Plant antimicrobial peptides
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
24092498
PubMed Central
PMC3971460
DOI
10.1007/s12223-013-0280-4
Knihovny.cz E-resources
- MeSH
- Anti-Bacterial Agents chemistry pharmacology MeSH
- Antifungal Agents chemistry pharmacology MeSH
- Anti-Infective Agents chemistry classification pharmacology MeSH
- Biotechnology MeSH
- Plant Physiological Phenomena * MeSH
- Antimicrobial Cationic Peptides chemistry classification pharmacology MeSH
- Cell-Penetrating Peptides chemistry pharmacology MeSH
- Plants chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Antifungal Agents MeSH
- Anti-Infective Agents MeSH
- Antimicrobial Cationic Peptides MeSH
- Cell-Penetrating Peptides MeSH
Plant antimicrobial peptides (AMPs) are a component of barrier defense system of plants. They have been isolated from roots, seeds, flowers, stems, and leaves of a wide variety of species and have activities towards phytopathogens, as well as against bacteria pathogenic to humans. Thus, plant AMPs are considered as promising antibiotic compounds with important biotechnological applications. Plant AMPs are grouped into several families and share general features such as positive charge, the presence of disulfide bonds (which stabilize the structure), and the mechanism of action targeting outer membrane structures.
See more in PubMed
Agizzio AP, Carvalho AO, Ribeirosde F, Machado OL, Alves EW, Okorokov LA, Samarao SS, Bloch C, Prates MV, Gomes VM. A 2S albumin-homologous protein from passion fruit seeds inhibits the fungal growth and acidification of the medium by Fusarium oxysporum. Arch Biochem Biophys. 2003;416:188–195. PubMed
Almasia NI, Narhirñak V, Hopp EH, Vazquez-Rovere C. Isolation and characterization of the tissue and developmental specific potato snaking-1 promoter inducible by temperature and wounding. Electr J Plant Biotech. 2010
Berrocal-Lobo M, Segura A, Moreno M, López G, García-Olmedo F, Molina A. Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol. 2002;128:951–961. PubMed PMC
Bhave M, Morris CF. Molecular genetics of puroindolines and related genes: regulation of expression, membrane binding properties and applications. Plant Mol Biol. 2008;66:221–231. PubMed
Broekaert W, Marien W, Terras F, De Bolle M, Proost P, Van Damme J, Dillen L, Claeys M, Rees SB, Vanderleyden J, et al. Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochemistry. 1992;31:4308–4314. PubMed
Burman R, Strömstedt AA, Malmsten M, Göransson U. Cyclotide-membrane interactions defining factors of membrane binding, depletion and disruption. Biochim Biophys Acta. 2011;1808:2665–2673. PubMed
Cammue BP, De Bolle MF, Terras FR, Proost P, Van Damme J, Rees SB, Vanderleyden J, Broekaert WF. Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabilis jalapa L seeds. J Biol Chem. 1992;267:2228–2233. PubMed
Cammue B, Thevissen K, Hendricks M, Eggermont K, Goderis IJ, Proost P, Van Damme J, Osborn RW, Guerbette F, Kader JC, et al. A potent antimicrobial protein of onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol. 1995;109:445–455. PubMed PMC
Cândido Ede S, Pinto MF, Pelegrini PB, Lima TB, Silva ON, Pogue R, Grossi-de-Sá MF, Franco OL. Plant storage proteins with antimicrobial activity: novel insights into plant defense mechanisms. FASEB J. 2011;25:3290–3305. PubMed
Cascales L, Henriques ST, Kerr MC, Huang YH, Sweet MJ, Daly NL, Craik DJ. Identification and characterization of a new family of cell penetrating peptides. J Biol Chem. 2011;286:36932–36943. PubMed PMC
Chandrashekhara NRS, Deepak S, Manjunath G, Shetty SH. Thionins (PR protein 13) mediate pearl millet down mildew disease resistance. Arch Phytopathol Plant Protect. 2010;43:1356–1366.
Charnet P, Molle G, Marion D, Rousset M, Lullien-Pellerin V. Puroindolines form ion channeles in biological membranes. Biophys J. 2003;84:2416–2426. PubMed PMC
Cheng CS, Chouabe C, Eyraud V, Rahioui I, Royer C, Soulage C, Bonvallet R, Huss M, Gressent F. New mode of action for a knottin protein bioinsecticide pea albumin 1 subunit b(PA1b) is the first peptidic inhibitor of V-ATP-ase. J Biol Chem. 2011;286:36291–36296. PubMed PMC
Choi KY, Chow LN, Mookherjee N. Cationic host defence peptides: multifaceted role in immune modulation and inflammation. J Innate Immun. 2012;4:361–370. PubMed PMC
Chouabe C, Eyraud V, Da Silva P, Rahioui I, Royer C, Soulage C, Bonvallet R, Huss M, Gressent F (2011) New mode of action for a knottin protein bioinsecticide: pea albumin 1 subunit b (PA1b) is the first peptidic inhibitor of V-ATPase. J Biol Chem 286:36291–36296 PubMed PMC
Clark RJ, Daly NL, Craik DJ. Structural plasticity of the cyclic-cystine-knot framework: implications for biological activity and drug design. Biochem J. 2006;394:85–93. PubMed PMC
Colgrave ML, Craik DJ. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1 the importance of the cyclic cystine knot. Biochemistry. 2004;43:5965–5975. PubMed
Craik DJ. Discovery and applications of plant cyclotides. Toxicon. 2010;57:1092–1102. PubMed
Craik DJ. Host-defense activities of cyclotides. Toxins. 2012;4:139–156. PubMed PMC
Craik DJ, Daly NL, Bond T, Waine C. Plant cyclotides. A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol. 1999;294:1327–1336. PubMed
Craik DJ, Cemazar M, Wang CK, Baly NL. The cyclotide family of circular miniproteins nature's combinatorial peptide template. Biopolymers. 2006;84:250–266. PubMed
Daly NL, Gustafson KR, Craik DJ. The role of the cyclic peptide backbone in the anti-HIV activity of the cyclotide kalata B1. FEBS Lett. 2004;574:69–72. PubMed
De Beer A, Viver MA. Four plant defensins from an indigenous South African Brassicaceae species display divergent activities against two test pathogens despite high sequence similarity in the encoding genes. BMC Res Notes. 2011;4:459–476. PubMed PMC
De Lucca AJ, Jacks T, Broekaert W. Fungicidal and binding properties of three plant peptides. Mycopathologia. 1999;40:87–91. PubMed
De Lucca AJ, Cleveland TE, Wedge DE. Plant-derived antifungal proteins and peptides. Can J Microbiol. 2005;51:1001–1014. PubMed
Dhatwalia VK, Sati OP, Tripathi MK, Kumar A. Isolation, characterization and antimicrobial activity at diverse dilution of wheat puroindoline protein. World J Agric Sci. 2009;5:297–300.
Diz MS, Carvalho AO, Ribeiro SF, Da Cunha M, Beltramini L, Rodrigues R, Nascimento VV, Machado OL, Gomez V. Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α-amylase inhibitory properties. Physiol Plant. 2011;142:233–246. PubMed
Dubreil L, Gabroit T, Bouchet B, Gallant DJ, Broekaert WF, Quillien L, Marion D. Spatial and temporal distribution of the major isoforms of puroindolines (puroindoline-a and puroindoline-b) and non-specific lipid transfer protein nsLTPe1) of Triticum aestivum seeds relationships with their in vitro antifungal properties. Plant Sci. 1998;138:121–135.
Eggenberger K, Mink C, Wadhwani P, Ulrich AS, Nick P. Using the peptide BP100 as a cell-penetrating tool for the chemical engineering of actin filaments within living plants cell. Chembiochem. 2011;12:132–137. PubMed
Egger M, Hauser M, Mari A, Ferreira F, Gadermaier G. The role of lipid transfer proteins in allergic diseases. Curr Allergy Asthma Rep. 2010;10:326–335. PubMed
Epple P, Apel K, Bohlmann H. An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Plant Physiol. 1995;109:813–820. PubMed PMC
Eudes F, Chugh A. Cell penetrating peptides. From mammalian to plant cells. Plant Signal Behav. 2008;3:549–550. PubMed PMC
Fernandez De Caleya R, Gonzales-Pascual B, Garcia-Olmedo F, Carbonero P. Suseptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl Microbiol. 1972;23:998–1000. PubMed PMC
Fernández-Carneado J, Kogan MJ, Castel S, Giralt E. Potential peptide carriers: amphipathic proline-rich peptides derived from the N-terminal domain of gamma-zein. Angew Chem Int Ed Engl. 2004;43:1811–1814. PubMed
Gao A, Hakimi SM, Mittanck CA, et al. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol. 2000;18:1307–1310. PubMed
Gao GH, Liu W, Dai JX, Wang JF, Hu Z, Zhang Y, Wang DC. Solution structure of PAFP-S a new knottin-type antifungal peptide from the seeds of Phytolacca americana. Biochemistry. 2001;40:10973–10978. PubMed
Gautier MF, Aleman ME, Guirao A, Marion D, Joudrier P. Triticum aestivum puroindolines, two basic cysteine-rich seed proteins, DBA sequence analysis and developmental gene expression. Plant Mol Biol. 1994;25:43–57. PubMed
Giroux MJ, Sripo T, Gerhardt S, Sherwood J. Puroindolines. Their role in grain hardness and plant defense. Biotechnol Genet Eng Rev. 2003;20:276–290. PubMed
Giudici AM, Regente MC, Villalain J, Pfuller K, Pfuller U, de la Canal L. Misctletoe viscotoxins induce membrane permeabilization and spore death in phytopathogenic fungi. Physiol Plant. 2004;121:2–7. PubMed
Greewood KP, Daly NL, Brown DL, Stow JL, Craik DJ. The cyclic cystine knot miniprotein MCoTI-II is internalized into cells by macropinocytosis. Int J Biochem Cell Biol. 2007;39:2252–2264. PubMed
Gruber CW. Global cyclotide adventure: a journey dedicated to the discovery of circular peptides from flowering plants. Biopolymers. 2010;94:565–572. PubMed PMC
Gustafson KR, Sowder RCI, Henderson LE, Parsons IC, Kashman Y, Cardellina JHI, McMahon JB, Buckheit RWJ, Pannell LK, Boyd MR, Cirulins A and B Novel HIV-inhibitory macrocyclic peptides from the tropical tree Chassalia parvifolia. J Am Chem Soc. 1994;116:9337–9338.
Hammami R, Ben Hamida J, Vergoten G, Fliss I. PhytAMP: a database dedicated to antimicrobial plant peptides. Nucleic Acid Res. 2009;37:D963–D968. PubMed PMC
Hegedus N, Marx F. Antifungial proteins: more than antimicrobials? Fungal Biol Rev. 2013;26:132–145. PubMed PMC
Hong M, Su Y. Structure and dynamics of cationic membrane peptides and proteins insights from solid-state NMR. Protein Sci. 2011;20:641–655. PubMed PMC
Huang X, Xie W, Gong Z. Characteristics and antifungal activity of a chitin binding protein from Ginkgo biloba. FEBS Lett. 2000;478:123–126. PubMed
Huang RH, Xiang Y, Liu XZ, Zhang Y, Hu Z, Wang DC. Two novel antifungal peptides distinct with a five-disulfide motif from the bark of Eucommia ulmoides Oliv. FEBS Lett. 2002;521:87–90. PubMed
Huang RH, Xiang Y, Tu GZ, Zhang Y, Wang DC. Solution structure of Eucommia antifungal peptide a novel structural model distinct with a five-disulfide motif. Biochemistry. 2004;43:6005–6012. PubMed
Hughes P, Dennis E, Whitecross M, Liewelly D, Gage P. The cytotoxic plant protein, β-purothionin, forms ion channels in lipid membranes. J Biol Chem. 2000;14:823–827. PubMed
Ireland DC, Clark RJ, Daly NL, Craik DJ. Isolation, sequencing, and structure–activity relationships of cyclotides. J Nat Prod. 2010;73:1610–1622. PubMed
Jennings C, West J, Waine C, Craik D, Anderson M. Biosynthesis and insecticidal properties of plant cyclotides. The cyclic knotted proteins from Oldenlandia affinis. Proc Natl Acad Sci U S A. 2001;98:8913–8919. PubMed PMC
Jing W, Demcoe A, Vogel HJ. Conformation of bactericidal domain of puroindoline a structure and mechanism of action of a 13 residue antimicrobial peptide. J Bacteriol. 2003;185:4938–4947. PubMed PMC
Kiba A, Saitoh H, Nishihara M, Omiya K, Yamamura S. C-terminal domain of a hevein-like protein from Wasabia japonica has potent antimicrobial activity. Plant Cell Physiol. 2003;44:296–303. PubMed
Kirubakaren SI, Begum SM, Ulganathan K, Sakthivel N. Characterization of a new antifungal lipid transfer protein from wheat. Plant Physiol Biochem. 2008;46:918–927. PubMed
Koo JC, Lee SY, Chun HJ, Cheong YH, Choi JS, Kawabata S, Miyagi M, Tsunasawa S, Ha KS, Bae DW, Han CD, Lee Blcho MJ. Two hevein homologs isolated from the seed of Pharbitis nil L exhibit potent antifungal activity. Biochim Biophys Acta. 1998;1382:80–90. PubMed
Koo JC, Chun HJ, Park HC, et al. Over-expression of a seed specific hevein-like antimicrobial peptide from Pharbitis nil enhances resistance to a fungal pathogen in transgenic tobacco plants. Plant Mol Biol. 2002;50:441–452. PubMed
Koren E, Torchilin VP. Cell-penetrating peptides: breaking through to the other side. Trends Mol Med. 2012;18:385–393. PubMed
Kragh K, Nielsen J, Nielsen KK, Dreboldt S, Mikkelsen JD. Characterization and localization of new antifungal cysteine-rich proteins from Beta vulgaris. Mol Plant Microbe Interact. 1995;8:579–585. PubMed
Lai Y, Gallo RL. AMPed immunity how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009;30:131–141. PubMed PMC
Lay FT, Anderson MA. Defensins—components of the innate immune system in plants. Curr Protein Pept Sci. 2005;6:85–101. PubMed
Li SS, Claeson P. Cys/Gly-rich proteins with a putative single chitin-binding domain from oat (Avena sativa) seeds. Phytochemistry. 2003;63:249–255. PubMed
Li C, Xie W, Wang L, Zhao Y. The phosphorylation of lipid transfer protein CaMBP10. Protein Pept Lett. 2011;18:17–22. PubMed
Majewski J, Stec B. X-ray scattering studies of model lipid membrane interacting with purothionins provide support for a previously proposed mechanism of membrane lysis. Eur Biophys J. 2001;39:1155–1165. PubMed
Mak AS, Jones BL. The amino sequence of wheat β-purothionin. Can J Biochem. 1976;54:835–842. PubMed
Marion D, Bakan B, Elmorjani K. Plant lipid binding proteins properties and applications. Biotechnol Adv. 2007;25:195–197. PubMed
Milbradt A, Kerek F, Moroder L, Renner C. Structural characterization of hellethionins from Helleborus purpurascens. Biochemistry. 2003;42:2404–2411. PubMed
Milletti F. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today. 2012;17:850–860. PubMed
Miteva M, Andersson M, Karshikoff A, Otting G. Molecular electroporation: a unifying concept for the description of membrane pore formation by antibacterial peptides, exemplified with NK-lysin. FEBS Lett. 1999;462(1–2):155–158. PubMed
Molina A, Segura A, Garcia-Olmedo F. Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Lett. 1993;316:119–122. PubMed
Montesinos E. Antimicrobial peptides and plant disease control. FEMS Microbiol Lett. 2007;270:1–11. PubMed
Mylne JS, Wang CK, van der Weerden NL, Craik DJ. Cyclotides are a component of the innate defense of Oldenlandia affinis. Biopolymers. 2010;94:635–646. PubMed
Nahirñak V, Almasia NI, Hopp HE, Vazquez-Rovere C. Snakin/GASA proteins involvement in hormone crosstalk and redox homeostasis. Plant Signal Behav. 2012;7:1004–1008. PubMed PMC
Nasrollahi SA, Taghibiglou C, Azizi E, Farboud ES. Cell-penetrating peptides as a novel transdermal drug delivery system. Chem Biol Drug Des. 2012;80:639–646. PubMed
Ngai PH, Ng TB. Phaseococcin, an antifungal protein with antiproliferative and anti-HIV-1 reverse transcriptase activities from small scarlet runner beans. Biochem Cell Biol. 2005;83:212–220. PubMed
Nielsen KK, Nielsen JE, Madrid SM, Mikkelsen JD. Characterization of a new antifungal chitin-binding peptide from sugar beet leaves. Plant Physiol. 1997;113:83–91. PubMed PMC
Oard S, Rush MC, Oard JH. Characterization of antimicrobial peptides agains a US strain of the rice pathogen Rhizoctonia solani. J Appl Microbiol. 2004;97:169–180. PubMed
Odintsova TI, Vassilevski AA, Slavokhotova AA, Musolyamov AK, Finkina EI, Khadeeva NV, Rogozhin EA, Korostyleva TV, Pukhalsky VA, Grishin EV, Egorov TA. A novel antifungal hevein-type peptide from Triticum kiharae seeds with a unique 10-cysteine motif. FEBS J. 2009;276:4266–4275. PubMed
Oomen RJ, Séveno-Carpentier E, Ricodeau N, Bournaud C, Conéjéro G, Paris N, Berthomieu P, Marquès L. Plant defensin AhPDF1 is not secreted in leaves but it accumulates in intracellular compartments. New Phytol. 2011;192:140–150. PubMed
Ovesen RG, Brandt KK, Goransson U, Nilesen J, Hansen HC, Cedergreen N. Biomedicine in the environment: cyclotides constitute potent natural toxins in plants and soil bacteria. Environ Toxicol Chem. 2011;30:1119–1196. PubMed
Padovan L, Segat L, Tossi A, Calsa TJR, Ederson AK, Brandao L, Guimarães RL, Pandolfi V, Pestana-Calsa MC, Belarmino LC, Benko-Iseppon AM, Crovella S. Characterization of a new defensin from cowpea (Vigna unguiculata (L) Walp) Protein Pept Lett. 2010;17:297–304. PubMed
Patel SU, Osborn R, Rees S, Thornton JM. Structural studies of Impatiens balsamina antimicrobial protein (Ib-AMP1) Biochemistry. 1998;37:983–990. PubMed
Pelegrini PB, Franco OL. Plant gamma-thionins: novel insights on the mechanism of action of amulti-functional class of defense proteins. Int J Biochem Cell Biol. 2005;37:2239–2253. PubMed
Pelegrini PB, Quirino BF, Franco OL. Plant cyclotides: an unusual class of defense compounds. Peptides. 2007;28:1475–1481. PubMed
Pelegrini PB, Del Sarto RP, Silva ON, Franco OL, Grossi-De-Sa MF. Antibacterial peptides from plants: what they are and how they probably work. Biochem Res Int. 2011 PubMed PMC
Pestana-Calsa MC, Calsa T. In silico identification of plant-derived antimicrobial peptides. DOI: 2011
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–1612. PubMed
Pinheiro da Silva F, Machado MC. Antimicrobial peptides: clinical relevance and therapeutic implications. Peptides. 2012;36:308–314. PubMed
Plan MR, Saska I, Cagauan AG, Craik DJ. Backbone cyclised peptides from plants show molluscidal activity against the rice pest Pomacea canaliculata (golden appl snail) J Agric Food Chem. 2008;56:5237–5241. PubMed
Pokorny A, Almeida PF. Kinetics of dye efflux and lipid flip-flop induced by delta-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, alpha-helical peptides. Biochemistry. 2004;43(27):8846–8857. PubMed
Portieles R, Ayra C, Gonzalez E, Gallo A, Rodriguez R, Chacón O, López Y, Rodriguez M, Castillo J, Pujol M, Enriquez G, Borroto C, Trujillo L, Thomma BP, Borrás-Hidalgo O. NmDef02:a novel antimicrobial gene isolated from Nicotiana megalosiphon confers high level pathogen resistance under greenhouse and field conditions. Plant Biotechnol J. 2010;8:678–690. PubMed
Porto WF, Souza VA, Nolasco DO, Franco OL. In silico identification of novel hevein-like peptide precursors. Peptides. 2012;38:127–136. PubMed
Pränting M, Lööv C, Burman R, Göransson U, Andersson DI. The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against Gram-negative bacteria. J Antimicrob Chemother. 2010;65:1964–1971. PubMed
Rayapuram C, Wu J, Haas C, Baldwin IT. PR-13/Thionin but not PR-1 mediates bacterial resitance in Nicotiana attenuata in nature, and neither influences herbivore resistance. Mol Plant Microbe Interact. 2008;21:988–1000. PubMed
Rivas L, Luque-Ortega J, Fernandez-Reyes M, Andreu D. Membrane-active peptides as ant- infectious agents. J Appl Biomed. 2010;8:159–167.
Rogozhin EA, Oshchepkova YI, Odintsova TI, Khadeeva NV, Veshkurova ON, Egorov TA, Grishin EV, Salikhov SI. Novel antifungal defensins from Nigella sativa L. seeds. Plant Physiol Biochem. 2011;49:131–137. PubMed
Samuelsson G, Pettersson B. Separation of viscotoxins from the European mistletoe Viscum album L. (Loranthaceae) by chromatography on sulfoethyl Sephadex. Acta Chem Scand. 1970;24:2751–2756. PubMed
Samuelsson G, Pettersson BM. Toxic protein from the mistletoe Dendrophtora clavata. II. The amino acid sequence of denclatoxin B. Acta Pharm Suec. 1977;14:245–254. PubMed
Schaefer SC, Gasic K, Cammue B, Broekaert W, van Damme EJM, Peumans WJ, Korban SS. Enhanced resistance to early blight in transgenic tomato lines expressing heterologous plant defense genes. Planta. 2005;222:858–866. PubMed
Schauber J, Dorschner RA, Yamasaki K, Brouha B, Gallo RL. Control of the innate epithelial antimicrobial response is cell-type specific and dependent on relevant microenvironmental stimuli. Immunology. 2006;118:509–519. PubMed PMC
Schrader-Fisher G, Apel K. Organ specific expression of highly divergent thionin variants that are distinct from the seed-specific crambin in the crucifer Crambe abyssinica. Mol Gen Genet. 1994;245:380–389. PubMed
Segura A, Moreno M, García-Olmedo F (1993) Purification and antipathogenic activity of lipid transfer proteins (LTPs) from the leaves of Arabidopsis and spinach. FEBS Lett 332:243–246 PubMed
Segura A, Moreno M, Molina A, García-Olmedo F. Novel defensin subfamily from spinach (Spinacia oleracea) FEBS Lett. 1998;435:159–162. PubMed
Segura A, Moreno M, Madueño F, Molina A, García-Olmedo F (1999) Snakin-1, a peptide from potato that is active against plant pathogens. Mol Plant Microbe Interact 12:16–23 PubMed
Selitrennikoff CP. Antifungal proteins. Appl Envirol Microbiol. 2001;67:2883–2894. PubMed PMC
Spelbrink RG, Dilmac N, Allen A, Smith TJ, Shah DM, Hockerman GH. Differential antifungal and calcium channel blocking activity among structurally related plant defensins. Plant Physiol. 2004;135:2055–2067. PubMed PMC
Stec B. Plant thionins—the structural perspective. Cell Mol Life Sci. 2006;63:1370–1385. PubMed PMC
Stotz HU, Thomson JG, Wang Y. Plant defensins defense, development and application. Plant Signal Behav. 2009;11:1010–1012. PubMed PMC
Svangård E, Burman R, Gunasekera S, Lövborg H, Gullbo J, Göransson U. Mechanism of action of cytotoxic cyclotides cycloviolacin O2 disrupts lipid membranes. J Nat Prod. 2007;70:643–647. PubMed
Terras FR, Schoofs HM, De Bolle MF, Van Leuven F, Rees SB, Vanderleyden J, Cammue BP, Broekaert WF. Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem. 1992;267:15301–15309. PubMed
Terras F, Schoofs H, Thevissen K, Osborn RW, Vanderleyden J, Cammue B, Broekaert WF. Synergistic enhancement of the antifungal activity of wheat and barley thionins by radish and oilseed rape 2S albumins and by barley trypsin inhibitors. Plant Physiol. 1993;103:1311–1319. PubMed PMC
Terras FR, Torrekens S, Van Leuven F, Osborn RW, Vanderleyden J, Cammue BP, Broekaert WF. A new family of basic cysteine-rich plant antifungial proteins from Brassicaceae species. FEBS Lett. 1993;316:233–240. PubMed
Terras FR, Eggermont K, Kovaleva V, et al. Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell. 1995;7:573–588. PubMed PMC
Thevissen K, Ghazi A, de Samblanx GW, Brownlee C, Osborn RW, Broekaert WF. Fungal membrane responses induced by plant defensins and thionins. J Biol Chem. 1996;271:15018–15025. PubMed
Thevissen K, Warnecke DC, François IE, Leipelt M, Heinz E, Ott C, Zähringer U, Thomma BP, Ferket KK, Cammue BP. Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem. 2004;279:3900–3905. PubMed
Thevissen K, Kristensen HH, Thomma BP, Cammue BP, Francois IE. Therapeutic potential of antifungal plant and insect defensins. Drug Discov Today. 2007;12:966–971. PubMed
Thevissen K, De Mello TP, Xu D, Blankenship J, Vandenbosch D, Idkowiak-Baladys J, Govaert G, Bink A, Rozental S, de Groot PW, Davis TR, Kumamoto CA, Vargas G, Nimrichter L, Coenye T, Mitchell A, Roemer T, Hannun YA, Cammue BP. The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans. Mol Microbiol. 2012;84:166–180. PubMed PMC
Thomma BP, Cammue BP, Thevissen K. Plant defensins. Planta. 2002;216:193–202. PubMed
Thongyoo P, Bonomelli C, Leatherbarrow RJ, Tate EW. Potent inhibitors of beta-tryptase and human leucocyte elastase based on the MCoTI-II scaffold. J Med Chem. 2009;52:6197–6200. PubMed
Thunberg E, Samuelsson G. Isolation and properties of ligatoxin A, a toxic protein from the mistletoe Phoradendron liga. Acta Pharm Suec. 1982;19:285–292. PubMed
Van den Berg KP, Proost P, Van Damme J, Coosemans J, van Damme EJ, Peumans WJ (2002) Five disulfide bridges stabilize a hevein-type antimicrobial peptide from the bark of spindle tree (Euonymus europaeus L.). FEBS Lett 530:181–185 PubMed
Van der Weerden NL, Hancock RE, Anderson MA. Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process. J Biol Chem. 2010;285:37513–37520. PubMed PMC
Van Parijs J, Broekaert WF, Goldstein IJ, Peumans WJ. Hevein an antifungal protein from rubber-tree (Hevea braziliensis) latex. Planta. 1991;183:258–264. PubMed
Veldhoen S, Laufer SD, Restle T. Recent developments in peptide-based nucleic acid delivery. Int J Mol Sci. 2008;9:1276–1320. PubMed PMC
Vernon LP. Pyrularia thionin physical properties, biological response and comparison to other thionins and cardiotoxin. J Toxicol. 1992;11:169–191.
Villa-Perello M, Sanchez-Vallet A, Garcıa-Olmedo F, Molina A, Andreu D. Synthetic and structural studies on Pyrularia pubera thionin: a single-residue mutation enhances activity against Gram-positive bacteria. FEBS Lett. 2003;536:215–219. PubMed
Wang X, Bunkers GJ. Potent heterologous antifungal proteins from cheeseweed (Malva parviflora) Biochem Biophys Res Commun. 2000;279:669–673. PubMed
Wijaya R, Neumann GM, Condron R, Hughes AB, Polya GM. Defense proteins from seed of Cassia fistula include a lipid transfer protein homologue and a protease inhibitory plant defensin. Plant Sci. 2000;159:243–255. PubMed
Wong JH, Ng TB. Sesquin, a potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase. Peptides. 2005;26:1120–1126. PubMed
Wu M, Maier E, Benz R, Hancock RE. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry. 1999;38(22):7235–7242. PubMed
Yang X, Xiao Y, Wang X, Pei Y. Expression of a novel small antimicrobial protein from the seeds of motherwort (Leonurus japonicus) confers disease resistance in tobacco. Appl Environ Microbiol. 2007;73:939–946. PubMed PMC
Yeats TH, Rose JKC. The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs) Protein Sci. 2008;17:191–198. PubMed PMC
Yount NY, Yeaman MR. Peptide antimicrobials: cell wall as a bacterial target. Ann N Y Acad Sci. 2013;1277:127–138. PubMed
Zhang J, Martin JM, Balint-Kurti P, Huang L, Giroux MJ. The heat puroindoline genes confer fungal resistance in transgenic corn. J Phytopathol. 2011;159:188–190.
Zhao M, Ma Y, Pan YH, Zhang CH, Yuan WX. A hevein-like protein and a class I chitinase with antifungal activity from leaves of the paper mulberry. Biomed Chromatogr. 2011;25:908–912. PubMed
Zhu YJ, Agbayani R, Moore PH. Ectopic expression of Dahlia merckii defensin DmAMP1 improves papaya resistance to Phytophthora palmivora by reducing pathogen vigor. Planta. 2007;226:87–97. PubMed
Zottich U, Da Cunha M, Carvalho AO, Dias GB, Silva NC, Santos IS, Do Nacimento VV, Miguel EC, Machado OL, Gomes VM. Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with α-amylase inhibitor properties. Biochim Biophys Acta. 2011;4:375–383. PubMed