• This record comes from PubMed

Plant antimicrobial peptides

. 2014 May ; 59 (3) : 181-96. [epub] 20131004

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Review

Plant antimicrobial peptides (AMPs) are a component of barrier defense system of plants. They have been isolated from roots, seeds, flowers, stems, and leaves of a wide variety of species and have activities towards phytopathogens, as well as against bacteria pathogenic to humans. Thus, plant AMPs are considered as promising antibiotic compounds with important biotechnological applications. Plant AMPs are grouped into several families and share general features such as positive charge, the presence of disulfide bonds (which stabilize the structure), and the mechanism of action targeting outer membrane structures.

See more in PubMed

Agizzio AP, Carvalho AO, Ribeirosde F, Machado OL, Alves EW, Okorokov LA, Samarao SS, Bloch C, Prates MV, Gomes VM. A 2S albumin-homologous protein from passion fruit seeds inhibits the fungal growth and acidification of the medium by Fusarium oxysporum. Arch Biochem Biophys. 2003;416:188–195. PubMed

Almasia NI, Narhirñak V, Hopp EH, Vazquez-Rovere C. Isolation and characterization of the tissue and developmental specific potato snaking-1 promoter inducible by temperature and wounding. Electr J Plant Biotech. 2010

Berrocal-Lobo M, Segura A, Moreno M, López G, García-Olmedo F, Molina A. Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol. 2002;128:951–961. PubMed PMC

Bhave M, Morris CF. Molecular genetics of puroindolines and related genes: regulation of expression, membrane binding properties and applications. Plant Mol Biol. 2008;66:221–231. PubMed

Broekaert W, Marien W, Terras F, De Bolle M, Proost P, Van Damme J, Dillen L, Claeys M, Rees SB, Vanderleyden J, et al. Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochemistry. 1992;31:4308–4314. PubMed

Burman R, Strömstedt AA, Malmsten M, Göransson U. Cyclotide-membrane interactions defining factors of membrane binding, depletion and disruption. Biochim Biophys Acta. 2011;1808:2665–2673. PubMed

Cammue BP, De Bolle MF, Terras FR, Proost P, Van Damme J, Rees SB, Vanderleyden J, Broekaert WF. Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabilis jalapa L seeds. J Biol Chem. 1992;267:2228–2233. PubMed

Cammue B, Thevissen K, Hendricks M, Eggermont K, Goderis IJ, Proost P, Van Damme J, Osborn RW, Guerbette F, Kader JC, et al. A potent antimicrobial protein of onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol. 1995;109:445–455. PubMed PMC

Cândido Ede S, Pinto MF, Pelegrini PB, Lima TB, Silva ON, Pogue R, Grossi-de-Sá MF, Franco OL. Plant storage proteins with antimicrobial activity: novel insights into plant defense mechanisms. FASEB J. 2011;25:3290–3305. PubMed

Cascales L, Henriques ST, Kerr MC, Huang YH, Sweet MJ, Daly NL, Craik DJ. Identification and characterization of a new family of cell penetrating peptides. J Biol Chem. 2011;286:36932–36943. PubMed PMC

Chandrashekhara NRS, Deepak S, Manjunath G, Shetty SH. Thionins (PR protein 13) mediate pearl millet down mildew disease resistance. Arch Phytopathol Plant Protect. 2010;43:1356–1366.

Charnet P, Molle G, Marion D, Rousset M, Lullien-Pellerin V. Puroindolines form ion channeles in biological membranes. Biophys J. 2003;84:2416–2426. PubMed PMC

Cheng CS, Chouabe C, Eyraud V, Rahioui I, Royer C, Soulage C, Bonvallet R, Huss M, Gressent F. New mode of action for a knottin protein bioinsecticide pea albumin 1 subunit b(PA1b) is the first peptidic inhibitor of V-ATP-ase. J Biol Chem. 2011;286:36291–36296. PubMed PMC

Choi KY, Chow LN, Mookherjee N. Cationic host defence peptides: multifaceted role in immune modulation and inflammation. J Innate Immun. 2012;4:361–370. PubMed PMC

Chouabe C, Eyraud V, Da Silva P, Rahioui I, Royer C, Soulage C, Bonvallet R, Huss M, Gressent F (2011) New mode of action for a knottin protein bioinsecticide: pea albumin 1 subunit b (PA1b) is the first peptidic inhibitor of V-ATPase. J Biol Chem 286:36291–36296 PubMed PMC

Clark RJ, Daly NL, Craik DJ. Structural plasticity of the cyclic-cystine-knot framework: implications for biological activity and drug design. Biochem J. 2006;394:85–93. PubMed PMC

Colgrave ML, Craik DJ. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1 the importance of the cyclic cystine knot. Biochemistry. 2004;43:5965–5975. PubMed

Craik DJ. Discovery and applications of plant cyclotides. Toxicon. 2010;57:1092–1102. PubMed

Craik DJ. Host-defense activities of cyclotides. Toxins. 2012;4:139–156. PubMed PMC

Craik DJ, Daly NL, Bond T, Waine C. Plant cyclotides. A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol. 1999;294:1327–1336. PubMed

Craik DJ, Cemazar M, Wang CK, Baly NL. The cyclotide family of circular miniproteins nature's combinatorial peptide template. Biopolymers. 2006;84:250–266. PubMed

Daly NL, Gustafson KR, Craik DJ. The role of the cyclic peptide backbone in the anti-HIV activity of the cyclotide kalata B1. FEBS Lett. 2004;574:69–72. PubMed

De Beer A, Viver MA. Four plant defensins from an indigenous South African Brassicaceae species display divergent activities against two test pathogens despite high sequence similarity in the encoding genes. BMC Res Notes. 2011;4:459–476. PubMed PMC

De Lucca AJ, Jacks T, Broekaert W. Fungicidal and binding properties of three plant peptides. Mycopathologia. 1999;40:87–91. PubMed

De Lucca AJ, Cleveland TE, Wedge DE. Plant-derived antifungal proteins and peptides. Can J Microbiol. 2005;51:1001–1014. PubMed

Dhatwalia VK, Sati OP, Tripathi MK, Kumar A. Isolation, characterization and antimicrobial activity at diverse dilution of wheat puroindoline protein. World J Agric Sci. 2009;5:297–300.

Diz MS, Carvalho AO, Ribeiro SF, Da Cunha M, Beltramini L, Rodrigues R, Nascimento VV, Machado OL, Gomez V. Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α-amylase inhibitory properties. Physiol Plant. 2011;142:233–246. PubMed

Dubreil L, Gabroit T, Bouchet B, Gallant DJ, Broekaert WF, Quillien L, Marion D. Spatial and temporal distribution of the major isoforms of puroindolines (puroindoline-a and puroindoline-b) and non-specific lipid transfer protein nsLTPe1) of Triticum aestivum seeds relationships with their in vitro antifungal properties. Plant Sci. 1998;138:121–135.

Eggenberger K, Mink C, Wadhwani P, Ulrich AS, Nick P. Using the peptide BP100 as a cell-penetrating tool for the chemical engineering of actin filaments within living plants cell. Chembiochem. 2011;12:132–137. PubMed

Egger M, Hauser M, Mari A, Ferreira F, Gadermaier G. The role of lipid transfer proteins in allergic diseases. Curr Allergy Asthma Rep. 2010;10:326–335. PubMed

Epple P, Apel K, Bohlmann H. An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Plant Physiol. 1995;109:813–820. PubMed PMC

Eudes F, Chugh A. Cell penetrating peptides. From mammalian to plant cells. Plant Signal Behav. 2008;3:549–550. PubMed PMC

Fernandez De Caleya R, Gonzales-Pascual B, Garcia-Olmedo F, Carbonero P. Suseptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl Microbiol. 1972;23:998–1000. PubMed PMC

Fernández-Carneado J, Kogan MJ, Castel S, Giralt E. Potential peptide carriers: amphipathic proline-rich peptides derived from the N-terminal domain of gamma-zein. Angew Chem Int Ed Engl. 2004;43:1811–1814. PubMed

Gao A, Hakimi SM, Mittanck CA, et al. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol. 2000;18:1307–1310. PubMed

Gao GH, Liu W, Dai JX, Wang JF, Hu Z, Zhang Y, Wang DC. Solution structure of PAFP-S a new knottin-type antifungal peptide from the seeds of Phytolacca americana. Biochemistry. 2001;40:10973–10978. PubMed

Gautier MF, Aleman ME, Guirao A, Marion D, Joudrier P. Triticum aestivum puroindolines, two basic cysteine-rich seed proteins, DBA sequence analysis and developmental gene expression. Plant Mol Biol. 1994;25:43–57. PubMed

Giroux MJ, Sripo T, Gerhardt S, Sherwood J. Puroindolines. Their role in grain hardness and plant defense. Biotechnol Genet Eng Rev. 2003;20:276–290. PubMed

Giudici AM, Regente MC, Villalain J, Pfuller K, Pfuller U, de la Canal L. Misctletoe viscotoxins induce membrane permeabilization and spore death in phytopathogenic fungi. Physiol Plant. 2004;121:2–7. PubMed

Greewood KP, Daly NL, Brown DL, Stow JL, Craik DJ. The cyclic cystine knot miniprotein MCoTI-II is internalized into cells by macropinocytosis. Int J Biochem Cell Biol. 2007;39:2252–2264. PubMed

Gruber CW. Global cyclotide adventure: a journey dedicated to the discovery of circular peptides from flowering plants. Biopolymers. 2010;94:565–572. PubMed PMC

Gustafson KR, Sowder RCI, Henderson LE, Parsons IC, Kashman Y, Cardellina JHI, McMahon JB, Buckheit RWJ, Pannell LK, Boyd MR, Cirulins A and B Novel HIV-inhibitory macrocyclic peptides from the tropical tree Chassalia parvifolia. J Am Chem Soc. 1994;116:9337–9338.

Hammami R, Ben Hamida J, Vergoten G, Fliss I. PhytAMP: a database dedicated to antimicrobial plant peptides. Nucleic Acid Res. 2009;37:D963–D968. PubMed PMC

Hegedus N, Marx F. Antifungial proteins: more than antimicrobials? Fungal Biol Rev. 2013;26:132–145. PubMed PMC

Hong M, Su Y. Structure and dynamics of cationic membrane peptides and proteins insights from solid-state NMR. Protein Sci. 2011;20:641–655. PubMed PMC

Huang X, Xie W, Gong Z. Characteristics and antifungal activity of a chitin binding protein from Ginkgo biloba. FEBS Lett. 2000;478:123–126. PubMed

Huang RH, Xiang Y, Liu XZ, Zhang Y, Hu Z, Wang DC. Two novel antifungal peptides distinct with a five-disulfide motif from the bark of Eucommia ulmoides Oliv. FEBS Lett. 2002;521:87–90. PubMed

Huang RH, Xiang Y, Tu GZ, Zhang Y, Wang DC. Solution structure of Eucommia antifungal peptide a novel structural model distinct with a five-disulfide motif. Biochemistry. 2004;43:6005–6012. PubMed

Hughes P, Dennis E, Whitecross M, Liewelly D, Gage P. The cytotoxic plant protein, β-purothionin, forms ion channels in lipid membranes. J Biol Chem. 2000;14:823–827. PubMed

Ireland DC, Clark RJ, Daly NL, Craik DJ. Isolation, sequencing, and structure–activity relationships of cyclotides. J Nat Prod. 2010;73:1610–1622. PubMed

Jennings C, West J, Waine C, Craik D, Anderson M. Biosynthesis and insecticidal properties of plant cyclotides. The cyclic knotted proteins from Oldenlandia affinis. Proc Natl Acad Sci U S A. 2001;98:8913–8919. PubMed PMC

Jing W, Demcoe A, Vogel HJ. Conformation of bactericidal domain of puroindoline a structure and mechanism of action of a 13 residue antimicrobial peptide. J Bacteriol. 2003;185:4938–4947. PubMed PMC

Kiba A, Saitoh H, Nishihara M, Omiya K, Yamamura S. C-terminal domain of a hevein-like protein from Wasabia japonica has potent antimicrobial activity. Plant Cell Physiol. 2003;44:296–303. PubMed

Kirubakaren SI, Begum SM, Ulganathan K, Sakthivel N. Characterization of a new antifungal lipid transfer protein from wheat. Plant Physiol Biochem. 2008;46:918–927. PubMed

Koo JC, Lee SY, Chun HJ, Cheong YH, Choi JS, Kawabata S, Miyagi M, Tsunasawa S, Ha KS, Bae DW, Han CD, Lee Blcho MJ. Two hevein homologs isolated from the seed of Pharbitis nil L exhibit potent antifungal activity. Biochim Biophys Acta. 1998;1382:80–90. PubMed

Koo JC, Chun HJ, Park HC, et al. Over-expression of a seed specific hevein-like antimicrobial peptide from Pharbitis nil enhances resistance to a fungal pathogen in transgenic tobacco plants. Plant Mol Biol. 2002;50:441–452. PubMed

Koren E, Torchilin VP. Cell-penetrating peptides: breaking through to the other side. Trends Mol Med. 2012;18:385–393. PubMed

Kragh K, Nielsen J, Nielsen KK, Dreboldt S, Mikkelsen JD. Characterization and localization of new antifungal cysteine-rich proteins from Beta vulgaris. Mol Plant Microbe Interact. 1995;8:579–585. PubMed

Lai Y, Gallo RL. AMPed immunity how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009;30:131–141. PubMed PMC

Lay FT, Anderson MA. Defensins—components of the innate immune system in plants. Curr Protein Pept Sci. 2005;6:85–101. PubMed

Li SS, Claeson P. Cys/Gly-rich proteins with a putative single chitin-binding domain from oat (Avena sativa) seeds. Phytochemistry. 2003;63:249–255. PubMed

Li C, Xie W, Wang L, Zhao Y. The phosphorylation of lipid transfer protein CaMBP10. Protein Pept Lett. 2011;18:17–22. PubMed

Majewski J, Stec B. X-ray scattering studies of model lipid membrane interacting with purothionins provide support for a previously proposed mechanism of membrane lysis. Eur Biophys J. 2001;39:1155–1165. PubMed

Mak AS, Jones BL. The amino sequence of wheat β-purothionin. Can J Biochem. 1976;54:835–842. PubMed

Marion D, Bakan B, Elmorjani K. Plant lipid binding proteins properties and applications. Biotechnol Adv. 2007;25:195–197. PubMed

Milbradt A, Kerek F, Moroder L, Renner C. Structural characterization of hellethionins from Helleborus purpurascens. Biochemistry. 2003;42:2404–2411. PubMed

Milletti F. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today. 2012;17:850–860. PubMed

Miteva M, Andersson M, Karshikoff A, Otting G. Molecular electroporation: a unifying concept for the description of membrane pore formation by antibacterial peptides, exemplified with NK-lysin. FEBS Lett. 1999;462(1–2):155–158. PubMed

Molina A, Segura A, Garcia-Olmedo F. Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Lett. 1993;316:119–122. PubMed

Montesinos E. Antimicrobial peptides and plant disease control. FEMS Microbiol Lett. 2007;270:1–11. PubMed

Mylne JS, Wang CK, van der Weerden NL, Craik DJ. Cyclotides are a component of the innate defense of Oldenlandia affinis. Biopolymers. 2010;94:635–646. PubMed

Nahirñak V, Almasia NI, Hopp HE, Vazquez-Rovere C. Snakin/GASA proteins involvement in hormone crosstalk and redox homeostasis. Plant Signal Behav. 2012;7:1004–1008. PubMed PMC

Nasrollahi SA, Taghibiglou C, Azizi E, Farboud ES. Cell-penetrating peptides as a novel transdermal drug delivery system. Chem Biol Drug Des. 2012;80:639–646. PubMed

Ngai PH, Ng TB. Phaseococcin, an antifungal protein with antiproliferative and anti-HIV-1 reverse transcriptase activities from small scarlet runner beans. Biochem Cell Biol. 2005;83:212–220. PubMed

Nielsen KK, Nielsen JE, Madrid SM, Mikkelsen JD. Characterization of a new antifungal chitin-binding peptide from sugar beet leaves. Plant Physiol. 1997;113:83–91. PubMed PMC

Oard S, Rush MC, Oard JH. Characterization of antimicrobial peptides agains a US strain of the rice pathogen Rhizoctonia solani. J Appl Microbiol. 2004;97:169–180. PubMed

Odintsova TI, Vassilevski AA, Slavokhotova AA, Musolyamov AK, Finkina EI, Khadeeva NV, Rogozhin EA, Korostyleva TV, Pukhalsky VA, Grishin EV, Egorov TA. A novel antifungal hevein-type peptide from Triticum kiharae seeds with a unique 10-cysteine motif. FEBS J. 2009;276:4266–4275. PubMed

Oomen RJ, Séveno-Carpentier E, Ricodeau N, Bournaud C, Conéjéro G, Paris N, Berthomieu P, Marquès L. Plant defensin AhPDF1 is not secreted in leaves but it accumulates in intracellular compartments. New Phytol. 2011;192:140–150. PubMed

Ovesen RG, Brandt KK, Goransson U, Nilesen J, Hansen HC, Cedergreen N. Biomedicine in the environment: cyclotides constitute potent natural toxins in plants and soil bacteria. Environ Toxicol Chem. 2011;30:1119–1196. PubMed

Padovan L, Segat L, Tossi A, Calsa TJR, Ederson AK, Brandao L, Guimarães RL, Pandolfi V, Pestana-Calsa MC, Belarmino LC, Benko-Iseppon AM, Crovella S. Characterization of a new defensin from cowpea (Vigna unguiculata (L) Walp) Protein Pept Lett. 2010;17:297–304. PubMed

Patel SU, Osborn R, Rees S, Thornton JM. Structural studies of Impatiens balsamina antimicrobial protein (Ib-AMP1) Biochemistry. 1998;37:983–990. PubMed

Pelegrini PB, Franco OL. Plant gamma-thionins: novel insights on the mechanism of action of amulti-functional class of defense proteins. Int J Biochem Cell Biol. 2005;37:2239–2253. PubMed

Pelegrini PB, Quirino BF, Franco OL. Plant cyclotides: an unusual class of defense compounds. Peptides. 2007;28:1475–1481. PubMed

Pelegrini PB, Del Sarto RP, Silva ON, Franco OL, Grossi-De-Sa MF. Antibacterial peptides from plants: what they are and how they probably work. Biochem Res Int. 2011 PubMed PMC

Pestana-Calsa MC, Calsa T. In silico identification of plant-derived antimicrobial peptides. DOI: 2011

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–1612. PubMed

Pinheiro da Silva F, Machado MC. Antimicrobial peptides: clinical relevance and therapeutic implications. Peptides. 2012;36:308–314. PubMed

Plan MR, Saska I, Cagauan AG, Craik DJ. Backbone cyclised peptides from plants show molluscidal activity against the rice pest Pomacea canaliculata (golden appl snail) J Agric Food Chem. 2008;56:5237–5241. PubMed

Pokorny A, Almeida PF. Kinetics of dye efflux and lipid flip-flop induced by delta-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, alpha-helical peptides. Biochemistry. 2004;43(27):8846–8857. PubMed

Portieles R, Ayra C, Gonzalez E, Gallo A, Rodriguez R, Chacón O, López Y, Rodriguez M, Castillo J, Pujol M, Enriquez G, Borroto C, Trujillo L, Thomma BP, Borrás-Hidalgo O. NmDef02:a novel antimicrobial gene isolated from Nicotiana megalosiphon confers high level pathogen resistance under greenhouse and field conditions. Plant Biotechnol J. 2010;8:678–690. PubMed

Porto WF, Souza VA, Nolasco DO, Franco OL. In silico identification of novel hevein-like peptide precursors. Peptides. 2012;38:127–136. PubMed

Pränting M, Lööv C, Burman R, Göransson U, Andersson DI. The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against Gram-negative bacteria. J Antimicrob Chemother. 2010;65:1964–1971. PubMed

Rayapuram C, Wu J, Haas C, Baldwin IT. PR-13/Thionin but not PR-1 mediates bacterial resitance in Nicotiana attenuata in nature, and neither influences herbivore resistance. Mol Plant Microbe Interact. 2008;21:988–1000. PubMed

Rivas L, Luque-Ortega J, Fernandez-Reyes M, Andreu D. Membrane-active peptides as ant- infectious agents. J Appl Biomed. 2010;8:159–167.

Rogozhin EA, Oshchepkova YI, Odintsova TI, Khadeeva NV, Veshkurova ON, Egorov TA, Grishin EV, Salikhov SI. Novel antifungal defensins from Nigella sativa L. seeds. Plant Physiol Biochem. 2011;49:131–137. PubMed

Samuelsson G, Pettersson B. Separation of viscotoxins from the European mistletoe Viscum album L. (Loranthaceae) by chromatography on sulfoethyl Sephadex. Acta Chem Scand. 1970;24:2751–2756. PubMed

Samuelsson G, Pettersson BM. Toxic protein from the mistletoe Dendrophtora clavata. II. The amino acid sequence of denclatoxin B. Acta Pharm Suec. 1977;14:245–254. PubMed

Schaefer SC, Gasic K, Cammue B, Broekaert W, van Damme EJM, Peumans WJ, Korban SS. Enhanced resistance to early blight in transgenic tomato lines expressing heterologous plant defense genes. Planta. 2005;222:858–866. PubMed

Schauber J, Dorschner RA, Yamasaki K, Brouha B, Gallo RL. Control of the innate epithelial antimicrobial response is cell-type specific and dependent on relevant microenvironmental stimuli. Immunology. 2006;118:509–519. PubMed PMC

Schrader-Fisher G, Apel K. Organ specific expression of highly divergent thionin variants that are distinct from the seed-specific crambin in the crucifer Crambe abyssinica. Mol Gen Genet. 1994;245:380–389. PubMed

Segura A, Moreno M, García-Olmedo F (1993) Purification and antipathogenic activity of lipid transfer proteins (LTPs) from the leaves of Arabidopsis and spinach. FEBS Lett 332:243–246 PubMed

Segura A, Moreno M, Molina A, García-Olmedo F. Novel defensin subfamily from spinach (Spinacia oleracea) FEBS Lett. 1998;435:159–162. PubMed

Segura A, Moreno M, Madueño F, Molina A, García-Olmedo F (1999) Snakin-1, a peptide from potato that is active against plant pathogens. Mol Plant Microbe Interact 12:16–23 PubMed

Selitrennikoff CP. Antifungal proteins. Appl Envirol Microbiol. 2001;67:2883–2894. PubMed PMC

Spelbrink RG, Dilmac N, Allen A, Smith TJ, Shah DM, Hockerman GH. Differential antifungal and calcium channel blocking activity among structurally related plant defensins. Plant Physiol. 2004;135:2055–2067. PubMed PMC

Stec B. Plant thionins—the structural perspective. Cell Mol Life Sci. 2006;63:1370–1385. PubMed PMC

Stotz HU, Thomson JG, Wang Y. Plant defensins defense, development and application. Plant Signal Behav. 2009;11:1010–1012. PubMed PMC

Svangård E, Burman R, Gunasekera S, Lövborg H, Gullbo J, Göransson U. Mechanism of action of cytotoxic cyclotides cycloviolacin O2 disrupts lipid membranes. J Nat Prod. 2007;70:643–647. PubMed

Terras FR, Schoofs HM, De Bolle MF, Van Leuven F, Rees SB, Vanderleyden J, Cammue BP, Broekaert WF. Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem. 1992;267:15301–15309. PubMed

Terras F, Schoofs H, Thevissen K, Osborn RW, Vanderleyden J, Cammue B, Broekaert WF. Synergistic enhancement of the antifungal activity of wheat and barley thionins by radish and oilseed rape 2S albumins and by barley trypsin inhibitors. Plant Physiol. 1993;103:1311–1319. PubMed PMC

Terras FR, Torrekens S, Van Leuven F, Osborn RW, Vanderleyden J, Cammue BP, Broekaert WF. A new family of basic cysteine-rich plant antifungial proteins from Brassicaceae species. FEBS Lett. 1993;316:233–240. PubMed

Terras FR, Eggermont K, Kovaleva V, et al. Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell. 1995;7:573–588. PubMed PMC

Thevissen K, Ghazi A, de Samblanx GW, Brownlee C, Osborn RW, Broekaert WF. Fungal membrane responses induced by plant defensins and thionins. J Biol Chem. 1996;271:15018–15025. PubMed

Thevissen K, Warnecke DC, François IE, Leipelt M, Heinz E, Ott C, Zähringer U, Thomma BP, Ferket KK, Cammue BP. Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem. 2004;279:3900–3905. PubMed

Thevissen K, Kristensen HH, Thomma BP, Cammue BP, Francois IE. Therapeutic potential of antifungal plant and insect defensins. Drug Discov Today. 2007;12:966–971. PubMed

Thevissen K, De Mello TP, Xu D, Blankenship J, Vandenbosch D, Idkowiak-Baladys J, Govaert G, Bink A, Rozental S, de Groot PW, Davis TR, Kumamoto CA, Vargas G, Nimrichter L, Coenye T, Mitchell A, Roemer T, Hannun YA, Cammue BP. The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans. Mol Microbiol. 2012;84:166–180. PubMed PMC

Thomma BP, Cammue BP, Thevissen K. Plant defensins. Planta. 2002;216:193–202. PubMed

Thongyoo P, Bonomelli C, Leatherbarrow RJ, Tate EW. Potent inhibitors of beta-tryptase and human leucocyte elastase based on the MCoTI-II scaffold. J Med Chem. 2009;52:6197–6200. PubMed

Thunberg E, Samuelsson G. Isolation and properties of ligatoxin A, a toxic protein from the mistletoe Phoradendron liga. Acta Pharm Suec. 1982;19:285–292. PubMed

Van den Berg KP, Proost P, Van Damme J, Coosemans J, van Damme EJ, Peumans WJ (2002) Five disulfide bridges stabilize a hevein-type antimicrobial peptide from the bark of spindle tree (Euonymus europaeus L.). FEBS Lett 530:181–185 PubMed

Van der Weerden NL, Hancock RE, Anderson MA. Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process. J Biol Chem. 2010;285:37513–37520. PubMed PMC

Van Parijs J, Broekaert WF, Goldstein IJ, Peumans WJ. Hevein an antifungal protein from rubber-tree (Hevea braziliensis) latex. Planta. 1991;183:258–264. PubMed

Veldhoen S, Laufer SD, Restle T. Recent developments in peptide-based nucleic acid delivery. Int J Mol Sci. 2008;9:1276–1320. PubMed PMC

Vernon LP. Pyrularia thionin physical properties, biological response and comparison to other thionins and cardiotoxin. J Toxicol. 1992;11:169–191.

Villa-Perello M, Sanchez-Vallet A, Garcıa-Olmedo F, Molina A, Andreu D. Synthetic and structural studies on Pyrularia pubera thionin: a single-residue mutation enhances activity against Gram-positive bacteria. FEBS Lett. 2003;536:215–219. PubMed

Wang X, Bunkers GJ. Potent heterologous antifungal proteins from cheeseweed (Malva parviflora) Biochem Biophys Res Commun. 2000;279:669–673. PubMed

Wijaya R, Neumann GM, Condron R, Hughes AB, Polya GM. Defense proteins from seed of Cassia fistula include a lipid transfer protein homologue and a protease inhibitory plant defensin. Plant Sci. 2000;159:243–255. PubMed

Wong JH, Ng TB. Sesquin, a potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase. Peptides. 2005;26:1120–1126. PubMed

Wu M, Maier E, Benz R, Hancock RE. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry. 1999;38(22):7235–7242. PubMed

Yang X, Xiao Y, Wang X, Pei Y. Expression of a novel small antimicrobial protein from the seeds of motherwort (Leonurus japonicus) confers disease resistance in tobacco. Appl Environ Microbiol. 2007;73:939–946. PubMed PMC

Yeats TH, Rose JKC. The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs) Protein Sci. 2008;17:191–198. PubMed PMC

Yount NY, Yeaman MR. Peptide antimicrobials: cell wall as a bacterial target. Ann N Y Acad Sci. 2013;1277:127–138. PubMed

Zhang J, Martin JM, Balint-Kurti P, Huang L, Giroux MJ. The heat puroindoline genes confer fungal resistance in transgenic corn. J Phytopathol. 2011;159:188–190.

Zhao M, Ma Y, Pan YH, Zhang CH, Yuan WX. A hevein-like protein and a class I chitinase with antifungal activity from leaves of the paper mulberry. Biomed Chromatogr. 2011;25:908–912. PubMed

Zhu YJ, Agbayani R, Moore PH. Ectopic expression of Dahlia merckii defensin DmAMP1 improves papaya resistance to Phytophthora palmivora by reducing pathogen vigor. Planta. 2007;226:87–97. PubMed

Zottich U, Da Cunha M, Carvalho AO, Dias GB, Silva NC, Santos IS, Do Nacimento VV, Miguel EC, Machado OL, Gomes VM. Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with α-amylase inhibitor properties. Biochim Biophys Acta. 2011;4:375–383. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...