Genexpi: a toolset for identifying regulons and validating gene regulatory networks using time-course expression data

. 2018 Apr 13 ; 19 (1) : 137. [epub] 20180413

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29653518

Grantová podpora
LM20150055 Ministerstvo Školství, Mládeže a Tělovýchovy - International

Odkazy

PubMed 29653518
PubMed Central PMC5899412
DOI 10.1186/s12859-018-2138-x
PII: 10.1186/s12859-018-2138-x
Knihovny.cz E-zdroje

BACKGROUND: Identifying regulons of sigma factors is a vital subtask of gene network inference. Integrating multiple sources of data is essential for correct identification of regulons and complete gene regulatory networks. Time series of expression data measured with microarrays or RNA-seq combined with static binding experiments (e.g., ChIP-seq) or literature mining may be used for inference of sigma factor regulatory networks. RESULTS: We introduce Genexpi: a tool to identify sigma factors by combining candidates obtained from ChIP experiments or literature mining with time-course gene expression data. While Genexpi can be used to infer other types of regulatory interactions, it was designed and validated on real biological data from bacterial regulons. In this paper, we put primary focus on CyGenexpi: a plugin integrating Genexpi with the Cytoscape software for ease of use. As a part of this effort, a plugin for handling time series data in Cytoscape called CyDataseries has been developed and made available. Genexpi is also available as a standalone command line tool and an R package. CONCLUSIONS: Genexpi is a useful part of gene network inference toolbox. It provides meaningful information about the composition of regulons and delivers biologically interpretable results.

Zobrazit více v PubMed

Bonneau R, Reiss DJ, Shannon P, Facciotti M, Hood L, Baliga NS, et al. The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol. 2006:7:R36. PubMed PMC

Petralia F, Wang P, Yang J, Tu Z. Integrative random forest for gene regulatory network inference. Bioinformatics. 2015:31(12);i197–i205. PubMed PMC

Mall R, Cerulo L, Garofano L, Frattini V, Kunji K, Bensmail H, Sabedot T, Noushmehr H, et al. RGBM: regularized gradient boosting machines for identification of the transcriptional regulators of discrete glioma subtypes. Nucleic Acids Res. 2018:gky015. PubMed PMC

MacQuarrie KL, Fong AP, Morse RH, Tapscott SJ. Genome-wide transcription factor binding: beyond direct target regulation. Trends Genet. 2011;27:141–148. doi: 10.1016/j.tig.2011.01.001. PubMed DOI PMC

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC

Vohradsky J. Neural model of the genetic network. J Biol Chem. 2001;276:36168–36173. doi: 10.1074/jbc.M104391200. PubMed DOI

Wang YXR, Huang H. Review on statistical methods for gene network reconstruction using expression data. J Theor Biol. 2014;362:53–61. doi: 10.1016/j.jtbi.2014.03.040. PubMed DOI

Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics. 2006;7 Suppl 1:S7. doi: 10.1186/1471-2105-7-S1-S7. PubMed DOI PMC

Yeung KY, Dombek KM, Lo K, Mittler JE, Zhu J, Schadt EE, et al. Construction of regulatory networks using expression time-series data of a genotyped population. Proc Natl Acad Sci. 2011;108:19436–19441. doi: 10.1073/pnas.1116442108. PubMed DOI PMC

Ramaniuk O, Černý M, Krásný L, Vohradský J. Kinetic modeling and meta-analysis of B. subtilis sigA regulatory network during spore germination and outgrowth. BBA Gene Regul Mech. 2017;1860:894–904. PubMed

Berrones A, Jiménez E, Alcorta-García MA, Almaguer F-J, Peña B. Parameter inference of general nonlinear dynamical models of gene regulatory networks from small and noisy time series. Neurocomputing. 2016;175:555–563. doi: 10.1016/j.neucom.2015.10.095. DOI

Vigna S. Further scramblings of Marsaglia’s xorshift generators. ArXiV. 2014. Available from: http://arxiv.org/abs/1404.0390

Keijser BJF, Ter Beek A, Rauwerda H, Schuren F, Montijn R, van der Spek H, et al. Analysis of temporal gene expression during Bacillus subtilis spore germination and outgrowth. J Bacteriol. 2007;189:3624–3634. doi: 10.1128/JB.01736-06. PubMed DOI PMC

Michna RH, Commichau FM, Tödter D, Zschiedrich CP, Stülke J. Subti wiki–a database for the model organism Bacillus subtilis that links pathway, interaction and expression information. Nucleic Acids Res. 2014;42:D692–D698. doi: 10.1093/nar/gkt1002. PubMed DOI PMC

Kim M-S, Dufour YS, Yoo JS, Cho Y-B, Park J-H, Nam G-B, et al. Conservation of thiol-oxidative stress responses regulated by SigR orthologues in actinomycetes. Mol Microbiol. 2012;85:326–344. doi: 10.1111/j.1365-2958.2012.08115.x. PubMed DOI PMC

Kallifidas D, Thomas D, Doughty P, Paget MSB. The R regulon of Streptomyces coelicolor A3(2) reveals a key role in protein quality control during disulphide stress. Microbiology. 2010;156:1661–1672. doi: 10.1099/mic.0.037804-0. PubMed DOI

Strakova E, Zikova A, Vohradsky J. Inference of sigma factor controlled networks by using numerical modeling applied to microarray time series data of the germinating prokaryote. Nucleic Acids Res. 2014;42:748–763. doi: 10.1093/nar/gkt917. PubMed DOI PMC

Titsias MK, Honkela A, Lawrence ND, Rattray M. Identifying targets of multiple co-regulating transcription factors from expression time-series by Bayesian model comparison. BMC Syst Biol. 2012;6:53. doi: 10.1186/1752-0509-6-53. PubMed DOI PMC

Zoppoli P, Morganella S, Ceccarelli M. TimeDelay-ARACNE: reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinformatics. 2010;11:154. doi: 10.1186/1471-2105-11-154. PubMed DOI PMC

Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, et al. Comprehensive identification of cell cycle–regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell. 1998;9:3273. American Society for Cell Biology. PubMed PMC

Vohradsky J. Stochastic simulation for the inference of transcriptional control network of yeast cyclins genes. Nucleic Acids Res. 2012;40:7096–103. Oxford University Press. PubMed PMC

Teixeira MC, Monteiro PT, Palma M, Costa C, Godinho CP, Pais P, et al. YEASTRACT: an upgraded database for the analysis of transcription regulatory networks in Saccharomyces cerevisiae. Nucleic Acids Res. 2018;46:D348–53. Oxford University Press. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace