The TFIIS N-terminal domain (TND): a transcription assembly module at the interface of order and disorder
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu přehledy, časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R35 GM137996
NIGMS NIH HHS - United States
PubMed
36651856
PubMed Central
PMC9987994
DOI
10.1042/bst20220342
PII: 232464
Knihovny.cz E-zdroje
- Klíčová slova
- intrinsically disordered proteins, molecular scaffolds, structural biology, transcription,
- MeSH
- elongin metabolismus MeSH
- regulace genové exprese MeSH
- transkripční elongační faktory * chemie genetika metabolismus MeSH
- transkripční faktory * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- elongin MeSH
- transcription factor S-II MeSH Prohlížeč
- transkripční elongační faktory * MeSH
- transkripční faktory * MeSH
Interaction scaffolds that selectively recognize disordered protein strongly shape protein interactomes. An important scaffold of this type that contributes to transcription is the TFIIS N-terminal domain (TND). The TND is a five-helical bundle that has no known enzymatic activity, but instead selectively reads intrinsically disordered sequences of other proteins. Here, we review the structural and functional properties of TNDs and their cognate disordered ligands known as TND-interacting motifs (TIMs). TNDs or TIMs are found in prominent members of the transcription machinery, including TFIIS, super elongation complex, SWI/SNF, Mediator, IWS1, SPT6, PP1-PNUTS phosphatase, elongin, H3K36me3 readers, the transcription factor MYC, and others. We also review how the TND interactome contributes to the regulation of transcription. Because the TND is the most significantly enriched fold among transcription elongation regulators, TND- and TIM-driven interactions have widespread roles in the regulation of many transcriptional processes.
Center for Cancer Epigenetics The University of Texas MD Anderson Cancer Center Houston TX U S A
Dan L Duncan Comprehensive Cancer Center Baylor College of Medicine Houston TX U S A
Department of Bioengineering Rice University Houston TX U S A
Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Babu, M.M. (2016) The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochem. Soc. Trans. 44, 1185–1200 10.1042/BST20160172 PubMed DOI PMC
Cermakova, K. and Hodges, H.C. (2023) Interaction modules that impart specificity to disordered protein Trends Biochem. Sci. (in press)
Musselman, C.A. and Kutateladze, T.G. (2021) Characterization of functional disordered regions within chromatin-associated proteins. iScience 24, 102070 10.1016/j.isci.2021.102070 PubMed DOI PMC
Sabari, B.R., Dall'Agnese, A., Boija, A., Klein, I.A., Coffey, E.L., Shrinivas, K.et al. (2018) Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 10.1126/science.aar3958 PubMed DOI PMC
Cubuk, J., Alston, J.J., Incicco, J.J., Singh, S., Stuchell-Brereton, M.D., Ward, M.D.et al. (2021) The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nat. Commun. 12, 1936 10.1038/s41467-021-21953-3 PubMed DOI PMC
Cermakova, K., Demeulemeester, J., Lux, V., Nedomova, M., Goldman, S.R., Smith, E.A.et al. (2021) A ubiquitous disordered protein interaction module orchestrates transcription elongation. Science 374, 1113–1121 10.1126/science.abe2913 PubMed DOI PMC
Sharma, S., Cermáková, K., De Rijck, J., Demeulemeester, J., Fábry, M., El Ashkar, S.et al. (2018) Affinity switching of the LEDGF/p75 IBD interactome is governed by kinase-dependent phosphorylation. Proc. Natl Acad. Sci. U.S.A. 115, E7053–E7062 10.1073/pnas.1803909115 PubMed DOI PMC
Kruusvee, V., Lyst, M.J., Taylor, C., Tarnauskaite, Ž, Bird, A.P. and Cook, A.G. (2017) Structure of the MeCP2-TBLR1 complex reveals a molecular basis for Rett syndrome and related disorders. Proc. Natl Acad. Sci. U.S.A. 114, E3243–E3250 10.1073/pnas.1700731114 PubMed DOI PMC
Justin, N., Zhang, Y., Tarricone, C., Martin, S.R., Chen, S., Underwood, E.et al. (2016) Structural basis of oncogenic histone H3K27M inhibition of human polycomb repressive complex 2. Nat. Commun. 7, 11316 10.1038/ncomms11316 PubMed DOI PMC
Marasco, M., Berteotti, A., Weyershaeuser, J., Thorausch, N., Sikorska, J., Krausze, J.et al. (2020) Molecular mechanism of SHP2 activation by PD-1 stimulation. Sci. Adv. 6, eaay4458 10.1126/sciadv.aay4458 PubMed DOI PMC
Gemperle, J., Hexnerová, R., Lepšík, M., Tesina, P., Dibus, M., Novotný, M.et al. (2017) Structural characterization of CAS SH3 domain selectivity and regulation reveals new CAS interaction partners. Sci. Rep. 7, 8057 10.1038/s41598-017-08303-4 PubMed DOI PMC
Genera, M., Quioc-Salomon, B., Nourisson, A., Colcombet-Cazenave, B., Haouz, A., Mechaly, A.et al. (2021) Molecular basis of the interaction of the human tyrosine phosphatase PTPN3 with the hepatitis B virus core protein. Sci. Rep. 11, 944 10.1038/s41598-020-79580-9 PubMed DOI PMC
Kristal Kaan HY, Chan SW, Tan SKJ, Guo F, Lim CJ, Hong W, et al. (2017) Crystal structure of TAZ-TEAD complex reveals a distinct interaction mode from that of YAP-TEAD complex. Sci. Rep. 7:2035. 10.1038/s41598-017-02219-9 PubMed DOI PMC
Vargas, R.E., Duong, V.T., Han, H., Ta, A.P., Chen, Y., Zhao, S.et al. (2020) Elucidation of WW domain ligand binding specificities in the hippo pathway reveals STXBP 4 as YAP inhibitor. EMBO J. 39, e102406 10.15252/embj.2019102406 PubMed DOI PMC
Kanelis, V., Rotin, D. and Forman-Kay, J.D. (2001) Solution structure of a Nedd4 WW domain-ENaC peptide complex. Nat. Struct. Biol. 8, 407–412 10.1038/87562 PubMed DOI
Kumar, M., Gouw, M., Michael, S., Sámano-Sánchez, H., Pancsa, R., Glavina, J.et al. (2020) ELM-the eukaryotic linear motif resource in 2020. Nucleic Acids Res. 48, D296–D306 10.1093/nar/gkz1030 PubMed DOI PMC
Paysan-Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B.L., Salazar, G.A.et al. (2022) Interpro in 2022. Nucleic Acids Res. 51, D418–D427 10.1093/nar/gkac993 PubMed DOI PMC
Benjamin, B., Sanchez, A.M., Garg, A., Schwer, B. and Shuman, S. (2021) Structure-function analysis of fission yeast cleavage and polyadenylation factor (CPF) subunit Ppn1 and its interactions with Dis2 and Swd22. PLoS Genet. 17, e1009452 10.1371/journal.pgen.1009452 PubMed DOI PMC
Cherepanov, P., Sun, Z.Y.J., Rahman, S., Maertens, G., Wagner, G. and Engelman, A. (2005) Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75. Nat. Struct. Mol. Biol. 12, 526–532 10.1038/nsmb937 PubMed DOI
Booth, V., Koth, C.M., Edwards, A.M. and Arrowsmith, C.H. (2000) Structure of a conserved domain common to the transcription factors TFIIS, Elongin A, and CRSP70. J. Biol. Chem. 275, 31266–31268 10.1074/jbc.M002595200 PubMed DOI
Diebold, M.L., Koch, M., Loeliger, E., Cura, V., Winston, F., Cavarelli, J.et al. (2010) The structure of an Iws1/Spt6 complex reveals an interaction domain conserved in TFIIS, Elongin A and Med26. EMBO J. 29, 3979–3991 10.1038/emboj.2010.272 PubMed DOI PMC
McDonald, S.M., Close, D., Xin, H., Formosa, T. and Hill, C.P. (2010) Structure and biological importance of the Spn1-Spt6 interaction, and its regulatory role in nucleosome binding. Mol. Cell 40, 725–735 10.1016/j.molcel.2010.11.014 PubMed DOI PMC
Nodelman, I.M., Das, S., Faustino, A.M., Fried, S.D., Bowman, G.D. and Armache, J.P. (2022) Nucleosome recognition and DNA distortion by the Chd1 remodeler in a nucleotide-free state. Nat. Struct. Mol. Biol. 29, 121–129 10.1038/s41594-021-00719-x PubMed DOI PMC
Han, Y., Reyes, A.A., Malik, S. and He, Y. (2020) Cryo-EM structure of SWI/SNF complex bound to a nucleosome. Nature 579, 452–455 10.1038/s41586-020-2087-1 PubMed DOI PMC
Ye, Y., Wu, H., Chen, K., Clapier, C.R., Verma, N., Zhang, W.et al. (2019) Structure of the RSC complex bound to the nucleosome. Science 366, 838–843 10.1126/science.aay0033 PubMed DOI PMC
Patel, A.B., Moore, C.M., Greber, B.J., Luo, J., Zukin, S., Ranish, J.et al. (2019) Architecture of the chromatin remodeler RSC and insights into its nucleosome engagement. eLife 8, e54449 10.7554/eLife.54449 PubMed DOI PMC
Mashtalir, N., Suzuki, H., Farrell, D.P., Sankar, A., Luo, J., Filipovski, M.et al. (2020) A structural model of the endogenous human BAF complex informs disease mechanisms. Cell 183, 802–817.e24 10.1016/j.cell.2020.09.051 PubMed DOI PMC
Sibanda, B.L., Chirgadze, D.Y., Ascher, D.B. and Blundell, T.L. (2017) DNA-PKcs structure suggests an allosteric mechanism modulating DNA double-strand break repair. Science 355, 520–524 10.1126/science.aak9654 PubMed DOI
Sharif, H., Li, Y., Dong, Y., Dong, L., Wang, W.L., Mao, Y.et al. (2017) Cryo-EM structure of the DNA-PK holoenzyme. Proc. Natl Acad. Sci. U.S.A. 114, 7367–7372 10.1073/pnas.1707386114 PubMed DOI PMC
Groves, M.R. and Barford, D. (1999) Topological characteristics of helical repeat proteins. Curr. Opin. Struct. Biol. 9, 383–389 10.1016/S0959-440X(99)80052-9 PubMed DOI
Yoshimura, S.H. and Hirano, T. (2016) HEAT repeats - versatile arrays of amphiphilic helices working in crowded environments? J. Cell Sci. 129, 3963–3970 10.1242/jcs.185710 PubMed DOI
Stothard, P. (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28, 1102 10.2144/00286ir01 PubMed DOI
Tesina, P., Cermáková, K., Horejší, M., Procházková, K., Fábry, M., Sharma, S.et al. (2015) Multiple cellular proteins interact with LEDGF/p75 through a conserved unstructured consensus motif. Nat. Commun. 6, 7968 10.1038/ncomms8968 PubMed DOI
Wei, Y., Redel, C., Ahlner, A., Lemak, A., Johansson-Åkhe, I., Houliston, S.et al. (2022) The MYC oncoprotein directly interacts with its chromatin cofactor PNUTS to recruit PP1 phosphatase. Nucleic Acids Res. 50, 3505–3522 10.1093/nar/gkac138 PubMed DOI PMC
Lux, V., Brouns, T., Čermáková, K., Srb, P., Fábry, M., Mádlíková, M.et al. (2020) Molecular mechanism of LEDGF/p75 dimerization. Structure 28, 1288–1299.e7 10.1016/j.str.2020.08.012 PubMed DOI
Izban, M.G. and Luse, D.S. (1992) The RNA polymerase II ternary complex cleaves the nascent transcript in a 3′ → 5′ direction in the presence of elongation factor SII. Genes Dev. 6, 1342–1356 10.1101/gad.6.7.1342 PubMed DOI
Farnung, L., Ochmann, M., Garg, G., Vos, S.M. and Cramer, P. (2022) Structure of a backtracked hexasomal intermediate of nucleosome transcription. Mol. Cell 82, 3126–3134.e7 10.1016/j.molcel.2022.06.027 PubMed DOI
Langer, D. and Zillig, W. (1993) Putative tflls gene of sulfolobus acidocaldarius encoding an archaeal transcription elongation factor is situated directly downstream of the gene for a small subunit of DNA-dependent RNA polymerase. Nucleic Acids Res. 21, 2251 10.1093/nar/21.9.2251 PubMed DOI PMC
Nakanishi, T., Shimoaraiso, M., Kubo, T. and Natori, S. (1995) Structure-function relationship of yeast S-II in terms of stimulation of RNA polymerase II, arrest relief, and suppression of 6-azauracil sensitivity. J. Biol. Chem. 270, 8991–8995 10.1074/jbc.270.15.8991 PubMed DOI
Ling, Y., Smith, A.J. and Morgan, G.T. (2006) A sequence motif conserved in diverse nuclear proteins identifies a protein interaction domain utilised for nuclear targeting by human TFIIS. Nucleic Acids Res. 34, 2219–2229 10.1093/nar/gkl239 PubMed DOI PMC
Kim, B., Nesvizhskii, A.I., Rani, P.G., Hahn, S., Aebersold, R. and Ranish, J.A. (2007) The transcription elongation factor TFIIS is a component of RNA polymerase II preinitiation complexes. Proc. Natl Acad. Sci. U.S.A. 104, 16068–16073 10.1073/pnas.0704573104 PubMed DOI PMC
Filipovski, M., Soffers, J.H.M., Vos, S.M. and Farnung, L. (2022) Structural basis of nucleosome retention during transcription elongation. Science 376, 1313–1316 10.1126/science.abo3851 PubMed DOI PMC
Xu, Y., Bernecky, C., Lee, C.T., Maier, K.C., Schwalb, B., Tegunov, D.et al. (2017) Architecture of the RNA polymerase II-Paf1C-TFIIS transcription elongation complex. Nat. Commun. 8, 15741 10.1038/ncomms15741 PubMed DOI PMC
Vos, S.M., Farnung, L., Boehning, M., Wigge, C., Linden, A., Urlaub, H.et al. (2018) Structure of activated transcription complex Pol II–DSIF–PAF–SPT6. Nature 560, 607–612 10.1038/s41586-018-0440-4 PubMed DOI
Ehara, H., Kujirai, T., Fujino, Y., Shirouzu, M., Kurumizaka, H. and Sekine, S. (2019) Structural insight into nucleosome transcription by RNA polymerase II with elongation factors. Science 363, 744–747 10.1126/science.aav8912 PubMed DOI
Yoh, S.M., Lucas, J.S. and Jones, K.A. (2008) The Iws1:Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation. Genes Dev. 22, 3422–3434 10.1101/gad.1720008 PubMed DOI PMC
Reim, N.I., Chuang, J., Jain, D., Alver, B.H., Park, P.J. and Winston, F. (2020) The conserved elongation factor Spn1 is required for normal transcription, histone modifications, and splicing in saccharomyces cerevisiae. Nucleic Acids Res. 48, 10241–10258 10.1093/nar/gkaa745 PubMed DOI PMC
Yoh, S.M., Cho, H., Pickle, L., Evans, R.M. and Jones, K.A. (2007) The Spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export. Genes Dev. 21, 160–174 10.1101/gad.1503107 PubMed DOI PMC
Ehara, H., Kujirai, T., Shirouzu, M., Kurumizaka, H. and Sekine, S.I. (2022) Structural basis of nucleosome disassembly and reassembly by RNAPII elongation complex with FACT. Science 377, eabp9466 10.1126/science.abp9466 PubMed DOI
Tsai, K.L., Tomomori-Sato, C., Sato, S., Conaway, R.C., Conaway, J.W. and Asturias, F.J. (2014) Subunit architecture and functional modular rearrangements of the transcriptional mediator complex. Cell 157, 1430–1444 10.1016/j.cell.2014.05.015 PubMed DOI PMC
Takahashi, H., Parmely, T.J., Sato, S., Tomomori-Sato, C., Banks, C.A.S., Kong, S.E.et al. (2011) Human mediator subunit MED26 functions as a docking site for transcription elongation factors. Cell 146, 92–104 10.1016/j.cell.2011.06.005 PubMed DOI PMC
Lens, Z., Cantrelle, F.X., Peruzzini, R., Hanoulle, X., Dewitte, F., Ferreira, E.et al. (2017) Solution structure of the N-terminal domain of mediator subunit MED26 and molecular characterization of Its interaction with EAF1 and TAF7. J. Mol. Biol. 429, 3043–3055 10.1016/j.jmb.2017.09.001 PubMed DOI
Van Nuland, R., Van Schaik, F.M.A., Simonis, M., Van Heesch, S., Cuppen, E., Boelens, R.et al. (2013) Nucleosomal DNA binding drives the recognition of H3K36-methylated nucleosomes by the PSIP1-PWWP domain. Epigenetics Chromatin 6, 12 10.1186/1756-8935-6-12 PubMed DOI PMC
Wang, H., Farnung, L., Dienemann, C. and Cramer, P. (2020) Structure of H3K36-methylated nucleosome–PWWP complex reveals multivalent cross-gyre binding. Nat. Struct. Mol. Biol. 27, 8–13 10.1038/s41594-019-0345-4 PubMed DOI PMC
Čermaková, K., Tesina, P., Demeulemeester, J., El Ashkar, S., Méreau, H., Schwaller, J.et al. (2014) Validation and structural characterization of the LEDGF/p75-MLL interface as a new target for the treatment of MLL-dependent leukemia. Cancer Res. 74, 5139–5151 10.1158/0008-5472.CAN-13-3602 PubMed DOI
Van Belle, S., Ashkar, S.E., Čermáková, K., Matthijssens, F., Goossens, S., Canella, A.et al. (2021) Unlike its paralog LEDGF/p75, HRP-2 is dispensable for MLL- R leukemogenesis but important for leukemic cell survival. Cells 10, 192 10.3390/cells10010192 PubMed DOI PMC
Zhu, X., Lan, B., Yi, X., He, C., Dang, L., Zhou, X.et al. (2020) HRP2-DPF3a-BAF complex coordinates histone modification and chromatin remodeling to regulate myogenic gene transcription. Nucleic Acids Res. 48, 6563–6582 10.1093/nar/gkaa441 PubMed DOI PMC
LeRoy, G., Oksuz, O., Descostes, N., Aoi, Y., Ganai, R.A., Kara, H.O.et al. (2019) LEDGF and HDGF2 relieve the nucleosome-induced barrier to transcription in differentiated cells. Sci. Adv. 5, eaay3068 10.1126/sciadv.aay3068 PubMed DOI PMC
Aso, T., Haque, D., Barstead, R.J., Conaway, R.C. and Conaway, J.W. (1996) The inducible elongin A elongation activation domain: Structure, function and interaction with the elongin BC complex. EMBO J. 15, 5557–5566 10.1002/j.1460-2075.1996.tb00940.x PubMed DOI PMC
Yasukawa, T., Kamura, T., Kitajima, S., Conaway, R.C., Conaway, J.W. and Aso, T. (2008) Mammalian Elongin A complex mediates DNA-damage-induced ubiquitylation and degradation of Rpb1. EMBO J. 27, 3256–3266 10.1038/emboj.2008.249 PubMed DOI PMC
Wang, Y., Hou, L., Behfar Ardehali, M., Kingston, R.E. and Dynlacht, B.D. (2021) Elongin A regulates transcription in vivo through enhanced RNA polymerase processivity. J. Biol. Chem. 296, 100170 10.1074/jbc.RA120.015876 PubMed DOI PMC
Weems, J.C., Slaughter, B.D., Unruh, J.R., Hall, S.M., McLaird, M.B., Gilmore, J.M.et al. (2015) Assembly of the Elongin A ubiquitin ligase is regulated by genotoxic and other stresses. J. Biol. Chem. 290, 15030–15041 10.1074/jbc.M114.632794 PubMed DOI PMC
Yasukawa, T., Bhatt, S., Takeuchi, T., Kawauchi, J., Takahashi, H., Tsutsui, A.et al. (2012) Transcriptional elongation factor elongin A regulates retinoic acid-induced gene expression during neuronal differentiation. Cell Rep. 2, 1129–1136 10.1016/j.celrep.2012.09.031 PubMed DOI
He, Y., Sato, S., Tomomori-Sato, C., Chen, S., Goode, Z.H., Conaway, J.W.et al. (2021) Elongin functions as a loading factor for mediator at ATF6α-regulated ER stress response genes. Proc. Natl Acad. Sci. U.S.A. 118, e2108751118 10.1073/pnas.2108751118 PubMed DOI PMC
Cortazar, M.A., Sheridan, R.M., Erickson, B., Fong, N., Glover-Cutter, K., Brannan, K.et al. (2019) Control of RNA Pol II speed by PNUTS-PP1 and Spt5 dephosphorylation facilitates termination by a “sitting duck torpedo” mechanism. Mol. Cell 76, 896–908.e4 10.1016/j.molcel.2019.09.031 PubMed DOI PMC
Kecman, T., Kuś, K., Heo, D.H., Duckett, K., Birot, A., Liberatori, S.et al. (2018) Elongation/Termination factor exchange mediated by PP1 phosphatase orchestrates transcription termination. Cell Rep. 25, 259–269.e5 10.1016/j.celrep.2018.09.007 PubMed DOI PMC
Parua, P.K., Booth, G.T., Sansó, M., Benjamin, B., Tanny, J.C., Lis, J.T.et al. (2018) A Cdk9-PP1 switch regulates the elongation-termination transition of RNA polymerase II. Nature 558, 460–464 10.1038/s41586-018-0214-z PubMed DOI PMC
Landsverk, H.B., Kirkhus, M., Bollen, M., Küntziger, T. and Collas, P. (2005) PNUTS enhances in vitro chromosome decondensation in a PP1-dependent manner. Biochem. J. 390, 709–717 10.1042/BJ20050678 PubMed DOI PMC
Lee, J.H., You, J., Dobrota, E. and Skalnik, D.G. (2010) Identification and characterization of a novel human PP1 phosphatase complex. J. Biol. Chem. 285, 24466–24476 10.1074/jbc.M110.109801 PubMed DOI PMC
De Castro, I.J., Budzak, J., Di Giacinto, M.L., Ligammari, L., Gokhan, E., Spanos, C.et al. (2017) Repo-Man/PP1 regulates heterochromatin formation in interphase. Nat. Commun. 8, 14048 10.1038/ncomms14048 PubMed DOI PMC
Grallert, A., Boke, E., Hagting, A., Hodgson, B., Connolly, Y., Griffiths, J.R.et al. (2015) A PP1-PP2A phosphatase relay controls mitotic progression. Nature 517, 94–98 10.1038/nature14019 PubMed DOI PMC
Wu, J.Q., Guo, J.Y., Tang, W., Yang, C.S., Freel, C.D., Chen, C.et al. (2009) PP1-mediated dephosphorylation of phosphoproteins at mitotic exit is controlled by inhibitor-1 and PP1 phosphorylation. Nat. Cell Biol. 11, 644–651 10.1038/ncb1871 PubMed DOI PMC
Dingar, D., Tu, W.B., Resetca, D., Lourenco, C., Tamachi, A., De Melo, J.et al. (2018) MYC dephosphorylation by the PP1/PNUTS phosphatase complex regulates chromatin binding and protein stability. Nat. Commun. 9, 3502 10.1038/s41467-018-05660-0 PubMed DOI PMC
Landsverk, H.B., Sandquist, L.E., Bay, L.T.E., Steurer, B., Campsteijn, C., Landsverk, O.J.B.et al. (2020) WDR82/PNUTS-PP1 prevents transcription-replication conflicts by promoting RNA polymerase II degradation on chromatin. Cell Rep. 33, 108469 10.1016/j.celrep.2020.108469 PubMed DOI
Liu, Z., Wu, A., Wu, Z., Wang, T., Pan, Y., Li, B.et al. (2022) TOX4 facilitates promoter-proximal pausing and C-terminal domain dephosphorylation of RNA polymerase II in human cells. Commun. Biol. 5, 300 10.1038/s42003-022-03214-1 PubMed DOI PMC
Elkhaligy, H., Balbin, C.A. and Siltberg-Liberles, J. (2022) Comparative analysis of structural features in SLiMs from eukaryotes, bacteria, and viruses with importance for host-pathogen interactions. Pathogens 11, 583 10.3390/pathogens11050583 PubMed DOI PMC
Hraber, P., O'Maille, P.E., Silberfarb, A., Davis-Anderson, K., Generous, N., McMahon, B.H.et al. (2020) Resources to discover and Use short linear motifs in viral proteins. Trends Biotechnol. 38, 113–127 10.1016/j.tibtech.2019.07.004 PubMed DOI PMC
Schrijvers, R., Vets, S., De Rijck, J., Malani, N., Bushman, F.D., Debyser, Z.et al. (2012) HRP-2 determines HIV-1 integration site selection in LEDGF/p75 depleted cells. Retrovirology 9, 84 10.1186/1742-4690-9-84 PubMed DOI PMC
Busschots, K., Vercammen, J., Emiliani, S., Benarous, R., Engelborghs, Y., Christ, F.et al. (2005) The interaction of LEDGF/p75 with integrase is lentivirus-specific and promotes DNA binding. J. Biol. Chem. 280, 17841–7 10.1074/jbc.M411681200 PubMed DOI
Christ, F., Voet, A., Marchand, A., Nicolet, S., Desimmie, B.A., Marchand, D.et al. (2010) Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat. Chem. Biol. 6, 442–448 10.1038/nchembio.370 PubMed DOI
Marx, A., Luebke, A.M., Clauditz, T.S., Steurer, S., Fraune, C., Hube-Magg, C.et al. (2020) Upregulation of phosphatase 1 nuclear-targeting subunit (PNUTS) Is an independent predictor of poor prognosis in prostate cancer. Dis. Markers 2020, 7050146 10.1155/2020/7050146 PubMed DOI PMC
Cermakova, K., Weydert, C., Christ, F., De Rijck, J. and Debyser, Z. (2016) Lessons learned: HIV points the way towards precision treatment of mixed-lineage leukemia. Trends Pharmacol. Sci. 37, 660–671 10.1016/j.tips.2016.05.005 PubMed DOI
Yokoyama, A. and Cleary, M.L. (2008) Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 14, 36–46 10.1016/j.ccr.2008.05.003 PubMed DOI PMC
Méreau, H., De Rijck, J., Čermáková, K., Kutz, A., Juge, S., Demeulemeester, J.et al. (2013) Impairing MLL-fusion gene-mediated transformation by dissecting critical interactions with the lens epithelium-derived growth factor (LEDGF/p75). Leukemia 27, 1245–1253 10.1038/leu.2013.10 PubMed DOI
Chan, T.S.Y., Hawkins, C., Krieger, J.R., McGlade, C.J. and Huang, A. (2016) JPO2/CDCA7L and LEDGF/p75 are novel mediators of pi3k/akt signaling and aggressive phenotypes in medulloblastoma. Cancer Res. 76, 2802–2812 10.1158/0008-5472.CAN-15-2194 PubMed DOI
Gao, K., Xu, C., Jin, X., Wumaier, R., Ma, J., Peng, J.et al. (2015) HDGF-related protein-2 (HRP-2) acts as an oncogene to promote cell growth in hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 458, 849–855 10.1016/j.bbrc.2015.02.042 PubMed DOI
Békés, M., Langley, D.R. and Crews, C.M. (2022) PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 10.1038/s41573-021-00371-6 PubMed DOI PMC
Samarasinghe, K.T.G. and Crews, C.M. (2021) Targeted protein degradation: A promise for undruggable proteins. Cell Chem. Biol. 28, 934–951 10.1016/j.chembiol.2021.04.011 PubMed DOI PMC
Cermakova, K. and Courtney Hodges, H. (2018) Next-generation drugs and probes for chromatin biology: From targeted protein degradation to phase separation. Molecules 23, 1958 10.3390/molecules23081958 PubMed DOI PMC
Boike, L., Cioffi, A.G., Majewski, F.C., Co, J., Henning, N.J., Jones, M.D.et al. (2021) Discovery of a functional covalent ligand targeting an intrinsically disordered cysteine within MYC. Cell Chem. Biol. 28, 4–13.e17 10.1016/j.chembiol.2020.09.001 PubMed DOI PMC
Tompa, P., Davey, N.E., Gibson, T.J. and Babu, M.M. (2014) A million peptide motifs for the molecular biologist. Mol. Cell 55, 161–169 10.1016/j.molcel.2014.05.032 PubMed DOI
Multivalency of nucleosome recognition by LEDGF