMC
Rudeen AJ, Douglas JT, Xing M, McDonald WH, Lamb AL, and Neufeld KL (2020). The 15-Amino Acid Repeat Region of Adenomatous Polyposis Coli Is Intrinsically Disordered and Retains Conformational Flexibility upon Binding β-Catenin. Biochemistry 59, 4039–4050. 10.1021/acs.biochem.0c00479. PubMed DOI PMC
Nong J, Kang K, Shi Q, Zhu X, Tao Q, and Chen Y-G (2021). Phase separation of Axin organizes the β-catenin destruction complex. Journal of Cell Biology 220. 10.1083/jcb.202012112. PubMed DOI PMC
Richter G, Gui T, Bourgeois B, Koyani CN, Ulz P, Heitzer E, von Lewinski D, Burgering BMT, Malle E, and Madl T (2021). β‐catenin regulates FOXP2 transcriptional activity via multiple binding sites. FEBS J 288, 3261–3284. 10.1111/febs.15656. PubMed DOI PMC
Bourgeois B, Gui T, Hoogeboom D, Hocking HG, Richter G, Spreitzer E, Viertler M, Richter K, Madl T, and Burgering BMT (2021). Multiple regulatory intrinsically disordered motifs control FOXO4 transcription factor binding and function. Cell Rep 36, 109446. 10.1016/j.celrep.2021.109446. PubMed DOI
Gui T, Fleming C, Manzato C, Bourgeois B, Sirati N, Heuer J, Papadionysiou I, Montfort DI, van Gijzen M, van Smits LMM, et al. (2023). Targeted perturbation of signaling-driven condensates. Mol Cell 83, 4141–4157.e11. 10.1016/j.molcel.2023.10.023. PubMed DOI
Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, and Melton DA (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26, 1269–1275. 10.1038/nbt.1502. PubMed DOI
Morris BJ, Willcox DC, Donlon TA, and Willcox BJ (2015). FOXO3; A Major Gene for Human Longevity - A Mini-Review. Gerontology 61, 515–525. 10.1159/000375235. PubMed DOI PMC
Varelas X (2014). The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development 141, 1614–1626. 10.1242/dev.102376. PubMed DOI
Xu G, Chhangawala S, Cocco E, Razavi P, Cai Y, Otto JE, Ferrando L, Selenica P, Ladewig E, Chan C, et al. (2020). ARID1A determines luminal identity and therapeutic response in estrogen-receptor-positive breast cancer. Nat Genet 52, 198–207. 10.1038/s41588-019-0554-0. PubMed DOI PMC
Kenneth NS, Mudie S, van Uden P, and Rocha S (2009). SWI/SNF regulates the cellular response to hypoxia. J Biol Chem 284, 4123–4131. 10.1074/jbc.M808491200. PubMed DOI
Dreier MR, Walia J, and de la Serna IL (2024). Targeting SWI/SNF Complexes in Cancer: Pharmacological Approaches and Implications. Epigenomes 8, 7. 10.3390/epigenomes8010007. PubMed DOI PMC
DiNardo CD, Savona MR, Kishtagari A, Fathi AT, Bhalla KN, Agresta S, Reilly S, Almon C, Hentemann M, Hickman D, et al. (2023). Preliminary Results from a Phase 1 Dose Escalation Study of FHD-286, a Novel BRG1/BRM (SMARCA4/SMARCA2) Inhibitor, Administered As an Oral Monotherapy in Patients with Advanced Hematologic Malignancies. Blood 142, 4284–4284. 10.1182/blood-2023-178090. DOI
DiNardo CD, Fathi AT, Kishtagari A, Bhalla KN, Quintás-Cardama A, Reilly SA, Almon C, Patriquin C, Nabhan S, Healy K, et al. (2025). A Phase 1 Study of FHD-286, a Dual BRG1/BRM (SMARCA4/SMARCA2) Inhibitor, in Patients With Advanced Myeloid Malignancies. Clin Cancer Res. 10.1158/1078-0432.CCR-24-3790. PubMed DOI
Martinez GJ, Appleton M, Kipp ZA, Loria AS, Min B, and Hinds TD (2024). Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. Physiol Rev 104, 473–532. 10.1152/physrev.00021.2023. PubMed DOI PMC
Acharya N, Madi A, Zhang H, Klapholz M, Escobar G, Dulberg S, Christian E, Ferreira M, Dixon KO, Fell G, et al. (2020). Endogenous Glucocorticoid Signaling Regulates CD8+ T Cell Differentiation and Development of Dysfunction in the Tumor Microenvironment. Immunity 53, 658–671.e6. 10.1016/j.immuni.2020.08.005. PubMed DOI PMC
He X-Y, Ng D, Van Aelst L, and Egeblad M (2019). Stressing Out about Cancer Immunotherapy. Cancer Cell 36, 468–470. 10.1016/j.ccell.2019.10.013. PubMed DOI
Borgers JSW, Tobin RP, Torphy RJ, Vorwald VM, Van Gulick RJ, Amato CM, Cogswell DT, Chimed T-S, Couts KL, Van Bokhoven A, et al. (2021). Melanoma Metastases to the Adrenal Gland Are Highly Resistant to Immune Checkpoint Inhibitors. Journal of the National Comprehensive Cancer Network 19, 53–63. 10.6004/jnccn.2020.7800. PubMed DOI
Pegna GJ, Roper N, Kaplan RN, Bergsland E, Kiseljak-Vassiliades K, Habra MA, Pommier Y, and Del Rivero J (2021). The Immunotherapy Landscape in Adrenocortical Cancer. Cancers (Basel) 13, 2660. 10.3390/cancers13112660. PubMed DOI PMC
Araujo-Castro M, Pascual-Corrales E, Molina-Cerrillo J, and Alonso-Gordoa T (2021). Immunotherapy in Adrenocortical Carcinoma: Predictors of Response, Efficacy, Safety, and Mechanisms of Resistance. Biomedicines 9, 304. 10.3390/biomedicines9030304. PubMed DOI PMC
Landwehr L-S, Altieri B, Schreiner J, Sbiera I, Weigand I, Kroiss M, Fassnacht M, and Sbiera S (2020). Interplay between glucocorticoids and tumor-infiltrating lymphocytes on the prognosis of adrenocortical carcinoma. J Immunother Cancer 8. 10.1136/jitc-2019-000469. PubMed DOI PMC
Wilmouth JJ, Olabe J, Garcia-Garcia D, Lucas C, Guiton R, Roucher-Boulez F, Dufour D, Damon-Soubeyrand C, Sahut-Barnola I, Pointud J-C, et al. (2022). Sexually dimorphic activation of innate antitumor immunity prevents adrenocortical carcinoma development. Sci Adv 8, eadd0422. 10.1126/sciadv.add0422. PubMed DOI PMC
Hodges HC Code: ‘hodgeslab/workflows’, Version 20210915. Zenodo. 10.5281/zenodo.5511049. DOI
Sanjana NE, Shalem O, and Zhang F (2014). Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11, 783–784. 10.1038/nmeth.3047. PubMed DOI PMC
Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, and Kinzler KW (1997). Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275, 1787–1790. 10.1126/science.275.5307.1787. PubMed DOI
Langmead B, and Salzberg SL (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359. 10.1038/nmeth.1923. PubMed DOI PMC
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nussbaum C, Myers RM, Brown M, Li W, et al. (2008). Model-based analysis of ChIP-Seq (MACS). Genome Biol. 10.1186/gb-2008-9-9-r137. PubMed DOI PMC
Stark R, and Brown G (2011). DiffBind : differential binding analysis of ChIP-Seq peak data. Bioconductor. 10.18129/B9.bioc.DiffBind. DOI
Love MI, Huber W, and Anders S (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 10.1186/s13059-014-0550-8. PubMed DOI PMC
Quinlan AR, and Hall IM (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842. 10.1093/bioinformatics/btq033. PubMed DOI PMC
Pohl A, and Beato M (2014). bwtool: a tool for bigWig files. Bioinformatics 30, 1618–1619. 10.1093/bioinformatics/btu056. PubMed DOI PMC
Kim D, Paggi JM, Park C, Bennett C, and Salzberg SL (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37, 907–915. 10.1038/s41587-019-0201-4. PubMed DOI PMC
Anders S, Pyl PT, and Huber W (2015). HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169. 10.1093/bioinformatics/btu638. PubMed DOI PMC
Korotkevich G, Sukhov V, and Sergushichev A (2019). Fast gene set enrichment analysis. Preprint of BioRxiv. bioRxiv 10.1101/060012. DOI
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, and Glass CK (2010). Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities. Mol Cell. 10.1016/j.molcel.2010.05.004. PubMed DOI PMC
Schep AN, Wu B, Buenrostro JD, and Greenleaf WJ (2017). ChromVAR: Inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat Methods. 10.1038/nmeth.4401. PubMed DOI PMC
Schoenfelder S, Javierre B-M, Furlan-Magaril M, Wingett SW, and Fraser P (2018). Promoter Capture Hi-C: High-resolution, Genome-wide Profiling of Promoter Interactions. Journal of Visualized Experiments. 10.3791/57320. PubMed DOI PMC
Krijger PHL, Geeven G, Bianchi V, Hilvering CRE, and de Laat W (2020). 4C-seq from beginning to end: A detailed protocol for sample preparation and data analysis. Methods 170, 17–32. 10.1016/j.ymeth.2019.07.014. PubMed DOI
Montefiori LE, Sobreira DR, Sakabe NJ, Aneas I, Joslin AC, Hansen GT, Bozek G, Moskowitz IP, McNally EM, and Nóbrega MA (2018). A promoter interaction map for cardiovascular disease genetics. Elife 7. 10.7554/eLife.35788. PubMed DOI PMC
Lopez-Delisle L, Rabbani L, Wolff J, Bhardwaj V, Backofen R, Grüning B, Ramírez F, and Manke T (2021). pyGenomeTracks: reproducible plots for multivariate genomic datasets. Bioinformatics 37, 422–423. 10.1093/bioinformatics/btaa692. PubMed DOI PMC
Sarpe V, Rafiei A, Hepburn M, Ostan N, Schryvers AB, and Schriemer DC (2016). High Sensitivity Crosslink Detection Coupled With Integrative Structure Modeling in the Mass Spec Studio. Mol Cell Proteomics 15, 3071–3080. 10.1074/mcp.O116.058685. PubMed DOI PMC
Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, McQuaid S, Gray RT, Murray LJ, Coleman HG, et al. (2017). QuPath: Open source software for digital pathology image analysis. Sci Rep 7, 16878. 10.1038/s41598-017-17204-5. PubMed DOI PMC
Gu Z, Eils R, and Schlesner M (2016). Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849. 10.1093/bioinformatics/btw313. PubMed DOI
Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, Sabedot TS, Malta TM, Pagnotta SM, Castiglioni I, et al. (2016). TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res 44, e71. 10.1093/nar/gkv1507. PubMed DOI PMC
Sean D, and Meltzer PS (2007). GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 10.1093/bioinformatics/btm254. PubMed DOI
Therneau TM, and Grambsch PM (2000). Modeling Survival Data: Extending the Cox Model (Springer; ).
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, and Smyth GK (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43, e47–e47. 10.1093/nar/gkv007. PubMed DOI PMC
Muzzi JCD, Magno JM, Cardoso MA, de Moura J, Castro MAA, and Figueiredo BC (2021). Adrenocortical Carcinoma Steroid Profiles: In Silico Pan-Cancer Analysis of TCGA Data Uncovers Immunotherapy Targets for Potential Improved Outcomes. Front Endocrinol (Lausanne) 12. 10.3389/fendo.2021.672319. PubMed DOI PMC
Venables WN, and Ripley BD (2002). Modern Applied Statistics with S Fourth edition (Springer; ).
Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, and Müller M (2011). pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12, 77. 10.1186/1471-2105-12-77. PubMed DOI PMC
Krieger E, and Vriend G (2014). YASARA View—molecular graphics for all devices—from smartphones to workstations. Bioinformatics 30, 2981–2982. 10.1093/bioinformatics/btu426. PubMed DOI PMC
Hatazawa S, Liu J, Takizawa Y, Zandian M, Negishi L, Kutateladze TG, and Kurumizaka H (2022). Structural basis for binding diversity of acetyltransferase p300 to the nucleosome. iScience 25, 104563. 10.1016/j.isci.2022.104563. PubMed DOI PMC
Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, and Skrzypek E (2015). PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43, D512–D520. 10.1093/nar/gku1267. PubMed DOI PMC