Inference of sigma factor controlled networks by using numerical modeling applied to microarray time series data of the germinating prokaryote
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24157841
PubMed Central
PMC3902916
DOI
10.1093/nar/gkt917
PII: gkt917
Knihovny.cz E-zdroje
- MeSH
- genetická transkripce MeSH
- genové regulační sítě * MeSH
- kinetika MeSH
- modely genetické * MeSH
- počítačová simulace MeSH
- regulace genové exprese u bakterií * MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- sigma faktor metabolismus MeSH
- spory bakteriální genetika růst a vývoj metabolismus MeSH
- stanovení celkové genové exprese * MeSH
- Streptomyces coelicolor genetika metabolismus fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- sigma faktor MeSH
A computational model of gene expression was applied to a novel test set of microarray time series measurements to reveal regulatory interactions between transcriptional regulators represented by 45 sigma factors and the genes expressed during germination of a prokaryote Streptomyces coelicolor. Using microarrays, the first 5.5 h of the process was recorded in 13 time points, which provided a database of gene expression time series on genome-wide scale. The computational modeling of the kinetic relations between the sigma factors, individual genes and genes clustered according to the similarity of their expression kinetics identified kinetically plausible sigma factor-controlled networks. Using genome sequence annotations, functional groups of genes that were predominantly controlled by specific sigma factors were identified. Using external binding data complementing the modeling approach, specific genes involved in the control of the studied process were identified and their function suggested.
Zobrazit více v PubMed
Bansal M, Gatta GD, di Bernardo D. Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics. 2006;22:815–822. PubMed
Penfold CA, Wild DL. How to infer gene networks from expression profiles, revisited. Interface Focus. 2011;1:857–870. PubMed PMC
de Sousa Abreu R, Penalva LO, Marcotte EM, Vogel C. Global signatures of protein and mRNA expression levels. Mol. Biosyst. 2009;5:1512–1526. PubMed PMC
Vohradsky J. Stochastic simulation for the inference of transcriptional control network of yeast cyclins genes. Nucleic Acids Res. 2012;40:7096–7103. PubMed PMC
Gao P, Honkela A, Rattray M, Lawrence ND. Gaussian process modelling of latent chemical species: applications to inferring transcription factor activities. Bioinformatics. 2008;24:i70–i75. PubMed
Honkela A, Girardot C, Gustafson EH, Liu YH, Furlong EE, Lawrence ND, Rattray M. Model-based method for transcription factor target identification with limited data. Proc. Natl Acad. Sci. USA. 2010;107:7793–7798. PubMed PMC
Titsias MK, Honkela A, Lawrence ND, Rattray M. Identifying targets of multiple co-regulating transcription factors from expression time-series by Bayesian model comparison. BMC Syst. Biol. 2012;6:53. PubMed PMC
MacQuarrie KL, Fong AP, Morse RH, Tapscott SJ. Genome-wide transcription factor binding: beyond direct target regulation. Trends Genet. 2011;27:141–148. PubMed PMC
To CC, Vohradsky J. Measurement variation determines the gene network topology reconstructed from experimental data: a case study of the yeast cyclin network. FASEB J. 2010;24:3468–3478. PubMed
Mikulik K, Bobek J, Bezouskova S, Benada O, Kofronova O. Expression of proteins and protein kinase activity during germination of aerial spores of Streptomyces granaticolor. Biochem. Biophys. Res. Commun. 2002;299:335–342. PubMed
Bobek J, Halada P, Angelis J, Vohradsky J, Mikulik K. Activation and expression of proteins during synchronous germination of aerial spores of Streptomyces granaticolor. Proteomics. 2004;4:3864–3880. PubMed
Piette A, Derouaux A, Gerkens P, Noens EE, Mazzucchelli G, Vion S, Koerten HK, Titgemeyer F, De Pauw E, Leprince P, et al. From dormant to germinating spores of Streptomyces coelicolor A3(2): new perspectives from the crp null mutant. J. Proteome. Res. 2005;4:1699–1708. PubMed
Strakova E, Bobek J, Zikova A, Rehulka P, Benada O, Rehulkova H, Kofronova O, Vohradsky J. Systems Insight into the spore germination of Streptomyces coelicolor. J. Proteome. Res. 2013;12:525–536. PubMed
Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) Nature. 2002;417:141–147. PubMed
Panek J, Bobek J, Mikulik K, Basler M, Vohradsky J. Biocomputational prediction of small non-coding RNAs in Streptomyces. BMC Genomics. 2008;9:217. PubMed PMC
Swiercz JP, Hindra, Bobek J, Haiser HJ, Di Berardo C, Tjaden B, Elliot MA. Small non-coding RNAs in Streptomyces coelicolor. Nucleic Acids Res. 2008;36:7240–7251. PubMed PMC
Bibb M, Hesketh A. Chapter 4. Analyzing the regulation of antibiotic production in streptomycetes. Methods Enzymol. 2009;458:93–116. PubMed
Bucca G, Laing E, Mersinias V, Allenby N, Hurd D, Holdstock J, Brenner V, Harrison M, Smith CP. Development and application of versatile high density microarrays for genome-wide analysis of Streptomyces coelicolor: characterization of the HspR regulon. Genome Biol. 2009;10:R5. PubMed PMC
den Hengst CD, Tran NT, Bibb MJ, Chandra G, Leskiw BK, Buttner MJ. Genes essential for morphological development and antibiotic production in Streptomyces coelicolor are targets of BldD during vegetative growth. Mol. Microbiol. 2010;78:361–379. PubMed
Nieselt K, Battke F, Herbig A, Bruheim P, Wentzel A, Jakobsen OM, Sletta H, Alam MT, Merlo ME, Moore J, et al. The dynamic architecture of the metabolic switch in Streptomyces coelicolor. BMC Genomics. 2010;11:10. PubMed PMC
Kim MS, Dufour YS, Yoo JS, Cho YB, Park JH, Nam GB, Kim HM, Lee KL, Donohue TJ, Roe JH. Conservation of thiol-oxidative stress responses regulated by SigR orthologues in actinomycetes. Mol. Microbiol. 2012;85:326–344. PubMed PMC
Buttner MJ, Lewis CG. Construction and characterization of Streptomyces coelicolor A3(2) mutants that are multiply deficient in the nonessential hrd-encoded RNA polymerase sigma factors. J. Bacteriol. 1992;174:5165–5167. PubMed PMC
Cho YH, Lee EJ, Ahn BE, Roe JH. SigB, an RNA polymerase sigma factor required for osmoprotection and proper differentiation of Streptomyces coelicolor. Mol. Microbiol. 2001;42:205–214. PubMed
Sevcikova B, Benada O, Kofronova O, Kormanec J. Stress-response sigma factor sigma(H) is essential for morphological differentiation of Streptomyces coelicolor A3(2) Arch. Microbiol. 2001;177:98–106. PubMed
Mao XM, Zhou Z, Hou XP, Guan WJ, Li YQ. Reciprocal regulation between SigK and differentiation programs in Streptomyces coelicolor. J. Bacteriol. 2009;191:6473–6481. PubMed PMC
Potuckova L, Kelemen GH, Findlay KC, Lonetto MA, Buttner MJ, Kormanec J. A new RNA polymerase sigma factor, sigma F, is required for the late stages of morphological differentiation in Streptomyces spp. Mol. Microbiol. 1995;17:37–48. PubMed
Dalton KA, Thibessard A, Hunter JI, Kelemen GH. A novel compartment, the ‘subapical stem' of the aerial hyphae, is the location of a sigN-dependent, developmentally distinct transcription in Streptomyces coelicolor. Mol. Microbiol. 2007;64:719–737. PubMed
Chater KF, Bruton CJ, Plaskitt KA, Buttner MJ, Mendez C, Helmann JD. The developmental fate of S. coelicolor hyphae depends upon a gene product homologous with the motility sigma factor of B. subtilis. Cell. 1989;59:133–143. PubMed
Bibb MJ, Molle V, Buttner MJ. sigma(BldN), an extracytoplasmic function RNA polymerase sigma factor required for aerial mycelium formation in Streptomyces coelicolor A3(2) J. Bacteriol. 2000;182:4606–4616. PubMed PMC
Mao XM, Zhou Z, Cheng LY, Hou XP, Guan WJ, Li YQ. Involvement of SigT and RstA in the differentiation of Streptomyces coelicolor. FEBS Lett. 2009;583:3145–3150. PubMed
Paget MS, Chamberlin L, Atrih A, Foster SJ, Buttner MJ. Evidence that the extracytoplasmic function sigma factor sigmaE is required for normal cell wall structure in Streptomyces coelicolor A3(2) J. Bacteriol. 1999;181:204–211. PubMed PMC
Paget MS, Kang JG, Roe JH, Buttner MJ. sigmaR, an RNA polymerase sigma factor that modulates expression of the thioredoxin system in response to oxidative stress in Streptomyces coelicolor A3(2) EMBO J. 1998;17:5776–5782. PubMed PMC
Kang JG, Paget MS, Seok YJ, Hahn MY, Bae JB, Hahn JS, Kleanthous C, Buttner MJ, Roe JH. RsrA, an anti-sigma factor regulated by redox change. EMBO J. 1999;18:4292–4298. PubMed PMC
Paget MS, Molle V, Cohen G, Aharonowitz Y, Buttner MJ. Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the sigmaR regulon. Mol. Microbiol. 2001;42:1007–1020. PubMed
Park JH, Roe JH. Mycothiol regulates and is regulated by a thiol-specific antisigma factor RsrA and sigma(R) in Streptomyces coelicolor. Mol. Microbiol. 2008;68:861–870. PubMed
Kallifidas D, Thomas D, Doughty P, Paget MS. The sigmaR regulon of Streptomyces coelicolor A32 reveals a key role in protein quality control during disulphide stress. Microbiology. 2010;156:1661–1672. PubMed
Lee EJ, Cho YH, Kim HS, Ahn BE, Roe JH. Regulation of sigmaB by an anti- and an anti-anti-sigma factor in Streptomyces coelicolor in response to osmotic stress. J. Bacteriol. 2004;186:8490–8498. PubMed PMC
Sevcikova B, Rezuchova B, Homerova D, Kormanec J. The anti-anti-sigma factor BldG is involved in activation of the stress response sigma factor sigma(H) in Streptomyces coelicolor A3(2) J. Bacteriol. 2010;192:5674–5681. PubMed PMC
Vohradsky J. Neural network model of gene expression. FASEB J. 2001;15:846–854. PubMed
Krasny L, Tiserova H, Jonak J, Rejman D, Sanderova H. The identity of the transcription +1 position is crucial for changes in gene expression in response to amino acid starvation in Bacillus subtilis. Mol. Microbiol. 2008;69:42–54. PubMed
Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–210. PubMed PMC
Stekel D. Microarray Bioinformatics. Cambridge, England: Cambridge University Press; 2003. pp. 90–97.
Theodoridis S, Koutroumbas K. Pattern Recognition. Walthman, Massachusetts: Academic Press; 1999. pp. 557–561.
Vu TT, Vohradsky J. Nonlinear differential equation model for quantification of transcriptional regulation applied to microarray data of Saccharomyces cerevisiae. Nucleic Acids Res. 2007;35:279–287. PubMed PMC
Vu TT, Vohradsky J. Inference of active transcriptional networks by integration of gene expression kinetics modeling and multisource data. Genomics. 2009;93:426–433. PubMed
Spall JC. Introduction to Stochastic Search and Optimization. Hoboken, New Jersey: Wiley-Interscience; 2003.
Lee EJ, Karoonuthaisiri N, Kim HS, Park JH, Cha CJ, Kao CM, Roe JH. A master regulator sigmaB governs osmotic and oxidative response as well as differentiation via a network of sigma factors in Streptomyces coelicolor. Mol. Microbiol. 2005;57:1252–1264. PubMed
Cowan AE, Koppel DE, Setlow B, Setlow P. A soluble protein is immobile in dormant spores of Bacillus subtilis but is mobile in germinated spores: implications for spore dormancy. Proc. Natl Acad. Sci. USA. 2003;100:4209–4214. PubMed PMC
Bucca G, Brassington AM, Hotchkiss G, Mersinias V, Smith CP. Negative feedback regulation of dnaK, clpB and lon expression by the DnaK chaperone machine in Streptomyces coelicolor, identified by transcriptome and in vivo DnaK-depletion analysis. Mol. Microbiol. 2003;50:153–166. PubMed
Noens EE, Mersinias V, Traag BA, Smith CP, Koerten HK, van Wezel GP. SsgA-like proteins determine the fate of peptidoglycan during sporulation of Streptomyces coelicolor. Mol. Microbiol. 2005;58:929–944. PubMed
Lee EJ, Cho YH, Kim HS, Roe JH. Identification of sigmaB-dependent promoters using consensus-directed search of Streptomyces coelicolor genome. J. Microbiol. 2004;42:147–151. PubMed
Hong HJ, Paget MS, Buttner MJ. A signal transduction system in Streptomyces coelicolor that activates the expression of a putative cell wall glycan operon in response to vancomycin and other cell wall-specific antibiotics. Mol. Microbiol. 2002;44:1199–1211. PubMed
Buttner MJ, Smith AM, Bibb MJ. At least three different RNA polymerase holoenzymes direct transcription of the agarase gene (dagA) of Streptomyces coelicolor A3(2) Cell. 1988;52:599–607. PubMed
Viollier PH, Kelemen GH, Dale GE, Nguyen KT, Buttner MJ, Thompson CJ. Specialized osmotic stress response systems involve multiple SigB-like sigma factors in Streptomyces coelicolor. Mol. Microbiol. 2003;47:699–714. PubMed
Roth V, Aigle B, Bunet R, Wenner T, Fourrier C, Decaris B, Leblond P. Differential and cross-transcriptional control of duplicated genes encoding alternative sigma factors in Streptomyces ambofaciens. J. Bacteriol. 2004;186: 5355–5365. PubMed PMC
Paget MSB, Hong HJ, Bibb MJ, Buttner MJ. In: Signals, Switches, Regulons, and Cascades: Control of Bacterial Gene Expression. Hodgson DA, Thomas CM, editors. Cambridge, England: Cambridge University Press; 2002.
Secondary Metabolites Produced during the Germination of Streptomyces coelicolor
A Waking Review: Old and Novel Insights into the Spore Germination in Streptomyces
Changes in activity of metabolic and regulatory pathways during germination of S. coelicolor