σE of Streptomyces coelicolor can function both as a direct activator or repressor of transcription
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
L200202151
Akademie Věd České Republiky (Academy of Sciences of the Czech Republic)
PubMed
38184746
PubMed Central
PMC10771440
DOI
10.1038/s42003-023-05716-y
PII: 10.1038/s42003-023-05716-y
Knihovny.cz E-zdroje
- MeSH
- počítačová simulace MeSH
- sigma faktor genetika MeSH
- Streptomyces coelicolor * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- sigma faktor MeSH
σ factors are considered as positive regulators of gene expression. Here we reveal the opposite, inhibitory role of these proteins. We used a combination of molecular biology methods and computational modeling to analyze the regulatory activity of the extracytoplasmic σE factor from Streptomyces coelicolor. The direct activator/repressor function of σE was then explored by experimental analysis of selected promoter regions in vivo. Additionally, the σE interactome was defined. Taken together, the results characterize σE, its regulation, regulon, and suggest its direct inhibitory function (as a repressor) in gene expression, a phenomenon that may be common also to other σ factors and organisms.
Zobrazit více v PubMed
Bentley SD, et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) Nature. 2002;417:141–147. doi: 10.1038/417141a. PubMed DOI
Burton AT, DeLoughery A, Li GW, Kearns DB. Transcriptional regulation and mechanism of SigN (ZpdN), a pBS32-encoded sigma factor in Bacillus subtilis. mBio. 2019;10:e01899–19. doi: 10.1128/mBio.01899-19. PubMed DOI PMC
Nicolas P, et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science. 2012;335:1103–1106. doi: 10.1126/science.1206848. PubMed DOI
Smidova K, et al. DNA mapping and kinetic modeling of the HrdB regulon in Streptomyces coelicolor. Nucl. Acids Res. 2019;47:621–633. doi: 10.1093/nar/gky1018. PubMed DOI PMC
Todor H, et al. Rewiring the specificity of extracytoplasmic function sigma factors. Proc. Natl Acad. Sci. USA. 2020;117:33496–33506. doi: 10.1073/pnas.2020204117. PubMed DOI PMC
Helmann JD. The extracytoplasmic function (ECF) sigma factors. Adv. Micro. Physiol. 2002;46:47–110. doi: 10.1016/S0065-2911(02)46002-X. PubMed DOI
Lopez-Garcia MT, Yague P, Gonzalez-Quinonez N, Rioseras B, Manteca A. The SCO4117 ECF sigma factor pleiotropically controls secondary metabolism and morphogenesis in Streptomyces coelicolor. Front. Microbiol. 2018;9:312. doi: 10.3389/fmicb.2018.00312. PubMed DOI PMC
Feng WH, Mao XM, Liu ZH, Li YQ. The ECF sigma factor SigT regulates actinorhodin production in response to nitrogen stress in Streptomyces coelicolor. Appl. Microbiol. Biotechnol. 2011;92:1009–1021. doi: 10.1007/s00253-011-3619-2. PubMed DOI
Kallifidas D, Thomas D, Doughty P, Paget MS. The sigmaR regulon of Streptomyces coelicolor A32 reveals a key role in protein quality control during disulphide stress. Microbiology. 2010;156:1661–1672. doi: 10.1099/mic.0.037804-0. PubMed DOI
Paget MS, Leibovitz E, Buttner MJ. A putative two-component signal transduction system regulates sigmaE, a sigma factor required for normal cell wall integrity in Streptomyces coelicolor A3(2) Mol. Microbiol. 1999;33:97–107. doi: 10.1046/j.1365-2958.1999.01452.x. PubMed DOI
Hong HJ, Paget MS, Buttner MJ. A signal transduction system in Streptomyces coelicolor that activates the expression of a putative cell wall glycan operon in response to vancomycin and other cell wall-specific antibiotics. Mol. Microbiol. 2002;44:1199–1211. doi: 10.1046/j.1365-2958.2002.02960.x. PubMed DOI
Hutchings MI, Hong HJ, Leibovitz E, Sutcliffe IC, Buttner MJ. The sigma(E) cell envelope stress response of Streptomyces coelicolor is influenced by a novel lipoprotein, CseA. J. Bacteriol. 2006;188:7222–7229. doi: 10.1128/JB.00818-06. PubMed DOI PMC
Tran NT, et al. Defining the regulon of genes controlled by σE, a key regulator of the cell envelope stress response in Streptomyces coelicolor. Mol. Microbiol. 2019;112:461–481. doi: 10.1111/mmi.14250. PubMed DOI PMC
Nieselt K, et al. The dynamic architecture of the metabolic switch in Streptomyces coelicolor. BMC Genom. 2010;11:10. doi: 10.1186/1471-2164-11-10. PubMed DOI PMC
Paget MS, Chamberlin L, Atrih A, Foster SJ, Buttner MJ. Evidence that the extracytoplasmic function sigma factor sigmaE is required for normal cell wall structure in Streptomyces coelicolor A3(2) J. Bacteriol. 1999;181:204–211. doi: 10.1128/JB.181.1.204-211.1999. PubMed DOI PMC
Jeong Y, et al. The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2) Nat. Commun. 2016;7:11605. doi: 10.1038/ncomms11605. PubMed DOI PMC
Lane WJ, Darst SA. The structural basis for promoter -35 element recognition by the group IV sigma factors. PLoS Biol. 2006;4:e269. doi: 10.1371/journal.pbio.0040269. PubMed DOI PMC
Sievers F, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7:539. doi: 10.1038/msb.2011.75. PubMed DOI PMC
Touzain F, et al. SIGffRid: a tool to search for sigma factor binding sites in bacterial genomes using comparative approach and biologically driven statistics. BMC Bioinformat. 2008;9:73. doi: 10.1186/1471-2105-9-73. PubMed DOI PMC
Kwon HJ, Tirumalai R, Landy A, Ellenberger T. Flexibility in DNA recombination: structure of the lambda integrase catalytic core. Science. 1997;276:126–131. doi: 10.1126/science.276.5309.126. PubMed DOI PMC
Schaerlaekens K, Mellaert Van, Lammertyn L, Geukens E, Anne N. J. The importance of the Tat-dependent protein secretion pathway in Streptomyces as revealed by phenotypic changes in tat deletion mutants and genome analysis. Microbiology. 2004;150:21–31. doi: 10.1099/mic.0.26684-0. PubMed DOI
Koebsch I, Overbeck J, Piepmeyer S, Meschke H, Schrempf H. A molecular key for building hyphae aggregates: the role of the newly identified Streptomyces protein HyaS. Microb. Biotechnol. 2009;2:343–360. doi: 10.1111/j.1751-7915.2009.00093.x. PubMed DOI PMC
Cao H, et al. Systems-level understanding of ethanol-induced stresses and adaptation in E. coli. Sci. Rep. 2017;7:44150. doi: 10.1038/srep44150. PubMed DOI PMC
Hesketh A, et al. Genome-wide dynamics of a bacterial response to antibiotics that target the cell envelope. BMC Genom. 2011;12:226. doi: 10.1186/1471-2164-12-226. PubMed DOI PMC
Noens EE, et al. SsgA-like proteins determine the fate of peptidoglycan during sporulation of Streptomyces coelicolor. Mol. Microbiol. 2005;58:929–944. doi: 10.1111/j.1365-2958.2005.04883.x. PubMed DOI
Lu Y, et al. An orphan histidine kinase, OhkA, regulates both secondary metabolism and morphological differentiation in Streptomyces coelicolor. J. Bacteriol. 2011;193:3020–3032. doi: 10.1128/JB.00017-11. PubMed DOI PMC
Jayapal KP, Lian W, Glod F, Sherman DH, Hu WS. Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans. BMC Genom. 2007;8:229. doi: 10.1186/1471-2164-8-229. PubMed DOI PMC
Du C, et al. System-wide analysis of the GATC-binding nucleoid-associated protein Gbn and its impact on streptomyces development. mSystems. 2022;7:e0006122. doi: 10.1128/msystems.00061-22. PubMed DOI PMC
Falke D, et al. Co-purification of nitrate reductase 1 with components of the cytochrome bcc-aa(3) oxidase supercomplex from spores of Streptomyces coelicolor A3(2) FEBS Open Bio. 2021;11:652–669. doi: 10.1002/2211-5463.13086. PubMed DOI PMC
Fischer M, Alderson J, van Keulen G, White J, Sawers RG. The obligate aerobe Streptomyces coelicolor A3(2) synthesizes three active respiratory nitrate reductases. Microbiology. 2010;156:3166–3179. doi: 10.1099/mic.0.042572-0. PubMed DOI
Brown AS, Calcott MJ, Collins VM, Owen JG, Ackerley DF. The indigoidine synthetase BpsA provides a colorimetric ATP assay that can be adapted to quantify the substrate preferences of other NRPS enzymes. Biotechnol. Lett. 2020;42:2665–2671. doi: 10.1007/s10529-020-02972-4. PubMed DOI
Salerno P, et al. One of the two genes encoding nucleoid-associated HU proteins in Streptomyces coelicolor is developmentally regulated and specifically involved in spore maturation. J. Bacteriol. 2009;191:6489–6500. doi: 10.1128/JB.00709-09. PubMed DOI PMC
Hesketh A, Deery MJ, Hong HJ. High-resolution mass spectrometry based proteomic analysis of the Response to vancomycin-induced cell wall stress in Streptomyces coelicolor A3(2) J. Proteome Res. 2015;14:2915–2928. doi: 10.1021/acs.jproteome.5b00242. PubMed DOI
Sekurova ON, et al. Targeted metabolomics and high-throughput RNA sequencing-based transcriptomics reveal massive changes in the Streptomyces venezuelae NRRL B-65442 metabolism caused by ethanol shock. Microbiol. Spectr. 2022;10:e0367222. doi: 10.1128/spectrum.03672-22. PubMed DOI PMC
Wang D, Xu P, Sun J, Yuan J, Zhao J. Effects of ethanol stress on epsilon-poly-l-lysine (epsilon-PL) biosynthesis in Streptomyces albulus X-18. Enzym. Micro. Technol. 2022;153:109907. doi: 10.1016/j.enzmictec.2021.109907. PubMed DOI
Dong G, Tian XL, Gomez ZA, Li YH. Regulated proteolysis of the alternative sigma factor SigX in Streptococcus mutans: implication in the escape from competence. BMC Microbiol. 2014;14:183. doi: 10.1186/1471-2180-14-183. PubMed DOI PMC
Chen YF, Helmann JD. The Bacillus subtilis flagellar regulatory protein sigma D: overproduction, domain analysis and DNA-binding properties. J. Mol. Biol. 1995;249:743–753. doi: 10.1006/jmbi.1995.0333. PubMed DOI
Goedhart J, Luijsterburg MS. VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots. Sci. Rep. 2020;10:20560. doi: 10.1038/s41598-020-76603-3. PubMed DOI PMC
Mahmud A, et al. Genome-scale mapping reveals complex regulatory activities of RpoN in Yersinia pseudotuberculosis. mSystems. 2020;5:e01006–e01020. doi: 10.1128/mSystems.01006-20. PubMed DOI PMC
Samuels DJ, et al. Use of a promiscuous, constitutively-active bacterial enhancer-binding protein to define the sigma(5)(4) (RpoN) regulon of Salmonella Typhimurium LT2. BMC Genom. 2013;14:602. doi: 10.1186/1471-2164-14-602. PubMed DOI PMC
Fitzgerald DM, Bonocora RP, Wade JT. Comprehensive mapping of the Escherichia coli flagellar regulatory network. PLoS Genet. 2014;10:e1004649. doi: 10.1371/journal.pgen.1004649. PubMed DOI PMC
Bonocora RP, Smith C, Lapierre P, Wade JT. Genome-scale mapping of Escherichia coli sigma54 reveals widespread, conserved intragenic binding. PLoS Genet. 2015;11:e1005552. doi: 10.1371/journal.pgen.1005552. PubMed DOI PMC
Singh SS, et al. Widespread suppression of intragenic transcription initiation by H-NS. Genes Dev. 2014;28:214–219. doi: 10.1101/gad.234336.113. PubMed DOI PMC
Pukhrambam C, et al. Structural and mechanistic basis of sigma-dependent transcriptional pausing. Proc. Natl Acad. Sci. USA. 2022;119:e2201301119. doi: 10.1073/pnas.2201301119. PubMed DOI PMC
Campagne S, Marsh ME, Capitani G, Vorholt JA, Allain FH. Structural basis for -10 promoter element melting by environmentally induced sigma factors. Nat. Struct. Mol. Biol. 2014;21:269–276. doi: 10.1038/nsmb.2777. PubMed DOI
Jensen-Cain DM, Quinn FD. Differential expression of sigE by Mycobacterium tuberculosis during intracellular growth. Micro. Pathog. 2001;30:271–278. doi: 10.1006/mpat.2001.0431. PubMed DOI
Mauri M, Klumpp S. A model for sigma factor competition in bacterial cells. PLoS Comput. Biol. 2014;10:e1003845. doi: 10.1371/journal.pcbi.1003845. PubMed DOI PMC
Ryu YG, Butler MJ, Chater KF, Lee KJ. Engineering of primary carbohydrate metabolism for increased production of actinorhodin in Streptomyces coelicolor. Appl. Environ. Microbiol. 2006;72:7132–7139. doi: 10.1128/AEM.01308-06. PubMed DOI PMC
Stankovic N, Senerovic L, Ilic-Tomic T, Vasiljevic B, Nikodinovic-Runic J. Properties and applications of undecylprodigiosin and other bacterial prodigiosins. Appl. Microbiol. Biotechnol. 2014;98:3841–3858. doi: 10.1007/s00253-014-5590-1. PubMed DOI
Millan-Oropeza A, Henry C, Lejeune C, David M, Virolle MJ. Expression of genes of the Pho regulon is altered in Streptomyces coelicolor. Sci. Rep. 2020;10:8492. doi: 10.1038/s41598-020-65087-w. PubMed DOI PMC
Tenconi E, Traxler MF, Hoebreck C, van Wezel GP, Rigali S. Production of prodiginines is part of a programmed cell death process in Streptomyces coelicolor. Front. Microbiol. 2018;9:1742. doi: 10.3389/fmicb.2018.01742. PubMed DOI PMC
Ramaniuk O, Cerny M, Krasny L, Vohradsky J. Kinetic modelling and meta-analysis of the B. subtilis SigA regulatory network during spore germination and outgrowth. Biochim. Biophys. Acta Gene Regul. Mech. 2017;1860:894–904. doi: 10.1016/j.bbagrm.2017.06.003. PubMed DOI
Vohradsky J, et al. Kinetic modeling and meta-analysis of the bacillus subtilis SigB regulon during spore germination and outgrowth. Microorganisms. 2021;9:112. doi: 10.3390/microorganisms9010112. PubMed DOI PMC
Ferooz J, Lemaire J, Delory M, De Bolle X, Letesson JJ. RpoE1, an extracytoplasmic function sigma factor, is a repressor of the flagellar system in Brucella melitensis. Microbiology. 2011;157:1263–1268. doi: 10.1099/mic.0.044875-0. PubMed DOI
Bowers CW, Dombroski AJ. A mutation in region 1.1 of sigma70 affects promoter DNA binding by Escherichia coli RNA polymerase holoenzyme. EMBO J. 1999;18:709–716. doi: 10.1093/emboj/18.3.709. PubMed DOI PMC
Bibb MJ, Molle V, Buttner MJ. sigma(BldN), an extracytoplasmic function RNA polymerase sigma factor required for aerial mycelium formation in Streptomyces coelicolor A3(2) J. Bacteriol. 2000;182:4606–4616. doi: 10.1128/JB.182.16.4606-4616.2000. PubMed DOI PMC
Paget MS, Molle V, Cohen G, Aharonowitz Y, Buttner MJ. Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the sigmaR regulon. Mol. Microbiol. 2001;42:1007–1020. doi: 10.1046/j.1365-2958.2001.02675.x. PubMed DOI
Shimada T, Furuhata S, Ishihama A. Whole set of constitutive promoters for RpoN sigma factor and the regulatory role of its enhancer protein NtrC in Escherichia coli K-12. Micro. Genom. 2021;7:000653. PubMed PMC
Schumacher MA, et al. The MerR-like protein BldC binds DNA direct repeats as cooperative multimers to regulate Streptomyces development. Nat. Commun. 2018;9:1139. doi: 10.1038/s41467-018-03576-3. PubMed DOI PMC
Srivastava DB, et al. Structure and function of CarD, an essential mycobacterial transcription factor. Proc. Natl Acad. Sci. USA. 2013;110:12619–12624. doi: 10.1073/pnas.1308270110. PubMed DOI PMC
Sevcikova B, Rezuchova B, Homerova D, Kormanec J. The anti-anti-sigma factor BldG is involved in activation of the stress response sigma factor sigma(H) in Streptomyces coelicolor A3(2) J. Bacteriol. 2010;192:5674–5681. doi: 10.1128/JB.00828-10. PubMed DOI PMC
Parashar A, Colvin KR, Bignell DR, Leskiw BK. BldG and SCO3548 interact antagonistically to control key developmental processes in Streptomyces coelicolor. J. Bacteriol. 2009;191:2541–2550. doi: 10.1128/JB.01695-08. PubMed DOI PMC
Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. Practical Streptomyces Genetics (John Innes Foundation, 2000).
Pospisil J, Strunin D, Zikova A, Hubalek M, Vohradsky J. A comparison of protein and mRNA expression during development of the soil dwelling prokaryote (S. coelicolor) Proteomics. 2020;20:e2000032. doi: 10.1002/pmic.202000032. PubMed DOI
Gust B, et al. Lambda red-mediated genetic manipulation of antibiotic-producing Streptomyces. Adv. Appl. Microbiol. 2004;54:107–128. doi: 10.1016/S0065-2164(04)54004-2. PubMed DOI
Flett F, Mersinias V, Smith CP. High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol. Lett. 1997;155:223–229. doi: 10.1111/j.1574-6968.1997.tb13882.x. PubMed DOI
Knirschova R, et al. Utilization of a reporter system based on the blue pigment indigoidine biosynthetic gene bpsA for detection of promoter activity and deletion of genes in Streptomyces. J. Microbiol. Methods. 2015;113:1–3. doi: 10.1016/j.mimet.2015.03.017. PubMed DOI
Erde J, Loo RR, Loo JA. Enhanced FASP (eFASP) to increase proteome coverage and sample recovery for quantitative proteomic experiments. J. Proteome Res. 2014;13:1885–1895. doi: 10.1021/pr4010019. PubMed DOI PMC
Keilhauer EC, Hein MY, Mann M. Accurate protein complex retrieval by affinity enrichment mass spectrometry (AE-MS) rather than affinity purification mass spectrometry (AP-MS) Mol. Cell Proteom. 2015;14:120–135. doi: 10.1074/mcp.M114.041012. PubMed DOI PMC
Langerova H, et al. Hepatitis B core protein is post-translationally modified through K29-linked ubiquitination. Cells. 2020;9:2547. doi: 10.3390/cells9122547. PubMed DOI PMC
Kallio MA, et al. Chipster: user-friendly analysis software for microarray and other high-throughput data. BMC Genom. 2011;12:507. doi: 10.1186/1471-2164-12-507. PubMed DOI PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Zhang Y, et al. Model-based analysis of ChIP-Seq (MACS) Genome Biol. 2008;9:R137. doi: 10.1186/gb-2008-9-9-r137. PubMed DOI PMC
Milne I, et al. Using tablet for visual exploration of second-generation sequencing data. Brief. Bioinform. 2013;14:193–202. doi: 10.1093/bib/bbs012. PubMed DOI
Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int Conf. Intell. Syst. Mol. Biol. 1994;2:28–36. PubMed
Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinformatics. 2011;27:1017–1018. doi: 10.1093/bioinformatics/btr064. PubMed DOI PMC
Kim MS, et al. Conservation of thiol-oxidative stress responses regulated by SigR orthologues in actinomycetes. Mol. Microbiol. 2012;85:326–344. doi: 10.1111/j.1365-2958.2012.08115.x. PubMed DOI PMC
Vohradsky J. Neural network model of gene expression. FASEB J. 2001;15:846–854. doi: 10.1096/fj.00-0361com. PubMed DOI
Modrak M, Vohradsky J. Genexpi: a toolset for identifying regulons and validating gene regulatory networks using time-course expression data. BMC Bioinform. 2018;19:137. doi: 10.1186/s12859-018-2138-x. PubMed DOI PMC
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucl. Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC