Secondary Metabolites Produced during the Germination of Streptomyces coelicolor
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29326665
PubMed Central
PMC5733532
DOI
10.3389/fmicb.2017.02495
Knihovny.cz E-zdroje
- Klíčová slova
- Streptomyces, albaflavenone, cell signaling, chalcone, germicidin, secondary metabolism, spore germination,
- Publikační typ
- časopisecké články MeSH
Spore awakening is a series of actions that starts with purely physical processes and continues via the launching of gene expression and metabolic activities, eventually achieving a vegetative phase of growth. In spore-forming microorganisms, the germination process is controlled by intra- and inter-species communication. However, in the Streptomyces clade, which is capable of developing a plethora of valuable compounds, the chemical signals produced during germination have not been systematically studied before. Our previously published data revealed that several secondary metabolite biosynthetic genes are expressed during germination. Therefore, we focus here on the secondary metabolite production during this developmental stage. Using high-performance liquid chromatography-mass spectrometry, we found that the sesquiterpenoid antibiotic albaflavenone, the polyketide germicidin A, and chalcone are produced during germination of the model streptomycete, S. coelicolor. Interestingly, the last two compounds revealed an inhibitory effect on the germination process. The secondary metabolites originating from the early stage of microbial growth may coordinate the development of the producer (quorum sensing) and/or play a role in competitive microflora repression (quorum quenching) in their nature environments.
1st Faculty of Medicine Institute of Immunology and Microbiology Charles University Prague Czechia
Chemistry Department Faculty of Science J E Purkinje University Ústí nad Labem Czechia
Institute of Microbiology The Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Alvarez-Alvarez R., Botas A., Albillos S. M., Rumbero A., Martin J. F., Liras P. (2015). Molecular genetics of naringenin biosynthesis, a typical plant secondary metabolite produced by Streptomyces clavuligerus. Microb. Cell Fact. 14:178. 10.1186/s12934-015-0373-7 PubMed DOI PMC
Aoki Y., Matsumoto D., Kawaide H., Natsume M. (2011). Physiological role of germicidins in spore germination and hyphal elongation in Streptomyces coelicolor A3(2). J. Antibiot. 64, 607–611. 10.1038/ja.2011.59 PubMed DOI
Aoki Y., Yoshida M., Kawaide H., Abe H., Natsume M. (2007). Isolation and characterization of a spore germination inhibitor from Streptomyces sp. CB-1-1, a phytopathogen causing root tumor of melon. Biosci. Biotechnol. Biochem. 71, 986–992. 10.1271/bbb.60649 PubMed DOI
Avé D. A., Gregory P., Tingey W. M. (1987). Aphid repellent sesquiterpenes in glandular trichomes of Solanum berthaultii and S. tuberosum. Entomol. Experim. Appl. 44, 131–138. 10.1111/j.1570-7458.1987.tb01057.x DOI
Baltz R. H. (2008). Renaissance in antibacterial discovery from actinomycetes. Curr. Opin. Pharmacol. 8, 557–563. 10.1016/j.coph.2008.04.008 PubMed DOI
Bentley S. D., Chater K. F., Cerdeno-Tarraga A. M., Challis G. L., Thomson N. R., James K. D., et al. . (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147. 10.1038/417141a PubMed DOI
Bobek J., Halada P., Angelis J., Vohradsky J., Mikulik K. (2004). Activation and expression of proteins during synchronous germination of aerial spores of Streptomyces granaticolor. Proteomics 4, 3864–3880. 10.1002/pmic.200400818 PubMed DOI
Bobek J., Šmídová K., Čihák M. (2017). A waking review: old and novel insights into the spore germination in Streptomyces. Front. Microbiol. 8:2205. 10.3389/fmicb.2017.02205 PubMed DOI PMC
Bobek J., Strakova E., Zikova A., Vohradsky J. (2014). Changes in activity of metabolic and regulatory pathways during germination of S. coelicolor. BMC Genomics 15:1173. 10.1186/1471-2164-15-1173 PubMed DOI PMC
Brachmann A. O., Brameyer S., Kresovic D., Hitkova I., Kopp Y., Manske C., et al. . (2013). Pyrones as bacterial signaling molecules. Nat. Chem. Biol. 9, 573–578. 10.1038/nchembio.1295 PubMed DOI
Burdock T. J., Brooks M. S., Ghaly A. E. (2011). A dehydrogenase activity test for monitoring the growth of Streptomyces venezuelae in a nutrient rich medium. J. Bioprocess Biotechniq. 1:101 10.4172/2155-9821.1000101 DOI
Bystrykh L. V., Fernandez-Moreno M. A., Herrema J. K., Malpartida F., Hopwood D. A., Dijkhuizen L. (1996). Production of actinorhodin-related "blue pigments" by Streptomyces coelicolor A3(2). J. Bacteriol. 178, 2238–2244. 10.1128/jb.178.8.2238-2244.1996 PubMed DOI PMC
Camilli A., Bassler B. L. (2006). Bacterial small-molecule signaling pathways. Science 311, 1113–1116. 10.1126/science.1121357 PubMed DOI PMC
Chemler J. A., Buchholz T. J., Geders T. W., Akey D. L., Rath C. M., Chlipala G. E., et al. . (2012). Biochemical and structural characterization of germicidin synthase: analysis of a type III polyketide synthase that employs acyl-ACP as a starter unit donor. J. Am. Chem. Soc. 134, 7359–7366. 10.1021/ja2112228 PubMed DOI PMC
Chen K. C., Csikasz-Nagy A., Gyorffy B., Val J., Novak B., Tyson J. J. (2000). Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol. Biol. Cell 11, 369–391. 10.1091/mbc.11.1.369 PubMed DOI PMC
Claessen D., de Jong W., Dijkhuizen L., Wosten H. A. (2006). Regulation of Streptomyces development: reach for the sky! Trends Microbiol. 14, 313–319. 10.1016/j.tim.2006.05.008 PubMed DOI
Davis N. K., Chater K. F. (1990). Spore colour in Streptomyces coelicolor A3(2) involves the developmentally regulated synthesis of a compound biosynthetically related to polyketide antibiotics. Mol. Microbiol. 4, 1679–1691. 10.1111/j.1365-2958.1990.tb00545.x PubMed DOI
Derouaux A., Halici S., Nothaft H., Neutelings T., Moutzourelis G., Dusart J., et al. . (2004). Deletion of a cyclic AMP receptor protein homologue diminishes germination and affects morphological development of Streptomyces coelicolor. J. Bacteriol. 186, 1893–1897. 10.1128/JB.186.6.1893-1897.2004 PubMed DOI PMC
Diaz-Tielas C., Grana E., Reigosa M. J., Sanchez-Moreiras A. M. (2012). The role of peroxidases on the mode of action of chalcone in Arabidopsis roots. Plant Signal. Behav. 7, 1274–1276. 10.4161/psb.21594 PubMed DOI PMC
Eaton D., Ensign J. C. (1980). Streptomyces viridochromogenes spore germination initiated by calcium ions. J. Bacteriol. 143, 377–382. PubMed PMC
Funa N., Ohnishi Y., Fujii I., Shibuya M., Ebizuka Y., Horinouchi S. (1999). A new pathway for polyketide synthesis in microorganisms. Nature 400, 897–899. 10.1038/23748 PubMed DOI
Gao C., Hindra Mulder D., Yin C., Elliot M. A. (2012). Crp is a global regulator of antibiotic production in streptomyces. MBio 3:e00407-12. 10.1128/mBio.00407-12 PubMed DOI PMC
Gerber N. N., Lechevalier H. A. (1965). Geosmin, an earthly-smelling substance isolated from actinomycetes. Appl. Microbiol. 13, 935–938. PubMed PMC
Gibson R. W., Pickett J. A. (1983). Wild potato repels aphids by release of aphid alarm pheromone. Nature 302, 608–609. 10.1038/302608a0 DOI
Gomez-Escribano J. P., Song L., Fox D. J., Yeo V., Bibb M. J., Challis G. (2012). Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of Streptomyces coelicolor M145. Chem. Sci. 3, 2716–2720. 10.1039/c2sc20410j DOI
Grund A. D., Ensign J. C. (1985). Properties of the germination inhibitor of Streptomyces viridochromogenes spores. J. Gen. Microbiol. 131, 833–847. 10.1099/00221287-131-4-833 PubMed DOI
Gurtler H., Pedersen R., Anthoni U., Christophersen C., Nielsen P. H., Wellington E. M., et al. . (1994). Albaflavenone, a sesquiterpene ketone with a zizaene skeleton produced by a streptomycete with a new rope morphology. J. Antibiot. 47, 434–439. 10.7164/antibiotics.47.434 PubMed DOI
Haiser H. J., Yousef M. R., Elliot M. A. (2009). Cell wall hydrolases affect germination, vegetative growth, and sporulation in Streptomyces coelicolor. J. Bacteriol. 191, 6501–6512. 10.1128/JB.00767-09 PubMed DOI PMC
Hirsch C. F., Ensign J. C. (1976a). Heat activation of Streptomyces viridochromogenes spores. J. Bacteriol. 126, 24–30. PubMed PMC
Hirsch C. F., Ensign J. C. (1976b). Nutritionally defined conditions for germination of Streptomyces viridochromogenes spores. J. Bacteriol. 126, 13–23. PubMed PMC
Hirsch C. F., Ensign J. C. (1978). Some properties of Streptomyces viridochromogenes spores. J. Bacteriol. 134, 1056–1063. PubMed PMC
Hodgson D. (1982). Glucose repression of carbon source uptake and metabolism in Streptomyces coelicolor A3(2) and its perturbation in mutants resistant to 2-deoxyglucose. Micro Soc. 128, 2417–2430. 10.1099/00221287-128-10-2417 DOI
Hopwood D. A. (2007). How do antibiotic-producing bacteria ensure their self-resistance before antibiotic biosynthesis incapacitates them? Mol. Microbiol. 63, 937–940. 10.1111/j.1365-2958.2006.05584.x PubMed DOI
Ikeda H., Ishikawa J., Hanamoto A., Shinose M., Kikuchi H., Shiba T., et al. . (2003). Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21, 526–531. 10.1038/nbt820 PubMed DOI
Izumikawa M., Shipley P. R., Hopke J. N., O'Hare T., Xiang L., Noel J. P., et al. . (2003). Expression and characterization of the type III polyketide synthase 1,3,6,8-tetrahydroxynaphthalene synthase from Streptomyces coelicolor A3(2). J. Ind. Microbiol. Biotechnol. 30, 510–515. 10.1007/s10295-003-0075-8 PubMed DOI
Janecek J., Tichy P., Spizek J., Vanek Z. (1997). Constitution of the metabolic type of streptomycetes during the first hours of cultivation. Folia Microbiol. 42, 75–96. 10.1007/BF02898713 PubMed DOI
Kalan L., Gessner A., Thaker M. N., Waglechner N., Zhu X., Szawiola A., et al. . (2013). A cryptic polyene biosynthetic gene cluster in Streptomyces calvus is expressed upon complementation with a functional bldA gene. Chem. Biol. 20, 1214–1224. 10.1016/j.chembiol.2013.09.006 PubMed DOI
Kamenik Z., Hadacek F., Mareckova M., Ulanova D., Kopecky J., Chobot V., et al. . (2010). Ultra-high-performance liquid chromatography fingerprinting method for chemical screening of metabolites in cultivation broth. J. Chromatogr. A 1217, 8016–8025. 10.1016/j.chroma.2010.08.031 PubMed DOI
Kelemen G. H., Buttner M. J. (1998). Initiation of aerial mycelium formation in Streptomyces. Curr. Opin. Microbiol. 1, 656–662. 10.1016/S1369-5274(98)80111-2 PubMed DOI
Keller N. P., Turner G., Bennett J. W. (2005). Fungal secondary metabolism - from biochemistry to genomics. Nat. Rev. Microbiol. 3, 937–947. 10.1038/nrmicro1286 PubMed DOI
Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. (2000). Practical Streptomyces Genetics, 2nd Edn. Norwich: John Innes Foundation.
Lakey J. H., Lea E. J., Rudd B. A., Wright H. M., Hopwood D. A. (1983). A new channel-forming antibiotic from Streptomyces coelicolor A3(2) which requires calcium for its activity. J. Gen. Microbiol. 129, 3565–3573. 10.1099/00221287-129-12-3565 PubMed DOI
Lee K. J., Rho Y. T. (1993). Characteristics of spores formed by surface and submerged cultures of Streptomyces albidoflavus SMF301. J. Gen. Microbiol. 139, 3131–3137. 10.1099/00221287-139-12-3131 DOI
Luo Y., Huang H., Liang J., Wang M., Lu L., Shao Z., et al. . (2013). Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster. Nat. Commun. 4:894. 10.1038/ncomms3894 PubMed DOI PMC
Ma M., Rateb M. E., Yang D., Rudolf J. D., Zhu X., Huang Y., et al. . (2017). Germicidins H-J from Streptomyces sp. CB00361. J. Antibiot. 70, 200–203. 10.1038/ja.2016.100 PubMed DOI
Martinez G., Regente M., Jacobi S., Del Rio M., Pinedo M., de la Canal L. (2017). Chlorogenic acid is a fungicide active against phytopathogenic fungi. Pestic. Biochem. Physiol. 140, 30–35. 10.1016/j.pestbp.2017.05.012 PubMed DOI
Maxwell C. A., Hartwig U. A., Joseph C. M., Phillips D. A. (1989). A chalcone and two related flavonoids released from alfalfa roots induce nod genes of rhizobium meliloti. Plant Physiol. 91, 842–847. 10.1104/pp.91.3.842 PubMed DOI PMC
McCormick J. R., Flardh K. (2012). Signals and regulators that govern Streptomyces development. FEMS Microbiol. Rev. 36, 206–231. 10.1111/j.1574-6976.2011.00317.x PubMed DOI PMC
Mikulik K., Bobek J., Bezouskova S., Benada O., Kofronova O. (2002). Expression of proteins and protein kinase activity during germination of aerial spores of Streptomyces granaticolor. Biochem. Biophys. Res. Commun. 299, 335–342. 10.1016/S0006-291X(02)02606-2 PubMed DOI
Mikulik K., Bobek J., Zikova A., Smetakova M., Bezouskova S. (2011). Phosphorylation of ribosomal proteins influences subunit association and translation of poly (U) in Streptomyces coelicolor. Mol. Biosyst. 7, 817–823. 10.1039/C0MB00174K PubMed DOI
Mikulik K., Janda I., Maskova H., Stastna J., Jiranova A. (1977). Macromolecular synthesis accompanying the transition from spores to vegetative forms of Streptomyces granaticolor. Folia Microbiol. 22, 252–261. 10.1007/BF02877654 PubMed DOI
Mikulik K., Paleckova P., Felsberg J., Bobek J., Zidkova J., Halada P. (2008). SsrA genes of streptomycetes and association of proteins to the tmRNA during development and cellular differentiation. Proteomics 8, 1429–1441. 10.1002/pmic.200700560 PubMed DOI
Moody S. C., Zhao B., Lei L., Nelson D. R., Mullins J. G., Waterman M. R., et al. . (2012). Investigating conservation of the albaflavenone biosynthetic pathway and CYP170 bifunctionality in streptomycetes. FEBS J. 279, 1640–1649. 10.1111/j.1742-4658.2011.08447.x PubMed DOI
Ohnishi Y., Ishikawa J., Hara H., Suzuki H., Ikenoya M., Ikeda H., et al. . (2008). Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J. Bacteriol. 190, 4050–4060. 10.1128/JB.00204-08 PubMed DOI PMC
Okamoto S., Taguchi T., Ochi K., Ichinose K. (2009). Biosynthesis of actinorhodin and related antibiotics: discovery of alternative routes for quinone formation encoded in the act gene cluster. Chem. Biol. 16, 226–236. 10.1016/j.chembiol.2009.01.015 PubMed DOI
Paleckova P., Bobek J., Felsberg J., Mikulik K. (2006). Activity of translation system and abundance of tmRNA during development of Streptomyces aureofaciens producing tetracycline. Folia Microbiol. 51, 517–524. 10.1007/BF02931615 PubMed DOI
Petersen F., Zahner H., Metzger J. W., Freund S., Hummel R. P. (1993). Germicidin, an autoregulative germination inhibitor of Streptomyces viridochromogenes NRRL B-1551. J. Antibiot. 46, 1126–1138. 10.7164/antibiotics.46.1126 PubMed DOI
Phelan V. V., Liu W. T., Pogliano K., Dorrestein P. C. (2011). Microbial metabolic exchange–the chemotype-to-phenotype link. Nat. Chem. Biol. 8, 26–35. 10.1038/nchembio.739 PubMed DOI PMC
Rajan B. M., Kannabiran K. (2014). Extraction and identification of antibacterial secondary metabolites from marine Streptomyces sp. VITBRK2. Int. J. Mol. Cell. Med. 3, 130–137. PubMed PMC
Ranade N., Vining L. C. (1993). Accumulation of intracellular carbon reserves in relation to chloramphenicol biosynthesis by Streptomyces venezuelae. Can. J. Microbiol. 39, 377–383. 10.1139/m93-055 PubMed DOI
Romero-Rodriguez A., Ruiz-Villafan B., Tierrafria V. H., Rodriguez-Sanoja R., Sanchez S. (2016). Carbon catabolite regulation of secondary metabolite formation and morphological differentiation in Streptomyces coelicolor. Appl. Biochem. Biotechnol. 180, 1152–1166. 10.1007/s12010-016-2158-9 PubMed DOI
Rutherford S. T., Bassler B. L. (2012). Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med. 2:a012427. 10.1101/cshperspect.a012427 PubMed DOI PMC
Schaberle T. F. (2016). Biosynthesis of alpha-pyrones. Beilstein J. Org. Chem. 12, 571–588. 10.3762/bjoc.12.56 PubMed DOI PMC
Schenck F. J., Hobbs J. E. (2004). Evaluation of the quick, easy, cheap, effective, rugged, and safe (QuEChERS) approach to pesticide residue analysis. Bull. Environ. Contam. Toxicol. 73, 24–30. 10.1007/s00128-004-0388-y PubMed DOI
Seipke R. F., Kaltenpoth M., Hutchings M. I. (2012). Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol. Rev. 36, 862–876. 10.1111/j.1574-6976.2011.00313.x PubMed DOI
Sello J. K., Buttner M. J. (2008). The gene encoding RNase III in Streptomyces coelicolor is transcribed during exponential phase and is required for antibiotic production and for proper sporulation. J. Bacteriol. 190, 4079–4083. 10.1128/JB.01889-07 PubMed DOI PMC
Shima J., Hesketh A., Okamoto S., Kawamoto S., Ochi K. (1996). Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J. Bacteriol. 178, 7276–7284. 10.1128/jb.178.24.7276-7284.1996 PubMed DOI PMC
Sivakumar P. M., Priya S., Doble M. (2009). Synthesis, biological evaluation, mechanism of action and quantitative structure-activity relationship studies of chalcones as antibacterial agents. Chem. Biol. Drug Des. 73, 403–415. 10.1111/j.1747-0285.2009.00793.x PubMed DOI
Strakova E., Bobek J., Zikova A., Rehulka P., Benada O., Rehulkova H., et al. . (2013). Systems insight into the spore germination of Streptomyces coelicolor. J. Proteome Res. 12, 525–536. 10.1021/pr300980v PubMed DOI
Strakova E., Zikova A., Vohradsky J. (2014). Inference of sigma factor controlled networks by using numerical modeling applied to microarray time series data of the germinating prokaryote. Nucleic Acids Res. 42, 748–763. 10.1093/nar/gkt917 PubMed DOI PMC
Tahlan K., Ahn S. K., Sing A., Bodnaruk T. D., Willems A. R., Davidson A. R., et al. . (2007). Initiation of actinorhodin export in Streptomyces coelicolor. Mol. Microbiol. 63, 951–961. 10.1111/j.1365-2958.2006.05559.x PubMed DOI
Tanaka Y., Kasahara K., Hirose Y., Murakami K., Kugimiya R., Ochi K. (2013). Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes. J. Bacteriol. 195, 2959–2970. 10.1128/JB.00147-13 PubMed DOI PMC
van Keulen G., Dyson P. J. (2014). Production of specialized metabolites by Streptomyces coelicolor A3(2). Adv. Appl. Microbiol. 89, 217–266. 10.1016/B978-0-12-800259-9.00006-8 PubMed DOI
van Vliet S. (2015). Bacterial dormancy: how to decide when to wake up. Curr. Biol. 25, R753–R755. 10.1016/j.cub.2015.07.039 PubMed DOI
Wakefield J., Hassan H. M., Jaspars M., Ebel R., Rateb M. E. (2017). Dual induction of new microbial secondary metabolites by fungal bacterial co-cultivation. Front. Microbiol. 8:1284. 10.3389/fmicb.2017.01284 PubMed DOI PMC
Waters C. M., Bassler B. L. (2005). Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346. 10.1146/annurev.cellbio.21.012704.131001 PubMed DOI
Xu Y., Vetsigian K. (2017). Phenotypic variability and community interactions of germinating Streptomyces spores. Sci. Rep. 7:699. 10.1038/s41598-017-00792-7 PubMed DOI PMC
Ylstra B., Touraev A., Moreno R. M., Stoger E., van Tunen A. J., Vicente O., et al. . (1992). Flavonols stimulate development, germination, and tube growth of tobacco pollen. Plant Physiol. 100, 902–907. 10.1104/pp.100.2.902 PubMed DOI PMC
Yoshida M., Kobayashi K. (1994). Morphogenesis of the pathogenic Streptomyces sp. causing root tumor of melon on the ulture medium. Ann. Phytopathol. Soc. Jpn. 60, 514–522. 10.3186/jjphytopath.60.514 DOI
Zhao B., Lei L., Vassylyev D. G., Lin X., Cane D. E., Kelly S. L., et al. . (2009). Crystal structure of albaflavenone monooxygenase containing a moonlighting terpene synthase active site. J. Biol. Chem. 284, 36711–36719. 10.1074/jbc.M109.064683 PubMed DOI PMC
Polyenic Antibiotics and Other Antifungal Compounds Produced by Hemolytic Streptomyces Species
6S-Like scr3559 RNA Affects Development and Antibiotic Production in Streptomyces coelicolor